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What means high dimensional problem?

We say that problem is high dimensional if our data set (matrix) is of
dimensions n× p (n observations p features) with:

p >> 1
n >> 1
both n >> 1 and p >> 1
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What means high dimensional problem?

Large p

When number of features p >> 1 we need to deal with following
issues:

Ill-posed problems. Required regularization.
When we would like to get interpretation we need to select
variables. Non-smooth optimization problems.
We cannot use hessian matrix. Too expensive! (computing costs
O(p2), computing inverse O(p3).

Błażej Miasojedow (UW) 30 Novemeber 2021 5 / 24



Computational methods for high dimensional statistic: Part I

What means high dimensional problem?

Large n

When number of observation is large we could meet other problems:
Using all data could be expensive.
When n is huge we often have only on-line access to data.
Data could be stored in different places. Synchronization
problem.
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Non-smooth regularization

LASSO

Let us consider linear model

Y = Xβ + ε .

and the Lasso estimator:

βλ = argmin
β

{ 1
2‖Y− Xβ‖2

2 + λ‖β‖1
}

How to compute it?
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Non-smooth regularization

Gradient descent

Goal:
min

x
f (x),

where:
f is convex and differentiable;
f is L-smooth i.e.

‖∇f (x)−∇f (y)‖ ≤ L‖x− y‖

Gradient descent algorithm:

xk+1 = xk − γk∇f (xk).
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Non-smooth regularization

Key lemma

Lemma 1
If f is L smooth then for every x, y we have

f (y) ≤ f (x) + 〈∇f (x), y− x〉+ L
2‖x− y‖2 := f̃x,L(y)
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Non-smooth regularization

Geometric interpretation of gradient descent
Lemma 2
If f is L smooth and for every k tk ≤ 1

L then gradient descent is monotonic i.e

f (xk+1) ≤ f (xk)

f (xk) = f̃xk,t
−
k 1(xk) ≥ min

y
f̃xk,t

−
k 1(y)

= f̃xk,t
−
k 1(xk+1) ≥ f (xk+1)
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Non-smooth regularization

Key inequality

Lemma 3
If f is L-smooth and convex then sequence generated by gradient descent
algorithm with γk ≤ 1

L then

2γk(f (xk)− f (x∗)) ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2
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Non-smooth regularization

Convergence of gradient descent

Theorem 4
If f is L-smooth and convex then sequence generated by gradient descent
algorithm with γk ≤ 1

L then

f (xn)− f (x∗) ≤ 2L‖x0 − x∗‖2

n

Błażej Miasojedow (UW) 30 Novemeber 2021 13 / 24



Computational methods for high dimensional statistic: Part I

Non-smooth regularization

Backtracking

In practice L is usually unknown and we need to use different step
size rule. The prof rely on the Lemma 1 and we can add additional
step to algorithm. Find minimal ` such that γk = η`γk−1 satisfy

f (xk+1) ≤ f (xk) + 〈∇f (xk), xk+1 − xk〉+ 1
2γk
‖xk+1 − xk‖2

With this procedure the Theorem 4 remains correct up to constant.
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Non-smooth regularization

Return to the LASSO problem

The objective function is non-smooth

F(β) = ‖Y− Xβ‖2 + λ‖β‖1

and we need to modify gradient descent algorithm.

Błażej Miasojedow (UW) 30 Novemeber 2021 15 / 24



Computational methods for high dimensional statistic: Part I

Non-smooth regularization

(Projected) Subgradient method

Let f be convex, vector g is called subgradient of f at x if for every y
we have

f (y) ≥ f (x) + 〈g, y− x〉

The set of all subgradients is called subdifferential and will be
denoted by ∂f (x).

Let C be closed, convex set and consider problem

min
x∈C

f (x)

Projected subgradient algorithm:

xk+1 = PC(xk − γkgk),

where gk ∈ ∂f (xk) and PC is a projection on set C.
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Non-smooth regularization

Convergence of subgradient method

Lemma 5

2γk(f (xk)− f (x∗)) ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + γ2
k‖gk‖2

Theorem 6
If f is L Lipschitz then

f best
n − f (x∗) ≤

‖x0 − x∗‖2 + L
∑
γ2

k∑
γk

where f best
n = mink≤nf (xk)

Therefore if γk ≈ 1√
k

then we get convergence of order O( log(n)√
n )
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Non-smooth regularization

Proximal operator

For convex function g we define the proximal operator by

proxγg(x) = argmin
y

{
g(y) + 1

2γ ‖y− x‖2
}

If g = δC convex indicator of set C then prox is a projection
operator.
If y = proxγg(x) then

y ∈ x− γ∂f (y).

So it is implicit discretization of ẋ ∈ ∂f (x)
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Non-smooth regularization

Proximal gradient algorithm

Goal:
min

x
{f (x) + g(x)}

where f convex smooth and g convex.

Proximal gradient algorithm:

xk+1 = proxγkg(xk − γk∇f (xk))
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Non-smooth regularization

Proximal gradient for LASSO

If g = ‖ · ‖1 then

(proxγ‖·‖1
(x))i = sign(xi)(|x|i − γ)+

This operator is called soft-threshold operator and will be denoted by
Sγ So for LASSO

min
β

1
2‖Y− Xβ‖2 + λ‖β‖1

we have step of proximal gradient algorithm defined by

βk+1 = Sγkλ(βk − γkXT(Y− Xβk))
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Non-smooth regularization

Properties of proximal gradient algorithm
Lemma 7
If f is L smooth then proximal gradient algorithm is monotonic

Lemma 8
If f is L-smooth and convex then sequence generated by proximal gradient
algorithm with γk ≤ 1

L satisfy

2γk(f (xk)− f (x∗)) ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2

Theorem 9
If f is L-smooth and convex then sequence generated by proximal gradient
algorithm with γk ≤ 1

L satisfy

f (xn)− f (x∗) ≤ 2L‖x0 − x∗‖2

n
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Non-smooth regularization

Nesterov acceleration (Beck&Teoubulle 2008)

Set y0 = x0 and t0 = 1
1 Set

xk+1 = proxγkg(yk − γk∇f (yk))

2 Set

tk+1 =
1 +

√
4t2

k

2
3 Set

yk+1 = xk+1 +
tk−1
tk+1

(xk+1 − xk)
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Non-smooth regularization

Convergence of accelerated proximal gradient

Theorem 10
If f is L-smooth and convex then sequence generated by proximal gradient
algorithm with γk ≤ 1

L satisfy

f (xn)− f (x∗) ≤ 2L‖x0 − x∗‖2

(n + 1)2

Accelerated proximal gradient algorithm is not monotonic
The same bactracking rule as for gradient descent works for
accelerated proximal gradient algorithm.
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Non-smooth regularization

Alternative Direction Method of Multipliers (Parikh&
Boyd 2014)

Consider the problem of form

min
Ax+Bz=C

f (x) + g(z)

Augmented Lagrangian of the problem is given by

Lρ(x, z, y) = f (x) + g(z) + 〈y,Ax + Bz− c〉+ ρ
2 ‖y− Ax− Bz + c‖2

ADMM algorithm

xk+1 = argmin
x

{
f (x) + ρ

2 ‖yk − Ax− Bzk + c‖2}
zk+1 = argmin

z

{
g(z) + ρ

2 ‖yk − Axk+1 − Bz + c‖2}
yk+1 = yk + ρ(Axk+1 − Bzk+1 + c)
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Stochastic (sub)gradient

Motivating example
Goal:

min
x

F(x) = min
x

1
n

n∑
i=1

fi(x)

We could think that n is a number of observation fi is negative
loglikelkihood of observation i.

To reduce cost of single step, instead of computing gradient∇F we
approximate it by

g(x) = 1
k

∑
i∈Ik

∇fi(x)

where I is a random subset of {1, . . . ,n} of cardinality |I| = k

Stochastic gradient:
xk+1 = xk − γkg(xk)
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Stochastic (sub)gradient

Assumptions

1 f is convex,
2 g is unbiased i.e

E(g(xk)|xk) ∈ ∂f (xk)

and with bounded variance

E(‖g(xk)‖2|xk) ≤ σ2;

Projected stochastic subgradient (B):

xk+1 = PC(xk − γkg(xk))
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Stochastic (sub)gradient

Convergence
Since projection is 1-Lipschitz

‖xk+1 − x∗‖2 = ‖PC(xk − γkg(xk))− PC(x∗)‖2

≤ ‖xk − γkg(xk)− x∗‖2

= ‖xk − x∗‖2 − 2γk〈g(xk), xk − x∗〉+ γ2
k‖g(xk)‖2

Taking conditional expectation on both side we get

E(‖xk+1 − x∗‖2|xk) ≤ ‖xk − x∗‖2 + 2γk〈∂f (xk), x∗ − xk〉+ γ2
kσ

2

By convexity of f

〈∂f (xk), x∗ − xk〉 ≤ f (x∗)− f (xk)

Taking expectation on both side we get

2γk(Ef (xk)− f (x∗)) ≤ E‖xk − x∗‖2 − E‖xk+1 − x∗‖2 + γ2
kσ

2
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Stochastic (sub)gradient

Convergence

Theorem 1
Under our assumptions:

Ef (x̄n)− f (x∗) ≤
‖x0 − x∗‖2 + σ2 ∑n

k=1 γ
2
k∑

k γk

where x̄n =
∑
γkxk∑
γk

.

Ef (xbest
n )− f (x∗) ≤

‖x0 − x∗‖2 + σ2 ∑n
k=1 γ

2
k∑

k γk

where xbest
n = arg mink≤n f (xk).

Setting γk ≈ 1√
k

we get convergence rate O( log(n)√
n )
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Stochastic (sub)gradient

Strong convexity

Definition 2
Function f is called m - strongly convex if function f − m

2 ‖ · ‖
2 is

convex.

Theorem 3
If f is m- strongly convex then

f (y) ≥ f (x) + 〈∂f (x), y− x〉+ m
2 ‖x− y‖2

There exists unique minimizer x∗ and

f (x)− f (x∗) ≥ m
2 ‖x− x∗‖2
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Stochastic (sub)gradient

Convergence of stochastic subgradient under strong
convexity assumption

Recall that

E(‖xk+1 − x∗‖2|xk) ≤ ‖xk − x∗‖2 + 2γk〈∂f (xk), x∗ − xk〉+ γ2
kσ

2

By m strong convexity of f we have

〈∂f (xk), x∗ − xk〉 ≤ f (x∗)− f (xk)− m
2 ‖xk − x∗‖2

Taking expectation on both side we get

2(Ef (xk)− f (x∗)) ≤ ( 1
γk
−m)E‖xk − x∗‖2 − 1

γk
E‖xk+1 − x∗‖2 + γkσ

2

Setting γk = 2
m(k+1) and multiplying inequality by k we get

k(Ef (xk)− f (x∗)) ≤ k(k−1)m
4 E‖xk − x∗‖2 − k(k+1)m

4 E‖xk+1 − x∗‖2 + σ2
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Stochastic (sub)gradient

Convergence of stochastic subgradient under strong
convexity assumption

Theorem 4

Ef (x̄n)− f (x∗) ≤ σ2

m(n + 1)

where x̄n =
∑ 2k

n(n+1)xk.

Ef (xbest
n )− f (x∗) ≤ σ2

m(n + 1)

where xbest
n = arg mink≤n f (xk).
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Stochastic (sub)gradient

Some extensions

Stochastic proximal gradient algorithm: Nitanda (2014);
Atchade, Fort, Moulines (2016)
Markovian noise: Atchade, Fort, Moulines (2016); Karimi, Wei,
M, Moulines (2019)
non-Convex case: Karimi, Wei, M, Moulines (2019)
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Variance reduction techniques

Why we could reduce variance?
We approximate∇f (x) by

g(x) = 1
k

∑
i∈Ik

∇fi(x)

At each step we compute “independently” gradient. We do not
use previous approximation.
To get small variance we need large k. Variance does not vanish
when number of iteration growths.
The gradient should not change too much between consecutive
steps.
It seems reasonable to introduce small bias and reduce variance.
Use approximation of form

g̃(xk+1) = αkg̃(xk) + (1− αk)g(xk+1)
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Variance reduction techniques

Stochastic Variance Reducing Gradient (Johnson,
Zhang 2013)

Initialize by x0 and x̃0

For k = 1, 2, · · ·
1 Update mean gradient g̃k =

1
n

∑
i∇fi(x̃k)

2 Set x0 = x̃k
3 For ` = 0, . . . ,m− 1 draw randomly i` and

x` = x`−1 + γ(∇fi`(x`−1)−∇fi`(x̃k) + g̃k)

4 x̃k+1 = xm

For L smooth and strongly convex function and m large enough we
have

EF(x̃k)− F(x∗) ≤ αk(F(x̃0)− F(x∗))

for α < 1.
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Variance reduction techniques

SAGA De Fazio, Bach, Lacoste-Julien 2014

min
x

F(x) = min
x

1
n

∑
fi(x) + g(x)

1 We have stored xk, {∇fi(φi
k)}, h̃k = 1

n

∑
i∇fi(φi

k).

2 Pick randomly j and set φj
k+1 = xj

k and update derivatives.
3 Update x by

xk+1 = proxγg(xk − γ(∇fi(φ
j
k+1)−∇fi(φ

j
k) + h̃k))

Under L smooth and strong convexity assumption on F and Lipschitz
continuity of g we could get

E‖xk − x∗‖2 ≤ αk(‖x0 − x∗‖2 + something not important)
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Stochastic approximation

Stochastic approximation

xk+1 = xk + γkH(xk, ξk+1)

Where H(x, k, ξk+1) is a random approximation of mean field h(xk),
ξk+1 is random variable.

Stochastic gradient algorithm:

h(x) = −∇f (x).
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Stochastic approximation

Convergence of SA (Kushner& Yin 2003)

Sketch of proof
1 First show stability i.e. there exists compact set K such that

xk ∈ K a.s.
2 When we know that algorithm is stable we show that sequence

xk behaves asymptotically as gradient flow

ẋ = h(x(t)) or ẋ ∈ h(x(t))(Majewski, M, Moulines (2018); Davis, Drusvyatskiy, Kakade, Lee (2020)

3 Applying Lypaunov stability of x(t) to get convergence.
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Stochastic approximation

Stability

Stability is implied by:
Growth condition on mean field h and on variance of the noise.
Restarts (Andrieu, Moulines, Priouret 2005)
Projection on compact set Kushner & Yin 2003
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Stochastic approximation

Restarts (Andrieu, Moulines, Priouret 2005)

Let define family of compact sets K0 ⊂ K1 ⊂ · · ·
1 Set ` = 0 and draw x0 ∈ K`.
2 If xk 6∈ K` update ` = `+ 1 and draw independently on history

xk+1 ∈ K`
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Stochastic approximation

Projection on compact set

Let K be “regular” compact set and define algorithm by

xk+1 = PK(xk − γkH(xk, ξk))

Kushner& Yin p. 151
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Stochastic approximation

Asymptotic behaviour

We can write SA as

xk+1 = xk + γk(h(xk) + rk + mk)

Where rk → 0 and mk martingale differences

We define piece wise linear approximation

X0(t)

Let tk =
∑

i≤k γi and
Xk(t) = X0(t + tk)
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Stochastic approximation

Asymptotic behaviour

Theorem 5
If

xk is stable
h is locally Lipschitz.
‖rk| → 0 and |

∑
γkmk| <∞.∑

γk =∞, and
∑
γ2

k <∞
Then there exists subsequence nk, and absolutely continuous function x∞
such that for any T > 0

sup
t∈[0,T]

Xnk (t)− x∞(t)→ 0.

In addition x∞(t) is a limit point of xk
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Stochastic approximation

Sketch of proof

1 First show that family Xk(t) is equi- continuous.
2 By Arzela-Ascoli theorem we get relative compactness of Xk

3 Identify the limit Ẋ∞(t) = h(X∞(t))
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Stochastic approximation

Lyapunov condition

V > 0 is a Lyapunov function for solution to ẋ = h(x) if

V̇(x(t)) < 0

or equivalently if
〈∇V(x), h(x)〉 ≤ 0
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Stochastic approximation

Converegence of SA

Theorem 6
Let

S = {x : ∇V(x), h(x)〉 = 0}

If V(S ∩ K) has empty interior then

dist(xk,S ∩ K)→ 0
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Błażej Miasojedow (UW) 2 December 2021 1 / 29



Computational methods for high dimensional statistic: Part III

Outline

Outline

1 Unadjusted Langevin Algorithm

2 ULA as an optimization algorithm in the Wasserstein space

3 Extensions of ULA
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Unadjusted Langevin Algorithm

Introduction

We want to do statistical inference for data Y1, . . . ,Yn ∈ Rd, where
n >> 0 and/or d >> 0, and we want to be Bayesian. So, we need to
be able to explore posterior distribution of form

π(x) ∝ p(x)

n∏
i=1

`i(x),

where p is some prior and `i are likelihood of observation Yi.

Błażej Miasojedow (UW) 2 December 2021 3 / 29



Computational methods for high dimensional statistic: Part III

Unadjusted Langevin Algorithm

Introduction

We want to do statistical inference for data Y1, . . . ,Yn ∈ Rd, where
n >> 0 and/or d >> 0, and we want to be Bayesian. So, we need to
be able to explore posterior distribution of form

π(x) ∝ p(x)
n∏

i=1

`i(x),

where p is some prior and `i are likelihood of observation Yi.
We need MCMC algorithm which scales well with n and d.
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Unadjusted Langevin Algorithm

Problems with standard MCMC algorithms

Let us assume that π is differentiable. In this case one of most
popular algorithm is MALA. The Metropolis - Hastings algorithm
with proposal of form

Xprop = Xold − γ∇ log(π(Xold)) +
√

2γG,

where G d-dimensional standard Gaussian
1 Cost of generating proposal is of order O(nd).
2 Cost of computing acceptance ratio is also O(nd).
3 We can reduce the cost of generating proposal to O(d) by using

stochastic gradient instead of true gradient. But still cost of
single iteration of algorithms is O(nd), due to the acceptance step

4 There are no bounds on mixing times which are polynomial in d.
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Unadjusted Langevin Algorithm

Assume that π is of form
π ∝ e−U,

where U : Rd → R is a convex potential.
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Unadjusted Langevin Algorithm

Assume that π is of form
π ∝ e−U,

where U : Rd → R is a convex potential.
One possibility is to approximate π by Unadjasted Langevin
Algorithm. We generate Markov chain (Xk)k≥0 given for all k ≥ 0 by

Xk+1 = Xk − γk+1∇U(Xk) +
√

2γk+1Gk+1 ,

where (γk)k≥1 is a sequence of step sizes which can be held constant
or converges to 0, and (Gk)k≥1 is a sequence of i.i.d. standard
d-dimensional Gaussian random variables.
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Unadjusted Langevin Algorithm cont.

1 ULA is the Euler-Maruyama discretization of over-damped
Langevin diffusion associated with U

dYt = −∇U(Yt)dt +
√

2dBt ,

where (Bt)t≥0 is a d-dimensional Brownian motion.
2 Under appropriate conditions on U, Yt converges to π in total

variation distance or in Wasserstein distance.
3 However discretization introduces an additional error and we

want to quantify it.

Błażej Miasojedow (UW) 2 December 2021 6 / 29



Computational methods for high dimensional statistic: Part III

Unadjusted Langevin Algorithm

Unadjusted Langevin Algorithm cont.

1 ULA is the Euler-Maruyama discretization of over-damped
Langevin diffusion associated with U

dYt = −∇U(Yt)dt +
√

2dBt ,

where (Bt)t≥0 is a d-dimensional Brownian motion.
2 Under appropriate conditions on U, Yt converges to π in total

variation distance or in Wasserstein distance.
3 However discretization introduces an additional error and we

want to quantify it.
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Unadjusted Langevin Algorithm

Existing results for ULA

Weak error estimates have been obtained in
[Talay and Tubaro, 1990], [Mattingly et al., 2002] for the constant
step size setting and [Lamberton and Pagès, 2003],
[Lemaire, 2005] when (γk)k≥1 is non-increasing and goes to 0.
Explicit and non-asymptotic bounds on the total variation
[Dalalyan, 2016], [Durmus and Moulines, 2017] or the
Wasserstein distance [Durmus and Moulines, 2016] between the
distribution of Xk and π have been obtained.
All these results are based on the comparison between the
discretization and the diffusion process and quantify how the
error introduced by the discretization accumulate throughout
the algorithm
Here we introduce a new interpretation of ULA, as an
optimization algorithm in the Wasserstein space.
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Błażej Miasojedow (UW) 2 December 2021 7 / 29



Computational methods for high dimensional statistic: Part III

Unadjusted Langevin Algorithm

Existing results for ULA

Weak error estimates have been obtained in
[Talay and Tubaro, 1990], [Mattingly et al., 2002] for the constant
step size setting and [Lamberton and Pagès, 2003],
[Lemaire, 2005] when (γk)k≥1 is non-increasing and goes to 0.
Explicit and non-asymptotic bounds on the total variation
[Dalalyan, 2016], [Durmus and Moulines, 2017] or the
Wasserstein distance [Durmus and Moulines, 2016] between the
distribution of Xk and π have been obtained.
All these results are based on the comparison between the
discretization and the diffusion process and quantify how the
error introduced by the discretization accumulate throughout
the algorithm
Here we introduce a new interpretation of ULA, as an
optimization algorithm in the Wasserstein space.

Błażej Miasojedow (UW) 2 December 2021 7 / 29



Computational methods for high dimensional statistic: Part III

Unadjusted Langevin Algorithm

Existing results for ULA

Weak error estimates have been obtained in
[Talay and Tubaro, 1990], [Mattingly et al., 2002] for the constant
step size setting and [Lamberton and Pagès, 2003],
[Lemaire, 2005] when (γk)k≥1 is non-increasing and goes to 0.
Explicit and non-asymptotic bounds on the total variation
[Dalalyan, 2016], [Durmus and Moulines, 2017] or the
Wasserstein distance [Durmus and Moulines, 2016] between the
distribution of Xk and π have been obtained.
All these results are based on the comparison between the
discretization and the diffusion process and quantify how the
error introduced by the discretization accumulate throughout
the algorithm
Here we introduce a new interpretation of ULA, as an
optimization algorithm in the Wasserstein space.
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ULA as an optimization algorithm in the Wasserstein space

A different representation of Langevin dynamics
It can be shown [Jordan et al., 1998], that if U is infinitely
continuously differentiable, (ρx

t )t>0, the density of solution of
Langevin equation at time t > 0, is the limit of the minimization
scheme which defines a sequence of probability measures (ρ̃x

k,γ)k∈N as
follows. For x ∈ Rd and γ > 0 set ρx

0,γ = dµ0/d Leb and

ρ̃k,γ =
dµ̃k,γ

d Leb
, µ̃k,γ = argmin

µ∈Pa
2 (Rd)

W2(µ̃k,h, µ) + γF (µ) , k ∈ N ,

where F : P2(Rd)→ (−∞,+∞] is the free energy functional,

F = H + E ,

H ,E : P2(Rd)→ (−∞,+∞] are the Boltzmann H-functional and the
potential energy functional.
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Boltzmann H- functional and the potential energy
functional

F = H + E ,

H (µ) =

{∫
Rd

dµ
d Leb (x) log

(
dµ

d Leb (x)
)

dx if µ� Leb

+∞ otherwise ,

E (µ) =

∫
Rd

U(x)dµ(x) .

Lemma 1

F (µ)−F (π) = KL (µ|π) .
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Assumptions

A1 (m)

U : Rd → R is m-convex, i.e. for all x, y ∈ Rd,

U(tx + (1− t)y) ≤ tU(x) + (1− t)U(y)− t(1− t)(m/2) ‖x− y‖2

Note that A1(m) includes the case where U is only convex when
m = 0. We consider the following additional condition on U which
will be relaxed later.

A2

U is continuously differentiable and L-gradient Lipschitz, i.e. there
exists L ≥ 0 such that for all x, y ∈ Rd, ‖∇U(x)−∇U(y)‖ ≤ L ‖x− y‖
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Inexact gradient descent
Let f : Rd → R be a convex continuously differentiable objective
function with

xf ∈ arg min
Rd

f

Consider the inexact or stochastic gradient descent algorithm used to
estimate f (xf )

xn+1 = xn − γn+1∇f (xn) + γn+1Ξ(xn) ,

To get explicit bound on the convergence (in expectation) of the
sequence (f (xn))n∈N to f (xf ), one possibility is to show that the
following inequality holds:

2γn+1(f (xn+1)− f (xf )) ≤ ‖xn − xf‖2 − ‖xn+1 − xf‖2
2 + Cγ2

n+1 ,

for some constant C ≥ 0.
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Main result for ULA

Consider the family of Markov kernels (Rγk )k∈N∗ associated with the
Euler-Maruyama discretization (Xk)k∈N, for a sequence of step sizes
(γk)k∈N∗ , given for all γ > 0, x ∈ Rd and A ∈ B(Rd) by

Rγ(x,A) = (4πγ)−d/2
∫

A
exp

(
−‖y− x− γ∇U(x)‖2

/(4γ)
)

dy .

Theorem 2
Assume A1(m) for m ≥ 0 and A2. For all γ ∈ (0,L−1] and µ ∈ P2(Rd), we
have

2γ {F (µRγ)−F (π)} ≤ (1−mγ)W2
2(µ, π)−W2

2(µRγ , π) + 2γ2Ld .
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Proof of the main inequality I

For our analysis, we decompose Rγ for all γ > 0 in the product of two
elementary kernels Sγ and Tγ given for all x ∈ Rd and A ∈ B(Rd) by

Sγ(x,A) = δx−γ∇U(x)(A) , Tγ(x,A) = (4πγ)−d/2
∫

A
exp

(
−‖y− x‖2

/(4γ)
)

dy .

Lemma 3

Assume A2. For all µ ∈ P2(Rd) and γ > 0,

E (µTγ)− E (µ) ≤ Ldγ .
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ULA as an optimization algorithm in the Wasserstein space

Proof of the main inequality II

Lemma 4

Assume A1(m) for m ≥ 0 and A2. For all γ ∈ (0,L−1] and µ, ν ∈ P2(Rd),

2γ {E (µSγ)− E (ν)} ≤ (1−mγ)W2
2(µ, ν)−W2

2(µSγ , ν) .

Lemma 5

Let µ, ν ∈ P2(Rd), H (ν) <∞. Then for all γ > 0,

2γ {H (µTγ)−H (ν)} ≤W2
2(µ, ν)−W2

2(µTγ , ν) .
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Proof of the main inequality III
Proof of Theorem 2.

F (µRγ)−F (π) = E (µRγ)−E (µSγ)+E (µSγ)−E (π)+H (µRγ)−H (π) .

Let µ ∈ P2(Rd) and γ ∈ R∗+. By Lemma 3, we get

E (µRγ)− E (µSγ) = E (µSγTγ)− E (µSγ) ≤ Ldγ .

By Lemma 4 ,

2γ {E (µSγ)− E (π)} ≤ (1−mγ)W2
2(µ, ν)−W2

2(µSγ , ν) .

By Lemma 5,

2γ {H (µRγ)−H (π)} = 2γ {H ((µSγ)Tγ)−H (π)}
≤W2

2(µSγ , π)−W2
2(µRγ , π) .
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Proof of Lemma 3

For all x, x̃ ∈ Rd, we have

|U(x̃)−U(x)− 〈∇U(x), x̃− x〉| ≤ (L/2) ‖x̃− x‖2
.

Therefore, for all µ ∈ P2(Rd) and γ > 0, we get

E (µTγ)− E (µ) = (4πγ)−d/2
∫
Rd

∫
Rd
{U(x + y)−U(x)} e−‖y‖2 /(4γ)dydµ(x)

≤ (4πγ)−d/2
∫
Rd

∫
Rd

{
〈∇U(x), y〉+ (L/2) ‖y‖2

}
e−‖y‖2 /(4γ)dydµ(x) ,
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Proof of Lemma 4

We start with the standard inequality from the convex optimization
theory:

2γ {U(x− γ∇U(x))−U(y)} ≤ (1−mγ) ‖x− y‖2−‖x− γ∇U(x)− y‖2

− γ2(1− γL) ‖∇U(x)‖2
.

Let (X,Y) be an optimal coupling between µ and ν, and we get

2γ {E (µSγ)− E (ν)} ≤ (1−mγ)W2
2(µ, ν)−E

[
‖X − γ∇U(X)− Y‖2

]
.

Using that W2
2(µSγ , ν) ≤ E[‖X − γ∇U(X)− Y‖2

] concludes the proof.
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Proof of Lemma 5
Let µt = µTt. Then, we have:

∂µt

∂t
= ∆µt ,

and µt goes to µ as t goes to 0 in (P2(Rd),W2). Let ν ∈ P2(Rd) and
γ > 0. Then it can be show that for all ε ∈ (0, γ), there exists
(δt) ∈ L1((ε, γ)) such that

W2
2(µγ , ν)−W2

2(µε, ν) =

∫ γ

ε

δsds

δs/2 ≤H (ν)−H (µs) , for almost all s ∈ (ε, γ) .

In addition s 7→H (µs) is non-increasing on R∗+, therefore we get that

W2
2(µγ , ν)−W2

2(µε, ν) ≤ 2(γ − ε) {H (ν)−H (µγ)} .

Taking ε→ 0 concludes the proof.
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Complexity for ULA when U is strongly convex and
gradient Lipschitz

Total variation Wasserstein distance KL divergence
Durmus and Moulines 2016 dO(ε−2) dO(ε−2) −

Cheng and Bartlett, 2017 dO(ε−2) dO(ε−2) dO(ε−1)

Our results dO(ε−2) dO(ε−2) dO(ε−1)
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ULA as an optimization algorithm in the Wasserstein space

Complexity for ULA when U is convex and gradient
Lipschitz

Total variation Wasserstein distance KL divergence
Cheng nad Bartlett 2017 dO(ε−6) - dO(ε−3)

Our results dO(ε−4) - dO(ε−2)

Table: Warm start

Total variation Wasserstein distance KL divergence
Durmus and Moulines 2017 d5O(ε−2) - -

Our results d3O(ε−4) - d3O(ε−2)

Table: Starting from minimizer of U

Błażej Miasojedow (UW) 2 December 2021 20 / 29



Computational methods for high dimensional statistic: Part III

Extensions of ULA

Stochastic Sub-Gradient Langevin Dynamics

A3
I The potential U is M-Lipschitz, i.e. for all x, y ∈ Rd,
|U(x)−U(y)| ≤M ‖x− y‖.

II There exists a measurable space (Z,Z), a probability measure η
on (Z,Z) and a measurable function Θ : Rd × Z→ Rd for all
x ∈ Rd, ∫

Z
Θ(x, z)dη(z) ∈ ∂U(x) .

Stochastic Sub-Gradient Langevin Dynamics (SSGLD)

X̄n+1 = X̄n − γn+1Θ(X̄n,Zn+1) +
√

2γn+2Gn+1 ,
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Complexity of SSGLD

1 In the case where a warm start complexity of SSGLD to obtain a
sample ε close from π in KL is of order (M2 + D2)O(ε−2) and
(Pinsker inequality) in TV distance is of order (M2 + D2)O(ε−4).

2 If for all x ∈ Rd, x 6∈ B(x?,Mη),

U(x)−U(x?) ≥ η ‖x− x?‖

then starting at δx? , we get the overall complexity of SSGLD for
the KL:

(η−2d2 + M2
η + M2)(M2 + D2)O(ε−2)

and for TV

(η−2d2 + M2
η + M2)(M2 + D2)O(ε−4)
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Extensions of ULA

Stochastic Proximal Gradient Langevin Dynamics
A4 (m)

There exists U1 : Rd → R and U2 : Rd → R such that U = U1 + U2 and satisfying the
following assumptions:

1 U1 satisfies A1(m) and A2. In addition, there exists a measurable space (Z̃, Z̃), a
probability measure η̃1 on (Z̃, Z̃) and a measurable function Θ̃1 : Rd × Z→ Rd

such that for all x ∈ Rd, ∫
Z̃

Θ̃1(x, z̃)dη̃1(z̃) = ∇U1(x) .

2 U2 satisfies A1(0) and is M2-Lipschitz.

Stochastic Proximal Gradient Langevin Dynamics (SPGLD)

X̃n+1 = prox
U2
γn+1 (X̃n)− γn+2Θ̃1{prox

U2
γn+1 (X̃n), Z̃n+1}+

√
2γn+2Gn+1 ,

where (Gk)k∈N∗ is a sequence of i.i.d. d-dimensional standard Gaussian random
variables, independent of (Zk)k∈N∗ and

proxγU2
(x) = arg min

y∈Rd

{
U2(y) + (2γ)−1 ‖x− y‖2

}
.
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Extensions of ULA

Complexity of SPGLD
1 In the case where a warm start complexity of SPGLD to obtain a

sample ε close from π in KL is of order (d + M2 + D2)O(ε−2) and
(Pinsker inequality) in TV distance is of order
(d + M2 + D2)O(ε−4).

2 If for all x ∈ Rd, x 6∈ B(x?,Mη),

U(x)−U(x?) ≥ η ‖x− x?‖

then starting at δx? , we get the overall complexity of SPGLD for
the KL:

(η−2d2 + M2
η + M2)(d + M2 + D2)O(ε−2)

and for TV

(η−2d2 + M2
η + M2)(d + M2 + D2)O(ε−4)
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Summary

We give a new interpretation of ULA and use it to get bounds on
the Kullback-Leibler divergence from π to the iterates of ULA.
We recover the dependence on the dimension of
[Cheng and Bartlett, 2017] in the strongly convex case. We also
give computable bounds when U is only convex which improves
the results of [Durmus and Moulines, 2017], [Dalalyan, 2016] and
[Cheng and Bartlett, 2017].
We propose two new methodologies to sample from a
non-smooth potential U and make a non-asymptotic analysis of
them. These two new algorithms are generalizations of SGLD.
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Numerical results

We consider Bayesian Lasso and Bayesian elastic net logistic
regression model, for 2 datasets from UCI repository (Australian
Credit Approval dataset d = 64,n = 690 , Musk dataset
n = 476, d = 166 )
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Numerical results

Australian Credit Approval
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Numerical results

Musk
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Thank you!
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