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1. Axiomatic definitions of convex sets and convex functions

In the theory of optimization of convex functions essential role is played by convex
analysis. The basic notions concerning convex analysis are following

(i) a convex set,
(ii) a convex function.

There is natural question, what we ought to do when we consider optimization prob-
lems concerning of functions defined on a set, which is not convex, or even if the set is
convex the defined function is not convex.

Mathematicians knows the answer on this problem. The natural way is to extend the
definitions of the both considered notions. The extensions ought be relatively large, since
in this case we have a lot of models. On the other hand it ought be sufficiently narrow,
since we want to obtain some nontrivial results.

Thus we have a problem how we can define in an axiomatic way
(i) a convex set,
(ii) a convex function.

We shall start with axiomatic definition of convex sets. The first, I can call it a
prehistorical step in the subject, was done by Kuratowski (1922), who define the closure
operation in an axiomatic way. Let X be a set called later the space. Let u(-) : 2% — 2%
be an operation with the following property

A C u(A), (1.1)
u(A) C u(B)if AC B, (1.2)
u(u(A)) = u(A), (1.3)
u(AU B) = u(A) Uu(B). (1.4)

Then we say that u is a closure operation (see Kuratowski (1922)). Kuratowski showed
that in this way we can define a topology on X. Using his notation u(A) = A, we can
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define the closed sets as those sets A, that A = A and we can define open sets as those,
which complement is closed.

Observe that if X is a linear space than the operation co(-) of taking of convex hull
satisfies the axioms (1.1), (1.2), (1.3) but does not satisfy axiom (1.4). Thus it is natural
to call an operation wu(-) satisfying the axioms (1.1), (1.2), (1.3) convex hull operation.
Since it does not lead to misunderstanding we shall denote convex hull operation by co(-).
A set A C X is called convex, if co(A) = A

Now we shall give an example of convex hull operation related to a notion of M-convex
sets. Let M be a family of subsets of a set X, we say that a set A C X is M-convex, if
there is a subfamily M; C M, such that

A= () B (1.5)
BeM,

The family of all M-convex sets we shall denote by Mony. There are simple example
showing that two different family of sets M and M induce the same family of convex sets,
i.e. Meonv = Meony and there is a natural question about maximal and minimal families
giving the same M-convex sets. Such an maximal family always exists. It is unique and
it is just Mcony. Minimal families in general do not exist. I know only if a family M is
finite, then always such a minimal family M, exists.

A very nice historical description of the notion of M-convex sets is done in the paper
Danzer, Griinbaum, Klee (1963) in §9.
Quite often we make an additional assumption about the family M, namely we require

(x) X € M and the intersection of sets belonging to any subfamily M; C M is a member
of M.

In other words we request that M = Mqony. Ky Fan (Fan, K.) (1963) called the
family satisfying (x) N-stable and Soltan (1984) called them convexity.

Having the convexity we can introduce a notion of a hull operation (or convexification)
convaq(A) of an arbitrary set A, defined in the following way

convp(A) =M : M € M, Ac M} (1.6)
Putting u(A) = conva(A) we trivially obtain that u(-) satisfies axioms (1.1), (1.2),
(1.3).

Observe that if u(-) is a hull operation than the family M, = {u(A) : A C 2%} =
{A :u(A) = A} satisfies (). Indeed for any subfamily M; C M, we have

u( () Ac () u@)cul () uA)cul [ A

AeM. AeM; AeM. AeM;

Thus the both approaches by hull operation and by convexity are equivalent.
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Now we shall try to define a convex function. It is obvious that the classical definition
of the convex function is not very useful, since it uses in an essential way the linear structure
of a domain of the function. However in the classical case we have the following observation.
Let X be a Banach space. Let 2 C X be a convex set with non empty interior. Then a
real-valued function f(-) is convex if and only if

f(z) =sup{l(z) +c: e X", ceR L) +c< f()} (1.7)

where X* is the conjugate space and £(-) + ¢ < f(-) means that {(x) + ¢ < f(x) for all
x €.

Using this observation replacing the family of continuous linear functionals X* by an
arbitrary family of functions defined on X we obtain the following definition.

Let X be a set called later the space. Let ® be an arbitrary family of functions defined
on X and having values in the extended real line R = RU {—o0} U {+o0}. For a function
f(z) defined on X and having values in the extended real line R we shall denote by

f®(x) =sup{p(x) +c:p € P, ceR, ¢+c< fl (1.8)

The function f®(x) is called the ®-convexification of the function f. If f®(z) = f(z), i.e.,

f(z)=sup{p(x)+c:peP,ceR,p+c< f}. (1.9)

we say that the function f is ®-convex. The set of all ®-convex functions we shall denote
by ®cony. Identifying a function f(-) with its epigraph Ey = {(t,z) e Rx X : t e R,z =€
X,t > f(x), we obtain that on the set of functions the operation (-)® is convex hull
operation.

There is a natural question how to define the hull operation on functions in an ax-
iomatic way. Singer (2000) propose the following approach. We consider an operation
v mapping the space RX of functions mapping a set X into R into itself satisfying the
following axioms

v(f) < f (1.1)
f1 < fo implies v(f1) < v(f2), (1.2)
v(v(f)) = v(f)- (1.3)

(which correspond axioms (1.1), (1.2), (1.3) for epigraphs). The operation v we shall call
hull operation.

Having a hull operation we can define a family of functions ®, = {v(f) : f € 2X} =
{f:v(f) = f}. It is easy to see that ®,-convexification is nothing else as v. Observe that
the family @, satisfies the following condition

(%) for any subfamily ®; C ®, supremum of functions belonging to ®; belongs to ®,,.

Indeed



sup ¢ = sup v(¢) < v(sup ¢) < sup ¢.
PED, PED, PED PED,

There is a natural question how to formulate Kuratowski axiom (1.4). May be

v(inf{f,g}) = inf{v(f), v(g)}? (1.4)
Is is interesting to find a non-trivial example of such hull operation.

Similar as in the case of M-convex sets in the case of ®-convex functions we have
the problem of the existence of minimal (in the sense of inclusion) families ®° such that

PO = Peony. [ know the following two examples

1. Let X be a Banach space and let ® be the class of all convex functions defined on
X. Let X* be the conjugate space. Then X* the unique minimal (in the sense of
inclusion) family such that X*.on, = @.

2. Let X = R". Let H be the set of all harmonic entire functions. Then H the unique
minimal (in the sense of inclusion) family generating Heony -

In the proof of those examples we are using the fact that an affine (or harmonic)
function defined on the whole space and bounded from below (or above) is constant.

In the case when X is an open convex set smaller than the whole space, in both cases
such minimal family does not exist.

2. ®-subgradients and ®-subdifferentials.

Having the notions of ®-convex functions we can in a natural way to define ®-
subgradients and ®-subdifferentials. Let f(-) be a real-valued function defined on X.
Similarly as in the classical case, a function ¢(-) € ® will be called a ®-subgradient of the
function f(-) at a point z¢ if

f(x) = f(zo) > ¢(x) — ¢(x0) (2.1)

for all z € X. The set of all ®-subgradients of the function f(-) at a point xg we shall call
the ®-subdifferential of the function f at the point zy and we shall denote it by Js f{xo.

Of course 04 f } 0 is a multifunction mapping X into 2%. It is not too difficult to observe
that this multifunction is cyclic monotone, i.e. for arbitrary n and xg,z1,...,2, = 29 € X
and ¢, € &I,f{x., 1=0,1,2,...,n, we have

n

Z[gbxi—l(’ri*l) - gbxz—l(xl)] > 0. (22)

=1

Unfortunately, it need not to be maximal cyclic monotone, as in the classical case.
However, generalizing the Rockafellar theorem (1970b) we can show that every maximal
cyclic monotone multifunction I'(+) is a subdifferential of a certain ®-convex function f(-)
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(Rolewicz (1996), Pallaschke and Rolewicz (1997), see also Levin (1999)). Then the fol-
lowing questions arises.

Problem 2.1. Is the function f(-) determined uniquely up to the constant, as it is
in the classical case?

On this very abstract formalism using only the order in the space of real numbers we
can generalize duality theory (Moreau (1963), (1966), (1970), Kutateladze and Rubinov
(1971), (1972), (1976), Elster and Nehse (1974), Dolecki and Kurcyusz (1978) and many
others)

Also it is possible to develop the Lagrange theory ((Kurcyusz (1976), Balder (1977),
Dolecki and Kurcyusz (1978) and many others).

3. Localization and globalization.

Let (X, dx) be a metric space. In this case we can localize the notions introduced in
the first two sections.

Let M be a family of subsets of a the space X. We say that a set A C X is locally
M-convex, if for each xy € A, and each neighbourhood U of z( there is a neighbourhood
V C U of zq, such that the intersection ANV is M-convex.

Of course each M-convex set is locally M-convex. Thus a following question arises,
when a locally M-convex set is also M-convex. We say that a class F of sets has M-
globalization property if each locally M-convex set is also M-convex. In the case when
M has M-globalization property we say briefly that M has globalization property. Is is
not difficult to see that in arbitrary metric space (or even more general topological space)
the classes of closed sets and open sets have globalization property.

The nice example of localization and globalization is following. Let (X,dx) be a
linear metric locally convex space. Take as M the family of convex sets. We can say that
a set A C X is locally M-convex (briefly locally convex), if for each zy € A, there is a
convex neighbourhood V' of zg, such that the intersection ANV is M-convex (i.e. simply
convex). Of course, in this case M does not have globalization property. Indeed, each
open set is locally convex. However, each closed connected locally convex is convex (see
Tietze (1928), Matsumura (1928) in R™ and Klee (1951) in general case). Thus the class
F of closed connected locally convex has M-globalization property.

If we have a linear structure in the space we can uniformed the localization procedure.
We say that a set A C X is uniformly locally convex if there is a neighbourhood V of 0
such that for each x € X the set AN (z + V) is convex. Of course, each uniformly locally
convex set is also locally convex. The converse is not true. For uniformly locally convex
sets we have

Proposition 3.1 (Rolewicz (2000)). Let X be a locally convex topological space. Let
A C X be a uniformly locally convex set. Then its closure A is uniformly locally convex.

Proposition 3.1 together with Tietze-Matsumura-Klee theorem implies
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Proposition 3.2 Let X be a locally convex topological space. Let A C X be a
connected uniformly locally convex set. Then its closure A is convex.

Similarly as in the case of sets we can consider localization and globalization in the
case of functions.

Let ® be a family of continuous functions defined on X. We say that a real-valued
function f(-) is locally ®-convex, if for each xg € domf, there is a neighbourhood V' of x,
such that the function f {V if @}V—convex. The set of all locally ®-convex functions we shall

denote by ®9¢ . We say that a function ¢ € ® is a local ®-subgradient of the function

conv*

f(-) at a point xq, if there is a neighbourhood V' of xg, such that the function (MV is a

CID}V— subgradient of the function f(-) at the point xg. The set of all local ®-subgradients
of the function f(-) at a point xg we shall call the local ®-subdifferential of the function
f at the point o and we shall denote it by aﬁ;c]f\xo. If 8£I§’Cf‘$0 # () for all zg € X we say

that the function f(-) is locally ®-subdifferentiable.

Having those definitions we have the following globalization problems. Under which
conditions putted on X and ® following implications hold

(i) each locally ®-convex function is ®-convex,
(ii) each local ®-subgradient can be extended to a ®-subgradient,

(iii) each locally ®-subdifferentiable function is a ®-subdifferentiable function.

Of course if implication (ii) holds, then the implication (iii) also holds. The converse
is not true as follows from the following

Example 3.3. Let X = [-1,1]. Let ® = {—clz — 29| : 0 < e <1,—-1 <z < 1}.
It is easy to see that a function f(-) is ®-convex if and only if it is a Lipschitz function
with a constant non-greater than 1 and that each such function is also ®-subdifferentiable.
In this example the implications (i) and (iii) holds but the implication (ii) does not hold.
Indeed, let f(z) = min[0, |z + 3|]. The function ¢(z) = 0 is a local ®-subgradient of the
function f(-) at the point 0, but it is not a ®-subgradient of the function f(-) at the point
0.

We do not know to much about the relations between implications (i) (resp. (ii), (iii)).
We know only

Proposition 3.4. (Rolewicz (1995b)) Let X be an open set of a normed space E.
Let ® be the set of linear continuous functionals restricted to X. Then implication (i)
(resp. (ii), (iii)) holds if and only if X is convex.

There is a natural question how is the situation when X is a one-connected open set
in R™ and ® is the class of harmonic functions defined on X.

4. Differentiability

Another natural consequence of introducing a metric is a possibility to introduce a
Fréchet differentiability.



We shall say that a function f(-) mapping a metric space (X,dx) into R is Fréchet
d-differentiable at a point zq if there is a function ¢ € ® such that

i (@) = F(20)] = [9(@) = d(a0)]

T—T0 dx(:l?,l'o)

= 0. (4.1)

The function ¢ will be called a Fréchet ®-gradient of the function f(-) at the point xg.
The set of all Fréchet ®-gradients of the function f(-) at the point xq is called Fréchet
®-differential of the function f(-) at the point zg and it is denoted by 9% f ‘wo.

In general a ®-subdifferentiable function may not be Fréchet ®-differentiable at any
point. Indeed

Example 4.1. Let X =R and let & = {¢(z) = —|z — x¢|,x0 € R}. It is easy to see
that a function f(-) is ®-convex if and only if it is a Lipschitz function with the Lipschitz
constant non-greater than 1. Thus the function f(z) = 0 is ®-subdifferentiable. It is easy
to see that it is not Fréchet ®-differentiable at any point.

However under proper assumptions we can obtain an extension of the famous Asplund
theorem to the case of metric spaces.

The assumptions are as follow:
(a) @ is an additive group,

(sL) @ is a set of Lipschitz functions. Moreover the space %Q is separable in the Lipschitz
norm ||¢||,

(wm) the family ® has the weak k-monotonicity property, 0 < k < 1, i.e. for all z € X,
¢ € ® and t > 0, there is a y € X such that 0 < dx(z,y) <t and

[0(y) — ¢()| = kllollLdx (y, z). (4.2)

Theorem 4.2 (Rolewicz (2002)). Let X be a metric space. Let ® be a family
of Lipschitz functions satisfying assumptions (a), (sL) and (wm). Let a multifunction
I' mapping X into 2% be monotone and such that dom I' = X (i.e., I'(x) # 0 for all
x € X). Then there exists a residual set 2 such that I' is single-valued and continuous (i.e.
simultaneously lower semi-continuous and upper semi-continuous) at each point of ).

Recall that in the case of normed spaces Gateaux differentiability of a convex con-
tinuous functions f(-) at a point x is equivalent to the fact that the subdifferential 0 f|x
consists of one point only. Moreover the continuity of Gateaux differentials in the norm
operator topology implies that these differentials are the Fréchet differential. Similarly we
have an extension of this fact to metric spaces (Rolewicz (1995), (1996)). As a consequence
we get

Theorem 4.3 (Rolewicz (2002)). Let X be a metric space, which is of the second
category on itself (in particular, let X be a complete metric space). Let ® be a family of
Lipschitz functions satisfying assumptions (a), (sL) and (wm). Let f(-) be a continuous
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®-subdifferentiable function. Then there is a residual set € such that the function f(-) is
Fréchet ®-differentiable at every point xg € 2. Moreover, on ) the Fréchet ®-gradient is
unique and it is continuous in the metric d,.

In the previous papers (Rolewicz (1994), (1995), (1995b), (1999)) and in the book
Pallaschke - Rolewicz (1997) the assumption (wm) was formulated in the stronger way
namely that

(m) the family ® has the k-monotonicity property, 0 < k < 1, ie. forallz € X, ¢ € ®
and t > 0, there is a y € X such that 0 < dx(x,y) < t and

o(y) — o(x) > kl|o||Ldx (v, x). (4.3)

Observe that if X is a compact set, then condition (m) is never satisfied, but the
condition (wm) can hold (Rolewicz (1999b)).

We say that the family ® has the strict k-monotonicity property, 0 < k < 1, if for all
z € X and all ¢ € ®, there is a constant r, 4 such that for all 0 < s <7, ¢ thereis y € X
such that dx (z,y) = s and

P(y) — ¢(x) = k@l dx (y, z). (4.31)

The strict k-monotonicity property is related to the notion of k-super-metric coupling
introduced by Penot (2002).

Of course if the family ® has the strict k-monotonicity property, then it has the
k-monotonicity property. We do not know if the converse implication holds.

We know that the answer is positive in the case of open sets X C R™ and ® consisting
of continuously differentiable functions and for families ® consisting of Lipschitz functions
defined on open interval (a,b) C R (Rolewicz (2003b)) .

There is also a similar problem concerning weak k-monotonicity property. We shall
say that a family ® has weak strict k-monotonicity property, 0 < k < 1, if for all z € X,
¢ € ® there is a constant r, 4 such that for all 0 < s < r, 4 there is y € X such that
dx(z,y) = s and

6(y) — ¢(x)| = kllllLdx (y, ). (4.31)

In this case the following example shows that the answer is negative.

Example 4.4. Let X = [0,1]. Let ® = {c¢ : ¢ € R}, where

1
¢(x) = inf 4|z — 2—n|

It is easy to see that ¢ is a Lipschitz function with constant 4. Take x = 0. By simple
calculation we obtain that ¢ has weak %—monotonic property, but is does not have weak
strict k-monotonic property for any k > 0. Of course on the set X’ = (0,1] ® has weak
strict k-monotonic property for arbitrary k, 0 < k < 1.
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As a consequence of Theorem 4.3 we obtain a weak version of the famous Asplund
theorem

Corollary 4.5. Let X be a convex set in a separable Banach space E. Suppose that
Int X # 0. Let f(-) be a convex function defined on X. Suppose that the dual space E*
is separable. Then there is a residual set ) C X such that the function f(-) is Fréchet
®-differentiable at every point xy € ). Moreover, on €2 the Fréchet ®-gradient is unique
and it is continuous in the norm in conjugate space E*.

Proof. Let ® be restrictions of E* to X. Of course the conditions (a), (sL) and
(wm) are satisfied. The proof consists of two parts. In the first part we are proving that
f(+) is ®-subdifferentiable. It is obvious consequence of Hahn-Banach theorem. Then by
Theorem 4.3 we obtain our result. O

5. Uniformly approximate ®-subdifferentials

There is a natural problem how to define a ®-subdifferential in the case of non-®-
convex functions.

The natural approach is following. Let f(-) be a real-valued function defined on X.
Similarly as in the classical case (compare for example Fabian (1989), Ioffe (1983), (1984),
(1986), (1989), (1990), (2000), Mordukchovich (1980), (1988) ), a function ¢(:) € ® will
be called a approximate ®-subgradient of the function f(x) at a point z¢ if

boing @) = S @)l = [6(@) = 6(ao)]

> 0. 5.1
r—xQ dX(l',l'O) - ( )

The set of all ®-subgradients of the function f(-) at a point xy we shall call approximate
®-subdifferential of the function f at the point xy and we shall denote it by 0% f ‘mo.

Of course 0y f } 0 is a multifunction mapping a domain of 9§ f ‘ 0 into 22.

Observe that (5.1) holds if and only there is a non-negative non-decreasing function
Bao(+) defined on the interval [0, +o00) and such that lig)l B (u) = 0 and

[f(z) = fzo)] — [¢(x) — d(x0)]

dX (:E7 ZL’())

>~y (A, 70)). (5:2)
Indeed, the function

[f(z) = f(z0) — d(x) — P(x0)]

B (8)) = sup 5.3
0( )) {z:dx (x,20)<s} dx(l‘,l'o) ( )
has the requested property.
Putting ay, (u) = uf,,(u) we can rewrite (5.2) in the form
f(@) = f(@o) 2 ¢(x) — ¢(w0) — g, (dx (x, 20)).- (5.4)
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Unfortunately G, (-) (and thus «a,,(-)) can be different in each point and we are not
able to use this definition for the problem of differentiation on a residual set. Thus there
is an idea of a uniformization of this notion.

Let (X,dx) be a metric space. Let a(t) be a nondecreasing function mapping the
interval [0, +00) into the interval [0, +00] such that

t
tim 20 (5.5)
tlo t
Let f(-) be a real-valued function defined on X. Let zyp € X. A function ¢,, € @
such that

f(@) = f(20) 2 bag () = ¢y (20) — aldx (z, 20))- (5.6)

we shall call a uniform approximate ®-subgradient of the function f(-) at xo with the
modulus «(-) (or briefly a(-)-®-subgradient of the function f(-) at xp). The set of all
a(-)-®-subgradient of the function f(-) at z¢ will be called the «(:)-®-subdifferential with
of the function f(-) at z¢ and it will be denoted by 9 * f|x0.

We say that a function f(z) is a(-)-®-subdifferentiable if 8;0‘]”‘% # () for all xg € X.

In a similar way we can consider a uniform Fréchet differential. It seems that this
notion was not investigated also in the classical case. In this classical case uniform Fréchet
differentiability is equivalent to continuous differentiability, provided that we consider func-
tions on relatively regular domains (see Rolewicz (2003)).

Let, as before, a(t) be a nondecreasing function mapping the interval [0, +00) into the
interval [0, +o00] such that (5.5) holds. We say that a multifunction I' mapping X into 2%
is a(-)-monotone if for all ¢, € I'(z), ¢, € I'(y) we have

b2(7) + &y (y) — d2(y) — ¢y(2) + aldx (z,y)) > 0. (5.7)

It is easy to see that, the subdifferential g f |:c of a a(-)-P-subdifferentiable function is
a 2a(-)- monotone multifunction of x. Adapting the method of Preiss and Zajicek (1984)
and the proof of Rolewicz (1994) (see also proof of Theorem 2.4.11 of Pallaschke - Rolewicz
(1997)) we can obtain

Theorem 5.1 (Rolewicz (2002)). Let X be a metric space. Let ® be a family of
Lipschitz functions satisfying assumptions (a), (sL) and (wm). Let a multifunction T’
mapping X into 2% be a(-)-monotone and such that dom I' = X (i.e., I'(z) # 0 for all
x € X). Then there exists a residual set § such that I' is single-valued and continuous on
the set (2.

Since the subdifferential 0g f |x of a a(-)-P-differentiable function is a 2a(-)- monotone
multifunction of z, we immediately obtain

Corollary 5.2 ( Rolewicz (2002)). Let X be a metric space, which is of the second
category on itself (in particular, let X be a complete metric space).. Let ® be a family
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of Lipschitz functions satisfying assumptions (a), (sL) and (wm). Let f(-) be an a(-)-
®-subdifferentiable function. residual set €2 such that the o(-)-®-subdifferential 03 f }w is
single-valued and continuous in the metric dy,.

Similarly, as in the previous section we can prove

Proposition 5.3 (Rolewicz (1999)). Let X be a metric space. Let ® be a family of
Lipschitz functions defined on X satisfying (a) . Let f(-) be an «(-)-®-subdifferentiable
function. If the subdifferential O f ‘m is lower semi-continuous at xq in the Lipschitz norm,
then it is the Fréchet ®-differential of the function f(-) at the point xg, and of course it is
lower semi-continuous at xo in the Lipschitz norm, too.

Let X be a metric space, which is of the second category on itself. Let {2y be a residual
set in X. Let Q be a residual set in £25. Then trivially 2 is a residual set in X. Thus as a
consequence of Theorem 5.1 and Proposition 5.3 we obtain

Theorem 5.4 (compare Rolewicz (1999)). Let X be a metric space, which is of the
second category on itself (in particular, let X be a complete metric space). Let ® be a
family of Lipschitz functions satisfying assumptions (a), (sL) and (wm). Let f(-) be a
continuous o(-)-®-subdifferentiable function. Then there is a residual set € such that the
function f(-) is Fréchet ®-differentiable at every point zy € 2. Moreover, on ) the Fréchet
®-gradient is unique and it is continuous in the metric dy,.

Suppose that X is an open set of a Banach space Y having separable dual Y*. Let
® be the family of continuous linear functionals restricted to X. It is easy to see that ®
satisfies assumptions (a), (sL) and (wm). Thus Theorem 5.4 can be rewritten in this case
in the following way

Theorem 5.45. Let X be an open set of a Banach space Y having separable dual
Y*. Let ® be the family of linear continuous functionals restricted to X, ® = Y*| +- Let
f() be a continuous «(-)-®-subdifferentiable function. Then there is a residual set € such
that the function f(-) is Fréchet differentiable at every point zy € ). Moreover, on €) the
Fréchet ®-gradient is unique and it is continuous in the conjugate norm || - ||*.

6. «o(-)-paraconvex and strongly «a(-)-paraconvex functions.

Theorem 5.45 have a certain disadvantage. Namely it is difficult to check that f(-)
is a continuous «a(-)-®-subdifferentiable function. Thus it is a natural question how to
describe the class of functions which have this property. In this section (X, || - ||) will be a
normed space and X* will be its dual. Let 2 C X. By ® we shall denote the restriction
to €2 the elements of X*. Since it does not lead to misunderstanding, in this section we
shall omit ® in the definitions of «(-)-®-subdifferentiability and «(-)-®-monotonicity.

Let a(t) be a nondecreasing function mapping the interval [0, +00) into the interval
[0, 4+00] such that (5.5) holds. Let (X, || - ||) be a normed space. Let 2 be a convex subset
of X. Let f(-) be a real valued function defined on 2. We say that the function f(-) is
a(-)-paraconvex™ with a constant C' > 0 if for all z,y € Q and 0 <t <1

* In general in the definition of «(:)-paraconvex and strongly «(-)-paraconvex functions
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fltz+ (1 =t)y) < tf(2) + (1 =1)f(y) + Calllz — yl)). (6.1)

We say that the function f(-) is a(-)-paraconvex, if there is a constant C' > 0 such that
the function f(-) is a(-)-paraconvex with the constant C' > 0. For a(t) = t? this definition
was introduced in Rolewicz (1979) and the t?-paraconvex functions were called simply
paraconvex functions. In Rolewicz (1979b) the notion was extended to the case a(t) =
t7,1 < v <2, and in the t7-paraconvex functions were called y-paraconvex functions.

We say that the function f(-) is strongly «a(:)-paraconvex with a constant Cy > 0 if
forall z,y e Qand 0 <t <1

flte + (1= t)y) <tf(x) + (1 =) f(y) + Crminft, (1 — )]z - yl). (6.2)

If there is a constant C; > 0 such that the function f(-) is strongly a(-)-paraconvex
with the constant C; > 0, we say that the function f(-) is strongly «(-)-paraconvex .

Of course every function f(-) strongly a(-)-paraconvex with a constant C; > 0 is also
a(-)-paraconvex with the constant C; > 0. The converse is not true (Rolewicz (2000)).

It was shown in Rolewicz (1979, 1979b) that for a(t) = t7,1 < v < 2, any af:)-
paraconvex function is simultaneously strongly «(-)-paraconvex.

There are «(-)-paraconvex functions f(-) : X — R, which are not strongly a(-)-
paraconvex. Conditions warranting that each «(-)-paraconvex functions is automatically
strongly a(-)-paraconvex a reader can find in the paper Rolewicz (2000).

Proposition 6.1 (Rolewicz (2002)) Let (X, || - ||) be a normed space. Let 2 be a
convex set in X. Let f(-) be a real valued function defined on 2. If the function f(-) is
a(-)-subdifferentiable, then it is a(-)-paraconvex with constant 1. If additionally

a(ts) < ta(s), (6.3)

for 0 <t < 1 and s > 0 then the function f(-) is strongly a(-)-paraconvex with constant 2.

For the purpose of further considerations we shall localize the notions of «f(-)-para-
convex and strongly «(-)-paraconvex functions.

We say that a real-valued function f(-) defined on a locally convex set 2 C X is
locally (strongly) a(-)-paraconvex with a constant C' > 0 if for each zp € € there is a
neighbourhood U of xg such that the function f(-) restricted to the set U (strongly) a(-)-
paraconvex with the constant C' > 0. We say that a function f(-) is locally (strongly)

the assumption (5.5) is replaced by the weaker assumption

a(t)

limsup —= < +o0,
t10

but for our considerations the stronger assumption (5.5) will be more adequate.
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a(-)-paraconvex if there is C' > 0, such that it is locally (strongly) a(-)-paraconvex with
the constant C.

We say that a real-valued function f(-) defined on a uniformly locally convex set
Q C X is uniformly locally (strongly) «(-)-paraconvex with a constant C' > 0 if there is
a neighbourhood V' of 0 such that for each xy € € the function f(-) restricted to the set
QN (zo+ V) is (strongly) a(-)-paraconvex with the constant C' > 0. If there is a constant
C > 0, such that the function f(-) is uniformly locally (strongly) «(:)-paraconvex with the
constant C' we say that the function f(-) is uniformly locally (strongly) a(-)-paraconvex.

In general a local a(-)-®-subgradient need not to be an a(-)-®-subgradient. However
in the case of strongly «a(-)-paraconvex functions, defined on open convex sets we have

Theorem 6.2 (Rolewicz (2000), in the case of a(t) = t7 Jourani (1996)). Let (X, ||.||)
be a real Banach space, which has the separable dual X*. Let f(-) be a strongly «(-)-
paraconvex function with constant 1, defined on an open convex subset {2 C X. Then each
local o(-)-subgradient of the function f(-) at a point x is automatically an a(-)-subgradient
of the function f(-) at the point x.

Thus we have

Proposition 6.3. Let (X, ||.||) be a real Banach space, which has the separable dual
X*. Let f(-) be a locally strongly a(-)-paraconvex function, defined on an open subset
Q2 C X. Then the local «(-)-®-subdifferential of function f(-), 8%’100]”}36, is a locally 2a(-)-
monotone multifunction.

Proof. Let zp € Q. Since the function f(-) is a locally strongly «f(:)-paraconvex
function, there is a convex open neighbourhood U of xy such that the function f ‘U(x)
is strongly «a(-)-paraconvex function. Thus by Theorem 6.2 Gg’loc f’U =03 f }U. Hence
by Proposition 3.1 8g’loc f |U is an 2a(-)-monotone multifunction. Therefore d3 f !U is a
locally 2a(-)-monotone multifunction. O

As a simple consequence of Proposition 6.1 and 6.3 we get

Proposition 6.4. Let (X, | - ||) be a normed space. Let Q be a (uniformly) locally
convex set in X. Let f(-) be a real valued function defined on Q. If the function f(-) is
a(-)-subdifferentiable, then it is (uniformly) locally «(-)-paraconvex with constant 1. If
additionally

a(ts) < ta(s), (6.3)

for 0 < t < 1 and s > 0 then the function f(-) is (uniformly) locally strongly a(-)-
paraconvex with constant 2.

Let f(-) be a real valued function defined on a uniformly locally convex set €. If for
arbitrary € > 0 there is a 4 > 0 such that

tf(@)+ 1 =) f(y) — ftz + (1 —t)y) = —et(1 - t)]|z -y (6.10)

for arbitrary x,y € € such that ||z —y|| < § we say that the function f(-) uniformly approx-
imate convex (Rolewicz (2001b)). This is a uniformization of the notion of approximate
convex functions introduced by Luc, Ngai and Théra (Luc-Ngai-Théra (2000)).
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Corollary 6.5 (Rolewicz (2001b)). Let (X,|| - ||) be a normed space. Let Q be
a uniformly locally convex set in X. Let f(-) be a real valued function defined on ).
Suppose that (5.5) holds. If the function f(-) is a(-)-subdifferentiable, then it is uniformly
approximate convex.

Between uniformly approximate convex and strongly «(-)-paraconvex functions the
following relations are true.

Proposition 6.6 (Rolewicz 2001b)). Let (X, | - ||) be a normed space. Let Q2 be a
uniformly locally convex set in X. Let f(-) be a real valued function defined on Q. If
the function f(-) is uniformly locally strongly a(-)-paraconvex, then f(-) is a uniformly
approximate convex function.

Conversely, if f(-) is a uniformly approximate convex function, then there is a non-
decreasing function «(-) mapping the interval [0, +o0) into the interval [0, 4o00| satisfying
(5.5) such that the function f(-) is uniformly locally strongly a(-)-paraconvex.

The reversing of Propositions 6.1 requests the openness of the set €.
We start with

Proposition 6.7 (cf. Rolewicz (2000)). Let (X,| -|) be a normed space. Let a
real-valued function f(-) defined on a (locally) convex set 2 C X be (locally) strongly
a(-)-paraconvex. If the function f(-) is locally bounded, then it is locally Lipschitz.

Using the category methods we can obtain

Proposition 6.8 (cf. Rolewicz (2000)). Let (X, | -||) be a Banach space. Let a real-
valued function f(-) defined on an open (locally) convex set @ C X be (locally) strongly
a(+)-paraconvex. Then it is locally Lipschitz.

Proposition 6.9 (cf. Rolewicz (2001), in the case of a(t) = t7 Jourani (1996)). Let
f() be a locally strongly «(-)-paraconvex function defined on an open set 2 of a Banach
space X. Then the local o(-)-subdifferentials and Clarke subdifferentials coincide.

Corollary 6.10 (cf. Rolewicz (2001)). Let f(-) be a (locally) strongly «(-)-paraconvex
function defined on an open (locally) convex set ) of a Banach space X. Then f(-) is
(locally) a(-)-subdifferentiable.

Proof. By Proposition 6.8 f(-) is locally Lipschitz. Thus in each point its Clarke
subdifferential is not empty. Thus by Proposition 6.9 its (local) «(-)-subdifferential is not
empty, too. O

Since every open set is locally convex, we do not need to assume convexity of {2 in the
local versions of Propositions 6.8, 6.9 and Corollary 6.10.

As a consequence of Corollary 6.10 and Theorem 5.8 5 we get the following extension
of the Asplund (1968) theorem

Theorem 6.11. Let (X, ||.||) be a real Banach space, which has the separable dual
X*. Let f(-) be a locally strongly «(-)-paraconvex function, defined on an open subset
2 C X. Then there is a subset Ay of the first category such that on the set 0\ Ay the
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function f(-) is Fréchet differentiable. Moreover the Fréchet ®-gradient is continuous in
the conjugate norm || - ||*.

As a consequence of Corollary 6.10 and Proposition 6.6 we get the following

Theorem 6.12. Let (X, ||.|) be a real Banach space, which has the separable dual
X*. Suppose that
a(ts) < ta(s), (6.3)

for 0 < s <1 andt> 0. Let f(-) be a locally strongly «(-)-paraconvex function, defined
on an open convex subset ) C X. Then it is strongly a(-)-paraconvex.

Proof. By Corollary 6.10 the function f(-) is locally «(-)-subdifferentiable. Then
by Theorem 6.11 it is «(-)-subdifferentiable. Thus by Proposition 6.1 it is strongly «(:)-
paraconvex function. O
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