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Introduction

Two main problems to solve in data analysis
determine the values of unknown parameters

- data contain unexplained fluctuations or noise, usually some degree of measurement
error is present, therefore only some estimates of unknown population parameters
can be obtained,

test the hypotheses about the values of unknown parameters
- means to decide whether data are consistent at some level of agreement with a
particular population parameter.
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Introduction

While collecting data one or more quantities on each sample unit are measured.

Sometimes it could be better to isolate each quantity in the system to study them
separately - thus leading to the so called univariate model.

However, the quantities may be influenced by each other to such an extent that the
separate analysis would offer poor information about the whole system - the
multivariate models, which study all quantities simultaneously, come to foreground.

Comparing to univariate setting more mathematics is required to derive multivariate
statistical techniques for making inferences.
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Introduction

Linear models
- still the main tool of the applied statistics even if many modern innovative
statistical techniques (which often need computer assistance) are at hand

- intensively studied ever since the times of Gauss (1777-1855) and Legendre
(1752-1833)

- a huge amount of statistical literature has been published concerning various
aspects of linear models and statistical methods associated with them

- acquired their popularity because of nice properties and at the same time they
appeared to be versatile and robust enough
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Linear (univariate) model

Standard texts on univariate linear models
Arnold, S. (1981). The theory of linear models and multivariate analysis, Wiley,
New York.
Christensen, R. (1996). Plane answers to complex questions: The theory of linear
models, Springer-Verlag, New York.

Graybill, F. A. (1976). Theory and applications of the linear model, Duxbury Press,
North Scituate, MA.
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Linear (univariate) model
Linear model

y = Xβ + e,

y = (y1, · · · , yn)′ vector of observations
Xn×k known design matrix (of full rank)
βk×1 vector of unknown parameters (of first order), k < n
en×1 vector of random errors

Usual assumption:
e ∼ Nn(0,Ω),

Ωn×n matrix of unknown parameters (of second order)

Basic problem:

inference about the unknown parameters of first order
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Linear (univariate) model
Linear model

y = Xβ + e,

y = (y1, · · · , yn)′ vector of observations
Xn×k known design matrix (of full rank)
βk×1 vector of unknown parameters (of first order), k < n
en×1 vector of random errors

Usual assumption:
e ∼ Nn(0,Ω),

Ωn×n matrix of unknown parameters (of second order)

Basic problem:

inference about the unknown parameters of first order

Daniel Klein Estimation and testing in MLM Bȩdlewo 2021 6 / 165



Linear (univariate) model

Number of unknown parameters:

βk×1 k
Ωn×n

n(n+1)
2

Structure of covariance matrix:

Ω = σ2In, or Ω = σ2V, with V known

σ2 unknown variance parameter
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Linear (univariate) model

On each independent sampling unit usually one response scalar variable is measured.

Generalization:
assume univariate model for p response variables, i.e. more than one response
variable is measured on each sampling unit - one needs to take into account the
dependence of measurements on the same sampling unit
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Linear (univariate) model

Examples:
p air pollutants (CO, NO, etc.) measured on n widely-separated days
p test scores (e.g. different subjects) for n different students

Requirement - the same design matrix applies to every response and every independent
sampling unit has the same set of response variables

Daniel Klein Estimation and testing in MLM Bȩdlewo 2021 9 / 165
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Linear (univariate) model

For j-th response variable we have

yj = Xβj + εj ,
E [εj ] = 0, Var[εj ] = ω2

jj In,
j = 1, . . . , p.

yj = (y1j , · · · , ynj )′ vector of observations of j-th variable
Xn×k known design matrix (of full rank)
βj k-dimensional vector of unknown parameters (of first

order) for j-th variable, k < n
εj n-dimensional vector of random errors

These models are related by the p(p − 1)/2 covariances

Cov[yi , yj ] = ω2
ij In
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Multivariate linear model

The classical multivariate model

Y = XB + E,
E [E] = 0, andVar[E] = Var[vec E] = Ω⊗ In,

Yn×p = (y1, · · · , yp) matrix of observations
Xn×k known design matrix (of full rank)
Bk×p = (β1, . . . ,βp) matrix of unknown parameters (of first order), k < n
En×p = (ε1, . . . , εp) matrix of random errors
Ωp×p = (ω2

ij )ij matrix of unknown (second order) parameters

Usual assumptions:
- E follows a matrix normal distribution Nn,p(0, In,Ω)
- n > p + r(X)
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Multivariate linear model
This model can be viewed as a sample of n independent p-variate observations

denoting y′i and x′i as i-th row of respectively Y and X

yi ∼ Np(B′xi ,Ω), i = 1, . . . , n

Different arrangement of data
horizontal (”classical”) - independent p-variate observations are arranged in
horizontal position one below another as rows, thus forming an n × p observation
matrix Y - preserves the direction of stacking observations in the univariate linear
model

Y =


y′1
y′2
...

y′n

 , thus Y
n×p

= X
n×k

B
k×p

+ E
n×p
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Multivariate linear model
This model can be viewed as a sample of n independent p-variate observations

denoting y′i and x′i as i-th row of respectively Y and X

yi ∼ Np(B′xi ,Ω), i = 1, . . . , n

Different arrangement of data
vertical - independent p-variate observations are arranged as a columns one next
to another forming a p × n observation matrix Y - it is the transposition of the
previous arrangement

Y∗ =
(
y1 y2 · · · yn

)
, thus Y∗

p×n
= B∗

p×k
X∗
k×n

+ E∗
p×n

,
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Matrix normal distribution

For Y∗ =
(
y1 y2 · · · yn

)
- the mean is E [Y∗] = B′X′, thus B∗ = B′ and X∗ = X′

- the distribution of vec Y∗ is

vec Y∗ =


y1
y2
...

yn

 ∼ Npn(vec(B′X′), In ⊗Ω),

where ⊗ denotes the Kronecker product.

We write this as
Y∗ ∼ Np,n(B′X′,Ω, In)
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Matrix normal distribution

Since Y = Y′∗, for Y
- the mean is E [Y] = E [Y′∗] = XB
- the distribution of vec Y is

vec Y = Kp,n vec Y′ ∼ Npn
(
Kp,n vec(B′X′),Kp,n(In ⊗Ω)Kn,p

)
,

where Kp,n is vector a commutation matrix.

We write this as
Y ∼ Nn,p(XB, In,Ω)
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Multivariate linear model
The model

Y = XB + E,
E ∼ Nn,p(0, In,Ω),

is very general one. Covers:
Multivariate regression model

X is a matrix of regression constants, usually 1n ∈ C(X)

MANOVA model
X is a 0-1 design matrix

General mean model
X = 1n, i.e. B′ = µ is p-dimensional vector

Generalized MANOVA model (so called growth curve model) introduced by
Potthoff and Roy (1964)

considering a model for i-th row β′i of unknown matrix B

βi
p×1

= Z
p×r

bi
r×1

, i = 1, · · · , k.

Growth curve model (GCM):

Y = XBZ′ + E, where B =

b′1
...

b′k

 .

This model is reduced to general form if Z = Ip.
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Two-level multivariate model
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Introduction

Classical multivariate linear model - sample of vector valued (p dimensional, say)
observation vectors

Variety of areas of application require the extension to matrix valued, or even more
complex multivariate data

- based on subvectors of correlated components which follow from differences
across characteristics, locations, time or depths, i.e., several characteristics can be
observed on more than one response variable at different locations, repeatedly
over time, at different depths, etc.

Daniel Klein Estimation and testing in MLM Bȩdlewo 2021 18 / 165



Introduction

Multi-level (k-level, say) multivariate data - can be presented in the form of a
multi-index matrix Y (i.e. tensor of order k)

One can matricize the tensor Y - classical multivariate model.

Subvectors may have variances and covariances that differ across locations, time and
depths - the covariance matrix Ω is subject to some restrictions, which may impose
some structure Ω
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Introduction

One can ignore this structure treating Ω as unstructured (UN) - this may cause
overparametrization problems

Crowder and Hand (1990) - in case of small samples unstructered covariance
matrix can result in rather weak inference, in the sense that too many degrees of
freedom are used up in estimating the covariance parameters, leaving too few for
the parameters of interest.

Several sources of variability (characteristics, time, location, etc.) in tensor Y -
naturally multi-separable covariance structure

Ω can be written as the Kronecker product of several variance-covariance matrices
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Two-level multivariate data

Matrix-valued random variable Yi

q characteristics

p time points y11 y12 ··· y1p
y21 y22 ··· y2p
...

... . . . ...
yq1 yq2 ··· yqp

 , with E [Yi ] = Mq×p and Var[vec Yi ] = Ω
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Two-level multivariate data

Sample Y1, . . . ,Yn may by presented in a tensor of order three Y = (yijk) - we have
three possible directions of arrangement

- matrices one behind another - forming q × p × n tensor
- matrices as vertical slices one next to another - forming q × n × p tensor
- matrices as horizontal slices one below another - forming n × q × p tensor

�
�
�

�
�
�

�
�
�

�
��� k = 1, . . . , p

 y11k . . . y1qk
...

. . .
...

yn1k . . . ynqk


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Two-level multivariate data

Vectorization of a tensor Y according to Kolda and Bader (2009) or Singull et al.
(2012)

vecY =
n∑

i=1

q∑
j=1

p∑
k=1

yijk ek:p ⊗ ej:q ⊗ ei :n,

where ei :n is i-th column of In.

We assume normality. i.e.

vecY ∼ Nnqp(vecM,Ω⊗ In), withM ∈ Rn×q×p.

Two sources of variability - the dispersion of observations naturally separated for rows
and columns
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Two-level multivariate data
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Connection with the classical multivariate model - rearrange the data to transform
tensor Y into a matrix form

referred to as matricization (unfolding or flattening)

Three possibilities of matricization for a three-dimensional tensor Yn×q×p

- matricization of Y with respect to nq-mode slices, Y··k , given side by side -
algebraically

Y =
n∑

i=1

q∑
j=1

p∑
k=1

yijk ei :n(e′k:p ⊗ e′j:q).



Two-level multivariate data
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Connection with the classical multivariate model - rearrange the data to transform
tensor Y into a matrix form

referred to as matricization (unfolding or flattening)

Three possibilities of matricization for a three-dimensional tensor Yn×q×p

- vectorize and transpose each Yi and write the result as rows underneath forming
an n × qp matrix Y.

−→



Two-level multivariate data
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Connection with the classical multivariate model - rearrange the data to transform
tensor Y into a matrix form

referred to as matricization (unfolding or flattening)

Three possibilities of matricization for a three-dimensional tensor Yn×q×p

- after matricization E (Y) = M, with M being matricized form of tensorMn×q×p.

- we come to classical multivariate linear model with Y = M + E, where

E ∼ Nn,qp(0, In,Ω).

- structure of Ω in Var[vec Y] = Ω⊗ In?



Growth curve model and its extensions
Estimation
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Growth curve model

Dental data: the distance between the centre of the pituitary to the pterygomaxillary
fissure.

The observations were collected from 11 girls and 16 boys at 4 different ages,
8, 10, 12, and 14 years.
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Growth curve model

Assume that the growth is linear in both groups - girls (k=1) and boys (k=2)

βjk = b0k + b1ktj , j = 1, 2, 3, 4, k = 1, 2.

So

βk =


b0k + 8 b1k
b0k + 10 b1k
b0k + 12 b1k
b0k + 14 b1k

 , k = 1, 2.
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Growth curve model

Two groups of regression models with repeated measurements appeared:

y1i =


1 8
1 10
1 12
1 14


(
b01
b11

)
+ e1i = Zb1 + e1i , i = 1, · · · , 11,

y2j =


1 8
1 10
1 12
1 14


(
b02
b12

)
+ e2j = Zb2 + e2j , j = 1, · · · , 16.
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Growth curve model
Potthoff and Roy realized that both models are connected through the same variance
matrix assumption

Var[e1i ] = Var[e2j ] = Ω

They joint both models into one model (growth curve model)

y11
′

...
y111
′

y21
′

...
y216
′


=



1 0
...
1 0
0 1
...
0 1


(
b01 b11
b02 b12

)(
1 1 1 1
8 10 12 14

)
+



e11
′

...
e111
′

e21
′

...
e216
′


.

Y = XBZ′ + E,
where E [E] = 0 and Var[vec E] = Ω⊗ In
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Growth curve model

Definition
Let Yn×p and Bk×r be respectively the observation and parameter matrices, and let
Xn×k and Zp×r (r ≤ p) be respectively the between- and within-individuals design
matrices. Suppose that n ≥ p + r(X). The Growth curve model is defined as

Y = XBZ′ + E,

where E =
(
e1 e2 · · · en

)′
, and ei ∼ Np(0,Ω), with ei and ej being independent.

In contrary to ordinary MANOVA model the mean structure in GCM is bilinear.

Due to this structure the model (also called GMANOVA) belongs to the curved
exponential family - problems relating to such issues as estimability and non-explicit
maximum likelihood estimators (MLEs) may occur.
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Growth curve model
Estimation of parameters, hypotheses testing and prediction of future values have been
studied by many authors, thus generating a substantial literature - some general reviews

von Rosen, D. (1991). The growth curve model: A rewiev. Comm. Statist. Theory Methods 20,
2791–2822.

Srivastava, M.S., von Rosen, D. (1999). Growth curve models. In: Multivariate Analysis, Design
of Experiments, and Survey Sampling, Ed. S. Ghosh. Marcel Dekker, New York, 547–578.

Žežula, I., Klein, D. (2011). Overview of recent results in growth-curve-type multivariate linear
models. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 50(2), 137–146.

Many results can be found in textbooks
Kollo T., von Rosen, D. (2005). Advanced Multivariate Statistics with Matrices. Dordrecht:
Springer.

Kshirsagar, A.M., Smith, W.B. (1995). Growth curves. Dekker, New York.

Pan, J-X, Fang, K-T (2002). Growth curve models and statistical diagnostics. New York:
Springer-Verlag.
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Multivariate linear model - MLEs

Let Y = XB + E, where B is k × p unknown parameter matrix, X is n × k known
design matrix such that n ≥ rank(X) + p and

E ∼ Nn,p(0, In,Ω)

The log-likelihood function is given by

ln L(B,Ω|Y) = −np
2 ln(2π)− n

2 ln |Ω| − 1
2 Tr

[
Ω−1(Y− XB)′(Y− XB)

]
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Multivariate linear model - MLEs

The MLEs for the multivariate linear model

B̂ = (X′X)−1X′Y,
nΩ̂ = Y′QX Y = R̂′R̂ = S

where R̂ = QX Y is a residual matrix and

QX = In − PX is a projection on the space C(X)⊥
PX = X(X′X)−X′ is a projection on the space C(X)

The estimated mean structure and residuals are

XB̂ = PX Y,
R̂ = QX Y.
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Multivariate linear model - MLEs

C(X) � C(X)⊥

XB̂ R̂

C(X) C(X)⊥
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Growth curve model - MLEs

Let Y = XBZ′ + E, where B is k × r unknown parameter matrix, Xn×k and Zp×r are
known between- and within-individuals design matrices, respectively, such that
n ≥ rank(X) + p and

E ∼ Nn,p(0, In,Ω)

The log-likelihood function is given by

ln L(B,Ω|Y) = −np
2 ln(2π)− n

2 ln |Ω| − 1
2 Tr

[
Ω−1(Y− XBZ′)′(Y− XBZ′)

]
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Growth curve model - MLEs
The MLEs for the growth curve model (X and Z of full rank)

B̂ = (X′X)−1X′YS−1Z(Z′S−1Z)−1,
nΩ̂ = (Y− XB̂Z′)′(Y− XB̂Z′) = S + R̂′1R̂1,

where S = R̂′R̂ = Y′QX Y.

The estimated mean structure and residuals are

XB̂Z′ = PX Y(PZ ;S−1)′,
R̂ = QX Y,

R̂1 = PX Y(QZ ;S−1)′

where
QZ ;S−1 = In − PZ ;S−1 is a projection on the space CS(Z)⊥
PZ ;S−1 = Z(Z′S−1Z)−Z′S−1 is a projection on the space CS(Z)
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Growth curve model - MLEs

CS(Z)⊗ C(X) �
(
CS(Z)⊗ C(X)

)⊥
=

= CS(Z)⊗ C(X) � CS(Z)⊥ ⊗ C(X) � V ⊗ C(X)⊥

XB̂Z′

R̂

R̂1

CS(Z)

CS(Z)⊥

C(X) C(X)⊥

Daniel Klein Estimation and testing in MLM Bȩdlewo 2021 37 / 165



Growth curve model - MLEs in dental example

The MLEs for dental example

B̂ =
(
17.43 0.48
15.84 0.83

)
Girls
Boys

Ω̂ =


5.12 2.44 3.61 2.52
2.44 3.93 2.72 3.06
3.61 2.72 5.98 3.82
2.52 3.06 3.82 4.62


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Growth curve model - MLEs in dental example
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Extended GCM

Basic GCM: contains a single profile for all groups

Example
- three treatment groups of animals
- each group being subject to a different treatment
- response variable - weight of animals in all groups measured at the same p time
points

- measurements on a single animal are assumed to have the same variance matrix Ω

Expected growth curves: polynomial in time, groups differ by order (linear, quadratic,
cubic)

b1j + b2jts + b3jt2s + b4jt3s
for j = 1, 2, 3, and s = 1, . . . , p
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Extended GCM

Not possible to model the mean structure with a single-profile GCM → extended GCM

Y = X1B1Z′1 + X2B2Z′2 + X3B3Z′3 + E ,

X1 =

(
1n1 0n1 0n1
0n2 1n2 0n2
0n3 0n3 1n3

)
, X2 =

(
0n1 0n1
1n2 0n2
0n3 1n3

)
, X3 =

(
0n1
0n2
1n3

)
,

B1 =

(
b11 b21
b12 b22
b13 b23

)
, B2 =

(
b32
b33

)
, B3 =

(
b43
)
,

Z1 =

1 t1
1 t2
...

...
1 tp

 , Z2 =

t21
t22
...

t2p

 , Z3 =

t31
t32
...

t3p

 .
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Extended GCM

Definition
Let Y and Bi be respectively n× p observation and ki × ri parameter matrices, and let
Xi and Zi be respectively n × ki between- and p × ri within-individuals design
matrices. Suppose that n ≥ p + r(X1). The Extended growth curve model (EGCM)
with fixed effects, called also sum-of-profiles model is defined as

Y =
m∑

i=1
XiBiZ′i + E ,

where E ∼ Nn,p (0, In,Ω).

Introduced by Von Rosen (1984) and independently by Verbyla and Venables (1988) -
they presented several examples to illustrate how this model can arise
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Extended GCM - MLEs

Usual assumption - nested-subspace condition of between-individual design matrices

C(Xm) ⊆ · · · ⊆ C(X1)

- necessary condition for the existence of MLE

- Von Rosen (1989) derived the MLEs of the unknown parameters

- nothing is usually said about different Zi ’s

- this model separates different profiles
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Extended GCM - MLEs

For simplicity all design matrices assumed to be of full rank. The MLEs for the
multivariate linear model (for m = 2)

B̂2 = (X′2X2)−1X′2YS−12 P2Z2(Z′2P′2S−12 P2Z2)−1,
B̂1 = (X′1X1)−1X′1(Y− X2B̂2Z′2)S−11 Z1(Z′1S−12 Z1)−1,

nΩ̂ = (Y−
2∑

j=1
XjB̂jZ′j)′(Y−

2∑
j=1

XjB̂jZ′j) = S1 + R̂′2R̂2 + R̂′3R̂3,

where P2 = QZ1;S1 and

S1 = R̂′1R̂1 = Y′QX1Y,
S2 = S1 + P2Y′PX1QX2PX1YP′2
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Extended GCM - MLEs

The estimated mean structure and residuals are
m∑

j=1
XjB̂jZ′j = PX1Y(PZ1;S1)′ + PX2Y(PQZ1;S1Z2;S2)′ = M1 + M2,

R̂1 = QX1Y,
R̂2 = (PX1 − PX2)Y(QZ1;S1)′,
R̂1 = PX2Y(QZ1;S1 − PQZ1;S1Z2;S2)′,
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Extended GCM - MLEs

Decomposition of the whole space according to the between- and within-individuals design matrices

CS1(Z1)⊗ C(X1) � CS2(QZ1;S1Z2)⊗ C(X2) �

�
(
CS1(Z1)+CS2(QZ1;S1Z2)

)⊥
⊗C(X2) � CS1(Z1)⊥⊗

(
C(X1)∩C(X2)⊥

)
� V⊗C(X1)⊥

M1

M2

R̂2

R̂3

R̂1

CS1(Z1)

CS2(QZ1;S1Z2)

(
CS1(Z1) + CS2(QZ1;S1Z2)

)⊥

C(X2) C(X1) ∩ C(X2)⊥ C(X1)⊥
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Extended GCM

Filipiak and von Rosen (2011) - discussed the model with the nested-subspace
condition of within-individual design matrices

C(Zm) ⊆ · · · ⊆ C(Z1) .

- they showed that the two models are equivalent via reparametrization

- because of non-linearity the properties of estimators cannot be transmitted directly

- they gave MLEs of unknown parameters for the three component model
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Extended GCM

Hu (2009) came with the idea of orthogonal decomposition in EGCM - the idea is to
separate groups rather than models

X′iXj = 0 ∀i 6= j

while no assumption about C(Zi )’s
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Extended GCM

Weight of animals in three groups measured at the same p time points -
separating different profiles

Y = X1B1Z′1 + X2B2Z′2 + X3B3Z′3 + E ,

X1 =

(
1n1 0n1 0n1
0n2 1n2 0n2
0n3 0n3 1n3

)
, X2 =

(
0n1 0n1
1n2 0n2
0n3 1n3

)
, X3 =

(
0n1
0n2
1n3

)
,

B1 =

(
b11 b21
b12 b22
b13 b23

)
, B2 =

(
b32
b33

)
, B3 =

(
b43
)
,

Z1 =

1 t1
1 t2
...

...
1 tp

 , Z2 =

t21
t22
...

t2p

 , Z3 =

t31
t32
...

t3p

 .
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Extended GCM

Weight of animals in three groups measured at the same p time points - separating
different groups (treatments)

Y = X1B1Z′1 + X2B2Z′2 + X3B3Z′3 + E ,

X1 =

(
1n1 0n1 0n1
0n2 1n2 0n2
0n3 0n3 1n3

)
, X2 =

(
0n1 0n1
1n2 0n2
0n3 1n3

)
, X3 =

(
0n1
0n2
1n3

)
,

B1 =

(
b11 b21
b12 b22
b13 b23

)
, B2 =

(
b32
b33

)
, B3 =

(
b43
)
,

Z1 =

1 t1
1 t2
...

...
1 tp

 , Z2 =

t21
t22
...

t2p

 , Z3 =

t31
t32
...

t3p

 .

Daniel Klein Estimation and testing in MLM Bȩdlewo 2021 50 / 165
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Extended GCM

Weight of animals in three groups measured at the same p time points - separating
different groups (treatments)

Y = X1B1Z′1 + X2B2Z′2 + X3B3Z′3 + E ,

X1 =

(
1n1 0n1 0n1
0n2 1n2 0n2
0n3 0n3 1n3

)
, X2 =

(
0n1 0n1
1n2 0n2
0n3 1n3

)
, X3 =

(
0n1
0n2
1n3

)
,

B1 =

(
b11 b21
b12 b22
b13 b23

)
, B2 =

(
b32
b33

)
, B3 =

(
b43
)
,

Z1 =

1 t1
1 t2
...

...
1 tp

 , Z2 =

t21
t22
...

t2p

 , Z3 =

t31
t32
...

t3p

 .
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Extended GCM

Weight of animals in three groups measured at the same p time points - separating
different groups (treatments)

Y = X1B1Z′1 + X2B2Z′2 + X3B3Z′3 + E ,

X1 =

(
1n1 0n1 0n1
0n2 1n2 0n2
0n3 0n3 1n3

)
, X2 =

(
0n1 0n1
1n2 0n2
0n3 1n3

)
, X3 =

(
0n1
0n2
1n3

)
,

B1 =

(
b11 b21
b12 b22
b13 b23

)
, B2 =

(
b32
b33

)
, B3 =

(
b43
)
,

Z1 =

1 t1
1 t2
...

...
1 tp

 , Z2 =

t21
t22
...

t2p

 , Z3 =

t31
t32
...

t3p

 .
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Extended GCM

Weight of animals in three groups measured at the same p time points - separating
different groups (treatments)

Y = X1B1Z′1 + X2B2Z′2 + X3B3Z′3 + E ,

X1 =

(
1n1
0n2
0n3

)
, X2 =

(
0n1
1n2
0n3

)
, X3 =

(
0n1
0n2
1n3

)
,

B1 =
(

b11 b21
)
, B2 =

(
b12 b22 b32

)
, B3 =

(
b13 b23 b33 b43

)
,

Z1 =

1 t1
1 t2
...

...
1 tp

 , Z2 =

1 t1 t21
1 t2 t22
...
1 tp t2p

 , Z3 =

1 t1 t21 t31
1 t2 t22 t32
...
1 tp t2p t3p

 .

Daniel Klein Estimation and testing in MLM Bȩdlewo 2021 53 / 165



Orthogonal extended GCM

Y =
m∑

i=1
XiBiZ′i + E , E ∼ Nn,p (0, In,Ω) ,

-
∑m

i=1 r(Xi ) + p ≤ n

- design matrices Xi satisfy the condition X′iXj = 0 ∀i 6= j

- nested column spaces of all Zi ’s

C (Z1) ⊆ · · · ⊆ C (Zm)

This naturally arises in situations when different groups use polynomial regression
functions of different order.
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Orthogonal extended GCM

Many tasks, which are difficult or impossible to handle in basic models, can be done
with ease in models consisting of mutually orthogonal components.

- it allows to determine explicit forms of estimators, simplifies proving their properties, and
sometimes also enables to find their distributions.

Klein and Žežula (2015) show that via a simple transformation von Rosen model can
be transformed into an equivalent one with orthogonal column spaces of Xi

- established the maximum likelihood estimators of unknown parameters

- derived the moments of the estimators
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Orthogonal extended GCM -MLEs

All Xi ’s and Zi ’s are of full rank
- estimators in von Rosen model are rather complicated, calculated recursively

- in orthogonal model the estimators have nice closed form

B̂i =
(
X′iXi

)−1 X′iYS−1i Zi
(
Z′iS
−1
i Zi

)−1
,

nΩ̂ = S1 +
m∑

i=1
QZi ;Si Y

′PXi Y (QZi ;Si )
′
,

where

S1 = Y′Q(X1···Xm)Y,

Si = Si−1 + QZi−1;Si−1Y
′PXi−1Y

(
QZi−1;Si−1

)′
, for i = 2, . . . ,m,
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Orthogonal extended GCM -MLEs

The estimated mean structure and residuals are
m∑

j=1
XjB̂jZ′j =

m∑
j=1

PXi Y(PZi ;Si )′ =
m∑

j=1
Mi ,

R̂0 = Q(X1···Xm)Y,
R̂i = PXi Y(QZi ;Si )′,
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Orthogonal extended GCM -MLEs

CS1(Z1)⊗ C(X1) � CS2(Z2)⊗ C(X2) �
� CS2(Z2)⊥ ⊗ C(X2) � CS1(Z1)⊥ ⊗ C(X1) � V ⊗ C((X1 X2))⊥

M1

M2

R̂1

R̂2

R̂0

C(X2) C(X1) C((X1 X2))⊥
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Orthogonal extended GCM - moments of estimators

Moments of estimators in von Rosen model are derived only for three component
model (calculations are very tedious in general k component model)

In orthogonal model the moments for all unknown parameters can be given
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Orthogonal extended GCM - moments of estimators

E [B̂i ] =Bi ,

Var
[
B̂i

]
=
(

(1 + ci )
(
Z′iΩ

−1Zi
)−1 +

i−1∑
j=1

(dj − 1)dj+1 . . . di−1ci×

×
(
Z′iZi

)−1 Z′iZj
(
Z′jΩ

−1Zj
)−1 Z′jZi

(
Z′iZi

)−1)⊗ (X′iXi
)−1

,

E
[
Ω̂
]

=
(
1 +

k∑
i=1

r (Xi )
n

[
(ci − 1)PZi ;Ω +

i−1∑
j=1

(dj − 1)dj+1 . . . di−1ciPZj ;Ω

])
Ω,

where ci = p−r(Zi )
n−
∑m

l=i
r(Xl )−p+r(Zi )−1

and dj =
n−
∑m

l=j+1
r(Xl )−p+r(Zj )−1

n−
∑m

l=j
r(Xl )−p+r(Zj )−1

for 1 ≤ j < i .
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Thank you for your attention!
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Special covariance structures
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Introduction

Large datasets routinely collected nowadays due to rapid advances in computer-based
or web-based commerce and data-collection technology - research has become very
active in response to an increasingly important need for analysis of massive and
large-dimensional data

Dempster (1958, 1960) - a non-exact test for the two-sample significance test for
larger dimension of data than the degrees of freedom - he raised the question: what
statisticians should do if traditional multivariate statistical theory does not apply when
the dimension of data is too large.

Bai and Saranadasa (1996) - even when traditional approaches can be applied, they are
much less powerful than the non-exact test when the dimension of data is large -
another question: how classical multivariate statistical procedures could be adapted
and improved when the data dimension is large.
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Introduction

Two directions to solve these problems:
- to propose special statistical procedures to solve ad hoc large-dimensional
statistical problems where traditional multivariate statistical procedures are
inapplicable or perform poorly. The family of various non-exact tests follows this
approach.

- to make systematic corrections to the classical multivariate statistical procedures
so that the effect of large dimension is overcome - this is achieved by employing
new and powerful asymptotic tools borrowed from the theory of random matrices.
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Special (patterned) covariance structures

While estimating 2nd order parameters:
Ω can be treated as completely unknown, i.e. the matrix Ω ranges over

V = {Ω : Ω is symmetric positive definite} .

Number of unknown parameters in Ω: p(p+1)
2

Problem when p is increasing:
- Number of 2nd order parameters (elements of Ω) grows quickly.
- Estimability and stability of the estimators requires a lot of observations.
- Crowder and Hand (1990) - in case of small samples unstructured covariance matrix
can result in rather weak inference, in the sense that too many degrees of freedom
are used up in estimating the covariance parameters, leaving too few for the
parameters of interest.
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Special (patterned) covariance structures

To avoid over-parametrization and to allow parsimonious modelling: considering a
simpler covariance structure - keeps the number of unknown parameters
reasonable.
Various structures are studied in the literature

- linearly structured (compound symmetry, generalized compound symmetry, Toeplitz,
circulant Toeplitz)

- banded
- short auto-regression time series - serial correlation structure

Several authors have assumed the structure of the form

Σ = σ2R(%)

where σ2 is the scale parameter and the patterned correlation matrix R(%) is a function of the correlation
scalar/vector parameter.
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Toeplitz structure

Ω = σ2

Ip +
p−1∑
i=1

%i (Ci
p + C′ip )

 ,
where Cp : p × p circulant matrix with ones on the first supra-diagonal and zeros
elsewhere.

Entries on the i-th diagonal are equal to σ2%i−1, i = 1, . . . , p with %0 = 1.

Often used in the context of time series or longitudinal models.

MLEs have no closed form and their finite sample properties are not known.

Special Toeplitz type structures - the parameters %i are subject to some constraint,
e.g., %i = % for all i leads to compound symmetry structure
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Compound symmetry structure

Wilks (1946): considered the compound symmetry (also known as intraclass or
uniform) covariance structure when dealing with measurements on k equivalent
psychological tests

R(%) = (1− %)Ip + %1p1′p ,
where −(p − 1)−1 < % < 1.

- developed statistical test criteria for testing equality in means, equality in variances
and equality in covariances.

CS structure ΩCS = σ2R(%)- called sometimes equicorrelation or exchangeable
structure

for P being permutation matrix and Var[x] = ΩCS

Var[Px] = Var[x]
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Compound symmetry structure

The eigenvectors of ΩCS do not depend on unknown parameters with eigenvalues
σ2(1− (p − 1)%) and σ2(1− %)

H′

σ2% % ··· %
% σ2% ··· %

...
... . . . ...

% % ··· σ2%

H =


σ2(1−(p−1)%) 0 ··· 0

0 σ2(1−%) ··· 0
...

... . . . ...
0 0 ··· σ2(1−%)

 ,
where H is any orthogonal matrix with first column 1√p 1p (e.g. Helmert matrix)

Possible reparametrization

ΩCS = σ2(1 + (p − 1)%)Pp + σ2(1− %)Qp,

where Pp = P1p and Qp = Q1p are projectors onto C(1p) and C(1p)⊥, respectively
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Generalized compound symmetry structure

Khatri (1973) considered generalized CS structure for the hypothesis testing of
covariance structure

Generalized CS structure
ΩGCS = θ1G + θ2ww′,

where Gp×p is known positive definite matrix, w is a given p-dimensional vector and
θi , i = 1, 2, are unknown scalar parameters

Reduces to CS for G = Ip and w = 1p
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Group symmetry models
CS belongs to the class of group symmetry models

- introduces by Andersson (1975), discussed and summarized in Perlman (1987)

The covariance matrix is assumed to satisfy symmetry restrictions

Var[y] = Var [Ly] = L Var[y]L′

for all matrices L belonging to a finite group of orthogonal matrices.

A family Ω of p× p covariance matrices is a group symmetry model if and only if there
exist positive integers t, p1, . . . , pt , r1, . . . , rt , such that

∑t
i=1 pi ri = p, and a fixed

orthogonal matrix Γp×p such that

ΓΩΓ′ = diag(Ω1, . . . ,Ω1︸ ︷︷ ︸
r1

, . . . ,Ωt , . . . ,Ωt︸ ︷︷ ︸
rt

),

where Ωi is a pi × pi covariance matrix.
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Circular Toeplitz structure
Special Toeplitz type structure assuming %i = %p−i , i.e.

Ω = σ2


1 %1 %2 ··· %2 %1
%1 1 %1 ··· %3 %2
%2 %1 1 ··· %4 %3
...

...
... . . . ...

...
%2 %3 %4 ··· 1 %1
%1 %2 %3 ··· %1 1

 .

Belongs to the group symmetry models.

The covariance does not change under circular shift of observations

Var[y] = Var[Pr y], r = 0, 1, . . . , p − 1

where

P =


0 1 0 ··· 0
0 0 1 ··· 0
...
...
... . . .

...
0 0 0 ··· 1
1 0 0 ··· 0


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Circular Toeplitz structure

Discussed by Olkin and Press (1969) and Olkin (1973)

Olkin and Press (1969) derived MLEs for the parameters and considered likelihood ratio
tests (LRT) for testing various hypotheses connected with circular Toeplitz structure.

Olkin (1973) extended the structure to the case of block circular Toeplitz structure
(CT structure appeared in blocks, blocks unstructured). Various LRTs were obtained.

Properties of some patterned covariance matrices arising under different symmetry
restrictions in the context of linear mixed models studied by Nahtman (2006),
Nahtman and von Rosen (2008) or Liang et al. (2020).
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Linear structure

Anderson (1969) and Rogers and Young (1977) studied the case

Ω = θ1G1 + · · ·+ θnGn,

where θ’s are unknown parameters and G1, . . . ,Gn is a set of symmetric linearly
independent matrices.

CS and circular Toeplitz structures fall into this class.

When the matrices G1, . . . ,Gn are simultaneously diagonalizable (by an orthogonal
matrix independent of θ’s), explicit maximum likelihood estimates are readily
obtainable.
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Linear structure

Ohlson and Rosen (2010) studied the linearly structured covariance matrix in the
GCM, i.e. for

Ω = (ωij)

the only linear structure between the elements is given by |ωij | = |ωkl | and there exists
at least one (i , j) 6= (k, l) so that |ωij | = |ωkl |.

Derived the least squares estimator and showed its properties (unbiasedness and
consistency).

The idea generalized for the Extendend GCM - Nzabanita (2021) used the idea of
decomposition of the space generated by design matrices to derive explicit and
consistent estimators of the mean and linearly structured covariance matrix.
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Linear structure

Diaconis (1989) provides a discussion of how such patterns can arise. Patterns that are
exhibited: circular Toeplitz, or circulant indexed by groups, e.g.

Ω =

 a b b b b c
b a b c b b
b b a b c b
b c b a b b
b b c b a b
c b b b b a

 ,
where from first to second the switch operation (1,2)(3,4)(5,6) is applied (same holds
for row 4 from 3 and 6 from 5).

As pointed by Viana (2003) - a simple determinant of linear structure is to show that
Ωi and Ωj commute, or equivalently, that ΩiΩj is symmetric.
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Autoregression covariance structure

Autoregression correlation structure AR(1) (called also serial structure)

ΩAR = σ2
{
%|i−j|

}
ij

= σ2

Ip +
p−1∑
i=1

%i (Ci
p + C′ip )

 ,
where −1 < % < 1.

Toeplitz type structure with the restriction %i = %i for all i .

Obtained if we assume the first-order autoregressive model of errors. The correlation
decline exponentially with distance between observations. Useful for modeling short
auto-regression time series.
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Autoregression covariance structure

In the context of linear models it was discussed by Pantula and Pollock (1985), Ware
(1985), or Jennrich and Schluchter (1986)

Seems to be very natural covariance structure for growth curve data, since such data
are usually repeated measurements of very short time series.

In context of GCM the structure was discussed by Hudson (1983), Lee (1988) or
Fujikoshi et al. (1990)
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Growth curve model with special covariance
structures
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GCM with CS structure

The MLEs under CS (more precisely under generalized CS ) structure were addressed
by Khatri (1973) - discussed three hypotheses concerning the covariance structure

- testing the independence of sets of observations
- testing the sphericity,
- testing the generalized CS structure (called intraclass by Khatri)

The likelihood ratio test statistic for testing the generalized CS structure

λ = (p − 1)p−1|S||Ip + S−1QZ ;SS1|

|G|Tr[G−1Pw ;GS]
(

Tr[G−1Qw ;GS] + Tr[G−1QZ ;GS1]
)p−1 ,

where S = YQX Y and S1 = Y′PX Y.
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GCM with CS structure

The distribution of λ was determined to be the same as the product of independent
beta random variables - no parameters of this beta variables were given

Given all the moments of λ, i.e. E [λh] for h ∈ N - expressed by means of Gamma and
multivariate Gamma functions.

As was pointed in the paper:
From this, we can obtain the exact distribution of λ by using the inverse Mellin’s
transform, and the approximate distribution can be obtained by using the results
given by Anderson (1958).
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GCM with CS structure
Jurková et al. (2020) revised the LRT for testing the CS structure - the LRT statistic

λ = (p − 1)p−1|S||Ip + S−1QZ ;SS1|

Tr[PpS]
(

Tr[QpS] + Tr[QZ S1]
)p−1 .

Asymptotic distribution of Λ = −n lnλ asympt.∼ χ2ν , with ν being the difference between
the number of unknown parameters under alternative and null hypotheses

For large n the approximation works well, however, in practice this test procedure is
very often used also for small samples

? Exact distribution ?

in many cases it appeared to be the same as the product of independent beta
random variables
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GCM with CS structure
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Tr[QpS] + Tr[QZ S1]
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GCM with CS structure

Determined all the moments of λ

Eλh = (p − 1)(p−1)h ·
Γk
(

n−r−p+k
2 + h

)
Γk
(

n−r−p+k
2

) ·
Γp−k

(n
2 + h

)
Γp−k

(n
2
) ×

×
Γ
(n−r

2
)

Γ
(n−r

2 + h
) · Γ

(
d
2

)
Γ
(

d
2 + (p − 1)h

) ,
where d = n(p − 1)− r(k − 1), and r and k being ranks of design matrices X and Z,
respectively.

This formula corrects some errors contained in Khatri’s original solution.
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GCM with CS structure

The moments of λ comparison with p = 4, r = 2, k = 2;
circle - corrected, cross - Khatri, dashed line - empirical calculated from
10,000 simulated test statistic.
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GCM with CS structure

The characteristic function of Λ = −n lnλ can be derived

ϕΛ(t) = (p − 1)−(p−1)itn ·
Γk
(

n−r−p+k
2 − itn

)
Γk
(

n−r−p+k
2

) ·
Γp−k

(n
2 − itn

)
Γp−k

(n
2
) ×

×
Γ
(n−r

2
)

Γ
(n−r

2 − itn
) · Γ

(
d
2

)
Γ
(

d
2 − (p − 1)itn

) .

PDF/CDF can be numericaly calculated by the inversion formula using software
developed by Witkovský (2018) (Matlab package CharFunTool) or its R location due
to Gajdoš (2018) (R package CharFunToolR).
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GCM with CS structure
Comparison of the asymptotic χ2-approximation and exact PDF for p = 4, r = 2,
k = 2. The histogram of the empirical distribution is based on 50 000 simulated test
statistics.
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GCM with CS structure
Comparison of the asymptotic χ2-approximation and exact PDF for p = 4, r = 2,
k = 2. The histogram of the empirical distribution is based on 50 000 simulated test
statistics.
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GCM with CS structure
Other tests of CS structure:

Rao’s score test
λ = n

2 Tr
(
Σ̂−10 Σ̂− I

)2
where Σ̂0 and Σ̂ are MLEs under H0 and H1.
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GCM with CS structure
Other tests of CS structure:

Srivastava and Singull (2017) discussed three other possible tests
1 LRT for CS structure based on the unweighted estimator of B

λ = (p − 1)p−1|S + QZ S1QZ |
Tr PpS(Tr QpS + Tr QZ S1)p−1

2 LRT for CS structure based only on the matrix S

λ = (p − 1)p−1|S|
Tr PpS(Tr QpS + Tr QZ S1)p−1
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GCM with CS structure
Other tests of CS structure:

Srivastava and Singull (2017) discussed three other possible tests
3 Let the matrix Hp×p be an orthogonal matrix with first column being a normalized

column of ones, then transforming the data to Y? = H′Y we have

Y? ∼ Nn,p(Z?BX′,Ω?, In),

where Z? = H′Z and

Ω? = H′ΣH =
(
ω?11 ω?12
ω?21 Ω?

22

)
H0=
(
ω2 0′
0 ω1Ip−1

)

To test the CS structure it is tested the hypothesis

H0 : Ω?
22 = ω̃Ip−1 vs. H1 : Ω?

22 > 0
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GCM with CS structure
Other tests of CS structure:

Srivastava and Singull (2017) discussed three other possible tests
3 Based on unbiased and consistent estimators of a1 = 1

p Tr Ω and a2 = 1
p Tr Ω2, given

as
â1 = 1

np Tr S, and â2 = 1
np(n − 1)(n + 2)

(
nTr S2 − Tr S2)

The test statistic

λ = n
2

(
â2

â21 − 2
np â1

− 1
)

(n,p)→∞∼ N(0, 1)
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GCM with CS structure
Power comparison - small simulation study

Setting: r(X) = r(Z) = 2

Z =


1 1
1 2
...

...
1 p

 , B =
(
20 30
10 50

)
and X′ =

(
1′bn/2c 0′n−bn/2c
0′bn/2c 1′n−bn/2c

)

Different true Ω as alternative:
1 Ω = DWD, where D = diag(σi ) with σi =

√
R(0.9, 1.1) and W = (wij) with

wij = (−1)i+j (0.5/ ln p)|i−j|0.1

2 Ω such that in Ω? there is Ω?
22 close to sphericity, but ω?21 6= 0

3 Almost CS, just ω11 slightly modified
4 Ω such that Ω? = AR(0.1)
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GCM with CS structure
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Alternative 1



GCM with CS structure
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Alternative 2



GCM with CS structure

Daniel Klein Estimation and testing in MLM Bȩdlewo 2021 96 / 165

Alternative 3



GCM with CS structure
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GCM with CS structure

Lee (1988) - considered prediction and estimation of growth curves with CS and AR(1)
structure

For CS structure determined the MLEs of unknown parameters when 1p ∈ C(Z)

B̂ = (X′X)−1X′YZ(Z′Z)−1,

σ̂2 = Tr[S∗]
np ,

%̂ = 1
p − 1

(Tr[JpS∗]
Tr[S∗] − 1

)
,

where Jp = 1p1′p and S∗ = Y′QX Y + QZ Y′PX YQZ .
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GCM with CS structure

Žežula (2006) and Ye and Wang (2009) proposed different estimators based on
moment method

the only difference was the sum of squares matrix used in the covariance
parameter estimators

σ̂2 = Tr[S]
np , %̂ = 1

p − 1

(Tr[JpS]
Tr[S] − 1

)
,

where S = Y′QX Y.

Žežula and Klein (2010) showed that the estimators coincide and derived their
distributions.
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GCM with CS structure

Klein and Žežula (2013) derived the joint density of 2nd order parameters and
construct the confidence regions for unknown parameters

Jurková et. al (2020)- discussed an unbiased estimator of correlation coefficient %.

Daniel Klein Estimation and testing in MLM Bȩdlewo 2021 100 / 165



GCM with AR(1) structure

AR(1) structure

ΩAR = σ2R(%) = σ2


1 % %2 ··· %p−1

% 1 % ··· %p−2

%2 % 1 ··· %p−3

...
...

... . . . ...
%p−1 %p−2 %p−3 ··· 1

 ,
where −1 < % < 1.

Among other structures one of the useful - a natural structure for time series and
repeated measurements.

A nonlinear structure - there is no analytically closed form of MLEs
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GCM with AR(1) structure

Has nice forms of determinant and inverse

|ΩAR| = (σ2)p(1− %)p−1,

Ω−1AR = 1
σ2(1−%2)

(
%2C1 − %C2 + Ip

)
,

where

C1 =


0 0 0 ··· 0
0 1 0 ··· 0
...
... . . . . . .

...
0 0 ··· 1 0
0 0 ··· 0 0

 , C2 =


0 1 0 ··· 0
1 0 1 ··· 0
... . . . . . . . . .

...
0 0

. . . 0 1
0 0 ··· 1 0

 .
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GCM with AR(1) structure

Lee (1988) - determined the MLEs of unknown parameters for AR(1) structure

B̂ = (X′X)−1X′YR(%̂)−1Z(Z′R(%̂)−1Z)−1,

σ̂2 = 1
np Tr

[
R(%̂)−1S∗

]
,

%̂ is found by maximizing profile likelihood L(%) = |σ̂2R(%)|−n/2,

where S∗ = Y′QX Y + QZ Y′PX YQZ .

MLE of % can be obtained by a one-dimensional search.
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GCM with AR(1) structure

Wu (1998) derived the necessary and sufficient conditions for existence of uniformly
minimum risk unbiased estimators of the unknown parameters in EGCM - three
different structures of covariance matrix were considered

completely UN, CS and AR(1)

Under these conditions
- Wu (2000) derived explicit formulas for MLEs of unknown parameters assuming
CS structure,

- Klein and Žežula (2009) derived half-explicit MLEs of unknown parameters
assuming AR(1) structure.

Daniel Klein Estimation and testing in MLM Bȩdlewo 2021 104 / 165



GCM with AR(1) structure

For the GCM even with assumptions

QZ C1Z = 0, QZ C2Z = 0,

MLE of σ2 is expressed in explicit form (as a function of %̂), however, MLE of % is the
solution of third order polynomial

2(p − 1) Tr[C1S∗]%3 + (2− p) Tr[C2S∗]%2 − 2Tr[(Ip + pC1)S∗]%+ p Tr[C2S∗] = 0.

There is always a unique solution of in the interval (−1; 1) - guarantees positive
definitenes of the covariance matrix estimator.
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GCM with AR(1) structure
Žežula (2006) proposed estimators based on moment method

the estimator of % is the solution of polynomial of the (p − 1)-th order.

Fang, Wang and Rosen (2006) - proposed restricted expected multivariate least
squares (REMLS) principle for estimation of unknown parameters in in multivariate
linear models

- based on the fitting function

F (E Y,Ω) = 1
np Tr[Ω−1(Y− E Y)′(Y− E Y)]

- the principle is based on minimization of |F (E Y,Ω)− EF | by finding functions
h1(Ω) and h2(E Y,Ω) such that F (E Y,Ω) = h1(Ω) + h2(E Y,Ω)), and
estimators of parameters in Ω and E Y are based on h1(Ω) and h2(E Y, Ω̂),
respectively

- this leads to MLEs in the case of normally distributed GCM
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GCM with AR(1) structure

This idea can be used for estimating the unknown parameters in multivariate linear
model with serial structure - yields explicit estimators

B̂ = (X′X)−1X′Y,

σ̂2 = Tr[S]
np ,

%̂ = Tr[C2S]
Tr[(Ip + C1)S] ,

where S = Y′QX Y.

We derived their properties - σ̂2 is unbiased, while %̂ is biased but consistent, we also
derived their joint asymptotic distribution

Still not clear how to use the information of within-individual matrix Z in GCM.
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Thank you for your attention!
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Two-level multivariate data

For third order tensor of observation Y ∈ Rn×q×p

vecY ∼ Nnqp(vecM,Ω⊗ In),

whereM ∈ Rn×q×p and Ωqp×qp > 0.

After matricization - multivariate linear model

Y ∼ Nn,qp(M, In,Ω), with M ∈ Rn×qp.

? Structure ofM and Ω ?
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Structure of Ω

Reasonable structure
separable structure: Ω = Ψ⊗Σ

Σq×q the covariance matrix of q characteristics at any given time point; assumed to be
the same for all time points

Ψp×p the covariance matrix of p repeated measurements on a given characteristic;
assumed to be the same for all characteristics

- since for any c > 0
Ψ⊗Σ = cΨ⊗ 1

c Σ

to circumvent the identifiability problem Srivastava et al. (2008) proposed to fix e.g.
ψ11 = 1

- number of unknown parameters: p(p+1)
2 + q(q+1)

2 − 1
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Structure of Ω

Reasonable structure
separable structure with one component structured as CS or AR(1):

Ω = Ψ⊗Σ with, say, Ψ being additionally structured, i.e. ΨCS or ΨAR

- both ΨCS or ΨAR are taken as correlation matrices

- number of unknown parameters: q(q+1)
2 + 1
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Structure of Ω

Reasonable structure
block compound symmetry (BCS) structure:

ΩBCS = Ip ⊗ (Γ0 − Γ1) + Jp ⊗ Γ1 =


Γ0 Γ1 · · · Γ1
Γ1 Γ0 · · · Γ1
...

. . .
...

Γ1 Γ1 · · · Γ0

,
Γ0 q × q covariance matrix of q characteristics at any repeated measurement; as-

sumed to be the same for repeated measurements
Γ1 q × q covariance matrix of p repeated measurements on a given characteristic;

assumed to be the same for all characteristics

- called also exchangeable, as the columns of the data matrix Yi may be exchanged
without changing the covariance matrix
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Structure of Ω

Reasonable structure
block compound symmetry (BCS) structure:

ΩBCS = Ip ⊗ (Γ0 − Γ1) + Jp ⊗ Γ1 =


Γ0 Γ1 · · · Γ1
Γ1 Γ0 · · · Γ1
...

. . .
...

Γ1 Γ1 · · · Γ0

,

- reparametrization
ΩBCS = Pp ⊗∆1 + Qp ⊗∆2,

where ∆1 = Γ0 + (p − 1)Γ1 > 0, ∆2 = Γ0 − Γ1 > 0

- ΨCS ⊗Σ is a special case of BCS with parameter space restriction Γ1 = %Γ0

- number of unknown parameters: q(q + 1)
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Structure of mean tensorM
Structure of the mean tensorM = E [Y]:

generalized growth curve model (Filipiak and Klein (2017)):

E [vecY] = (U⊗ Z⊗ X) vecB,

Bn1×q1×p1 the third order tensor of unknown constants
Xn×n1 , Zq×q1 , Up×p1 known design matrices

- alternatively (without vec operator)

E [Y] = [[B; X,Z,U]]

where [[B; X,Z,U]] denotes the Tucker operator defined as (Kolda (2006) or Savas
and Lim (2008))

[[B; X,Z,U]]ijk =
n1∑
α=1

q1∑
β=1

p1∑
γ=1

xiαzjβukγbαβγ .

Daniel Klein Estimation and testing in MLM Bȩdlewo 2021 115 / 165



Structure of mean tensorM
Structure of the mean tensorM = E [Y]:

generalized growth curve model:

E [Y] = [[B; X,Z,U]]

n

q

pY n

n1

X
n1

q1
p1

B q1

q

Z′

p1 p
U′
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Structure of mean tensorM
Structure of the mean tensorM = E [Y]:

generalized growth curve model:
E [Y] = [[B; X,Z,U]]

- referred to as the trilinear structure - an extension of the GCM bilinear structure
XBZ′ = [[B; X,Z]]

n

q

Y n

n1

X n1

q1

B q1

q

Z′
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Structure of mean tensorM

- The temperature of n lakes measured at q depth levels repeatedly over p time
points.

- The measurements for i-th lake, i ∈ {1, . . . , n}, can be arranged into a q × p
matrix Yi representing spatio-temporal measurements.
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Structure of mean tensorM

- Assuming a polynomial trend of order q1 − 1 in depth and a polynomial trend of
order p1 − 1 in time

E [Yi ] = ZBiU′ = [[Bi ; Z,U]] ,

where

Z =


1 z1 · · · zq1−1

1
1 z2 · · · zq1−1

2
...

...
. . .

...
1 zq · · · zq1−1

q

, U =


1 u1 · · · up1−1

1
1 u2 · · · up1−1

2
...

...
. . .

...
1 up · · · up1−1

p

,
and

Bi q1 × p1 matrix of unknown parameters for the i-th lake
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Structure of mean tensorM

- In the univariate/multivariate model - the trend between the independent
observations is modeled via the design matrix X.

- Similarly we may want to model the trend between the lakes e.g. from different
regions, which may have different mean.

- For tensor of unknown parameters B

B1 = · · · = Ba1 ∑n1
i=1 ai = n...

Bn−an1
= · · · = Bn
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Structure of mean tensorM

- Tensor B will be multiplied by the design matrix Xn×n1 from its n1-mode.
- The model

E [Y] = [[B; X,Z,U]] ,

Xn×n1 block diagonal matrix with blocks 1ai

- Remark: the matrices X, Z and U do not need to be Vandermonde or binary
matrices; their forms depend on the experiment under consideration.

- The generalized growth curve model in matricized form

Yn,qp ∼ Nn,qp
(
XB(U′ ⊗ Z′), In,Ω

)
,

where Bn1×q1p1 is matricized B in the same way as Y
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Structure of mean tensorM

- Assuming the same unknown parameter matrices of all the lakes, i.e.
B1 = · · · = Bn - the model considered by Srivastava et al. (2009)

E (Y) = [[B; 1n,Z,U]] ,

where B1×q1×p1 consists of only one horizontal slice.
- model in matricized form

Yn,qp ∼ Nn,qp
(
1nB(U′ ⊗ Z′), In,Ω

)
,

where Ω was assumed to have separable structure
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Structure of mean tensorM

- We may relax on assumption of modeling the growth in the q and p mode - there
will be the restrictions on the parameters only through independent units

E [Y] = [[B; X, Iq, Ip]]

B n1 × q × p tensor of unknown parameters
X n × n1 known design matrix

- two-level multivariate regression model, which, in contrast to classical multivariate
regression model, have matrix valued observations instead of vector valued

Yn,qp ∼ Nn,qp
(
XB, In,Ω

)
,

Ω assumed to have e.g. separable structure
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Structure of mean tensorM

- two-level multivariate MANOVA model - X is just a binary matrix

- two-level multivariate general mean model - X = 1n

Yn,qp ∼ Nn,qp
(
1nµ

′, In,Ω
)
,

Ω assumed to have e.g. separable structure
µ qp-dimensional vector of unknown parameters
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Two-level multivariate model with separable
covariance structure
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Two-level model with separable structure

Yn×qp ∼ Nn,qp(M, In,Ψ⊗Σ) → Y ∼ Nn,q,p(M, In,Σ,Ψ),

- rows of Y are vectorized matrices Yi : q × p, i ∈ {1, . . . , n}

Var[vec Yi ] = Ψ⊗Σ

- studied by several authors: Naik and Rao (2001); Roy and Khattree (2003); Lu
and Zimmerman (2005); Mitchell et al. (2005, 2006); Srivastava et al. (2008)
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Two-level model with separable structure -MLEs

General mean model: M = 1nµ
′

- MLEs (presented in Lu and Zimmermann (2005))

µ̂ = Ȳ = 1
nY′1n,

Ψ̂ = 1
nq

n∑
i=1

q∑
u=1

q∑
v=1

σ∗uv (Yiv − Ȳv )(Yiu − Ȳu)′,

Σ̂ = 1
np

n∑
i=1

p∑
u=1

p∑
v=1

ψ∗uv (Y∗iv − Ȳ∗v )(Y∗iu − Ȳ∗u)′,

where Yiv and Y∗iv are v -th row and v -th column of Yi , respectively,
ψ∗uv and σ∗uv are (u, v)-th elements of Ψ−1 and Σ−1, respectively,
Ȳv = 1

n
∑n

i=1 Yiv and Ȳ∗v = 1
n
∑n

i=1 Y∗iv
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Two-level model with separable structure -MLEs

MANOVA model: M = XB
- MLEs (presented in Mitchell et al. (2006))

B̂ = (X′X)−1X′Y,

Ψ̂ = 1
nq

n∑
i=1

(Yi − M̂i )′Σ̂
−1(Yi − M̂i ),

Σ̂ = 1
np

n∑
i=1

(Yi − M̂i )Ψ̂
−1(Yi − M̂i )′,

where M̂i is the i-th reshaped column of XB̂ = PX Y
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Two-level model with separable structure -MLEs

GCM model: M = 1n vec′(ZBU′)
- MLEs (presented in Srivastava et al. (2009)): let denote Vq×pn = (Y1, . . . ,Yn),
then

X̂ = 1
n (Z′S−1Z)−1Z′S−1V(1n ⊗ Ψ̂−1U(U′Ψ̂−1U)−1),

Σ̂ = 1
np (V− ZB̂(1′n ⊗U′))(In ⊗ Ψ̂−1)(V− ZB̂(1′n ⊗U′))′,

Ψ̂ = 1
nq

n∑
i=1

(Yi − ZB̂U′)′Σ̂−1(Yi − ZB̂U′),

where S = V(In ⊗ Ψ̂−1 − Pn ⊗ Ψ̂−1U(U′Ψ̂−1U)−1U′Ψ̂−1)V′.
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Two-level model with separable structure -MLEs

Filipiak et al. (2018) - Block trace and Partial trace operators:

Definition
For any matrix A = (Aij) of order qp we define

(i) block trace matrix BTrp A as the sum of all diagonal p × p blocks, i.e.

BTrp A =
p∑

i=1
Aii .

(ii) partial trace matrix PTrq A as the matrix of traces of all q × q blocks,
i.e.

PTrq A = (Tr Aij) i , j = 1, 2, . . . , p.
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Two-level model with separable structure -MLEs

MLEs of Ψ and Σ using BTr and PTr
- MLEs (using BTr and PTr operators)

Σ̂ = 1
np BTrq[(Ψ̂−1 ⊗ Iq)S],

Ψ̂ = 1
nq PTrq[(Ip ⊗ Σ̂−1)S],

where S = (Y− M̂)(Y− M̂)′.

To find the solution so-called "flip-flop" algorithm can be used.
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Two-level model with separable structure -MLEs
generalized GCM model: M = [[B; X,Z,U]]

- MLEs (presented in Filipiak and Klein (2017))

B̂ =
[[
Y; (X′X)−1X′, (Z′Σ̂

−1
Z)−1Z′Σ̂

−1
, (U′S−11 U)−1U′S−11

]]
,

nqΨ̂ = S1 + QU;S1S2Q′U;S1 ,

npΣ̂ =
p∑

j=1

p∑
`=1

PTrn

(
sj`Ξ̂j`

)
,

where

S1 = PTrnq

[
{Ip ⊗ (Σ̂

−1/2
⊗ In)Q(̂Σ−1/2Z⊗X)(Σ̂

−1/2
⊗ In)} vecY vec′Y

]
,

S2 = PTrnq

[
{Ip ⊗ (Σ̂

−1/2
⊗ In)P(̂Σ−1/2Z⊗X)(Σ̂

−1/2
⊗ In)} vecY vec′Y

]
and sj` and Ξ̂j` are the (j, `)-th element of Ψ̂

−1
and the nq × nq block of

vec
(
Y −

[[
B̂; X,Z,U

]])
vec′

(
Y −

[[
B̂; X,Z,U

]])
.
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Generalized GCM example

Table: Selected data from the integrated monitoring of the effects of liming project at SLU,
Sweden: temperature measured in three years (1990, 2000, 2009) (p=3) at three depth levels
(0.5 m, 5 m, 15 m) (q=3); first seven lakes are on the north, remaining 10 are on the south
(n=17)

depth 0.5 depth 5 depth 15
lake 1990 2000 2009 lake 1990 2000 2009 lake 1990 2000 2009
1 7.7 5.1 7.4 1 7.6 5.0 7.2 1 6.9 5.0 6.8
2 15.7 11.8 11.2 2 9.9 11.8 11.0 2 8.5 12.0 10.5
3 13.2 9.4 10.8 3 11.3 9.4 10.0 3 10.1 9.3 8.5
4 15.6 12.7 12.1 4 13.4 12.7 11.8 4 12.6 12.6 11.4
5 15.0 13.0 12.9 5 14.7 12.8 12.4 5 8.9 9.6 8.2
6 18.5 16.5 19.6 6 13.7 11.5 14.5 6 5.2 4.3 4.7
7 15.6 13.5 13.3 7 9.9 12.7 12.0 7 6.4 6.3 7.6
8 15.7 18.5 19.0 8 15.6 14.9 14.6 8 14.9 13.8 13.0
9 19.2 19.0 18.3 9 15.9 17.2 16.0 9 5.6 4.9 3.8
10 19.0 15.7 16.3 10 11.0 9.5 8.8 10 6.0 4.7 3.8
11 18.4 16.7 17.6 11 11.8 12.6 11.8 11 4.8 5.4 4.1
12 17.8 15.0 15.9 12 17.1 13.5 14.3 12 8.0 4.2 4.0
13 20.2 15.7 14.6 13 14.2 15.6 13.7 13 6.2 5.0 4.6
14 18.7 16.6 15.9 14 16.4 12.5 9.7 14 8.4 6.6 6.0
15 17.5 14.3 15.9 15 16.0 14.1 14.4 15 9.2 5.8 5.7
16 18.5 16.1 15.1 16 14.5 15.5 9.5 16 8.4 5.8 5.8
17 16.2 15.1 14.2 17 16.2 15.0 13.3 17 6.9 5.2 5.3
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Generalized GCM example
The measurements from one lake can be arranged into a q × p matrix Yi ,
i = 1, . . . , n, representing a spatio-temporal measurements.
Assuming a polynomial trend of order q1 − 1 in depth and a polynomial trend of
order p1 − 1 in time we have a model (Srivastava et al., 2009)

E (Yi ) = ZBiU′ = [[Bi ; Z,U]]

The model in tensor notation

E (Y) = [[B; 1n,Z,U]]

Z =


1 z1 · · · zq1−1

1
1 z2 · · · zq1−1

2
...

...
. . .

...
1 zp · · · zq1−1

q

 , U =


1 u1 · · · up1−1

1
1 u2 · · · up1−1

2
...

...
. . .

...
1 up · · · up1−1

p


B1×q1×p1 consists of only one horizontal slice which reflects the unknown
parameters for the mean of each horizontal slice of measurement tensor Y , i.e.,
for each lake.
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Generalized GCM example

We want to model also the trend between the lakes from different regions, which
may have different mean.
The number of horizontal slices in tensor B will correspond to the number of
different regions n1
The model

E (Y) = [[B; X,Z,U]] , B : n1 × q1 × p1
X = diag(1a1 , 1a2 , . . . , 1an1

),
∑n1

i=1 ai = n
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Generalized GCM example

The variable of interest - temperature
number of lakes - n = 17

a1 = 7 - lakes above the 60th parallel
a2 = 10 - lakes below the 60th parallel

q = 3 - number of depth levels, where measurements were taken
(0.5, 5, and 15 m)

p = 3 - number of time points, when measurements were taken
(1990, 2000 and 2009)
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Generalized GCM example

The design matrices

X =
(

17 07
010 110

)
, Z =

 1 0.5
1 5
1 15

 , U =

 1 0
1 10
1 19


Applying the flip-flop algorithm we obtained tensor B represented as matrix B̂ij1 -
the front slice - and matrix B̂ij2 - the back one:

(
B̂ij1

∣∣ B̂ij2
)

=
(

13.949 −0.370
18.348 −0.708

∣∣∣∣∣ −0.054 0.003
−0.092 −0.001

)

Ψ̂ =

 1.000 0.381 0.015
0.381 0.988 0.185
0.015 0.185 0.574

 , Σ̂ =

 7.000 5.543 5.255
5.543 8.527 6.585
5.255 6.585 6.992


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Generalized GCM example

Interpretation (
B̂ij1

∣∣ B̂ij2

)
=

(
13.949 −0.370
18.348 −0.708

∣∣∣∣∣ −0.054 0.003
−0.092 −0.001

)

b̂111 = 13.949 – intercept for northern lakes (average temperature at the beginning of the
experiment in 1990, at depth zero),

b̂121 = −0.37 – linear trend in depth for northern lakes,
b̂112 = −0.054 – linear trend in years for northern lakes,
b̂122 = 0.003 – interaction between depth and year for northern lakes,
We have the following regression for northern lakes (d - depth, t - time):

y = 13.949− 0.054 t − 0.37 d + 0.003 t d
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Generalized GCM example

Interpretation (
B̂ij1

∣∣ B̂ij2

)
=

(
13.949 −0.370
18.348 −0.708

∣∣∣∣∣ −0.054 0.003
−0.092 −0.001

)

b̂211 = 18.348 – intercept for southern lakes (average temperature at the beginning of the
experiment in 1990, at depth zero),

b̂221 = −0.708 – linear trend in depth for southern lakes,
b̂212 = −0.092 – linear trend in years for southern lakes,
b̂222 = −0.001 – interaction between depth and year for southern lakes,
We have the following regression for southern lakes (d - depth, t - time):

y = 18.348− 0.708 d − 0.092 t − 0.001 t d
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Testing the covariance structure in two-level
multivariate data
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Introduction

Assume
Yn,qp ∼ Nn,qp(1nµ

′, In,Ω)

where µ ∈ Rqp.

We want to test test the hypothesis

H0 : Ω = Ω0 vs. H1 : Ω unstructured

where Ω0 is
- ΨUN ⊗Σ - test of separability,
- ΨCS ⊗Σ - test of separability with CS component,
- ΨAR ⊗Σ - test of separability with AR(1) component,
- Γ = Ip ⊗ (Σ0 −Σ1) + Jp ⊗Σ1 - test of BCS structure.
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Testing hypotheses for large samples

Most common hypotheses testing procedures for large samples (referred to as Holy
trinity in statistical literature ):

- likelihood ratio test (Wilks, 1938)

- Wald test (Wald, 1943)

- Rao score test (Rao, 1948)

All tests are equivalent to the first-order asymptotics, but differ to some extent in the
second-order properties.

Widely used even for small samples n, since exact test are not always available → this
result in erroneous conclusions as χ2 distribution is generally an inadequate
approximation.

One can use the empirical null distribution of the test statistic.
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Testing covariance structure

Testing separable covariance structure with both unstructured components:
- Dutilleul (1999), Naik and Rao (2001), Roy and Khattree (2003), Lu and
Zimmerman (2005), Roy (2007), Mitchell et al. (2006), Srivastava et al. (2008),
Werner et al. (2008)

Testing separable covariance structure with one additionally structured component:
- Roy and Khattree (2003, 2005, 2007), Roy and Leiva (2008)

BCS structure was discussed by Rao (1945, 1953) for discriminating genetically
different groups. Several hypotheses about the BCS covariance structure were
discussed by

- Szatrowski (1982) and Roy and Leiva (2011)
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Likelihood ratio test (LRT)

The tests discussed in the literature used LRT statistic for testing various permutations
of patterns of separable covariance structures.

Based on comparison of the maximum likelihoods under the null and alternative
hypotheses

Λ =
max

H0
L

max
HA

L .

The exact distribution of Λ usually unknown - statistics used in practice

LR = −2 ln(Λ)
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Likelihood ratio test (LRT)

Under null hypothesis statistics LR known to have asymptotically χ2ν distribution
- ν is the difference between the number of unknown parameters under alternative
and null hypotheses

- commonly used in practice, since the exact null distribution of LRT statistics is
usually unknown.

Works under large sample asymtotics: dimension (qp) is fixed, n→∞

Many authors considered modification of LRT statistic to match the χ2 distribution in
small sample case, e.g., Mitchell et al. (2006) in context of separability test.

There are results for exact distribution for LRT statistic, e.g. Coelho and Roy (2017)
- complex numerical procedures - may not be achievable to the researchers.
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Likelihood ratio test (LRT)

In case of testing separability and BCS:

LR = −n ln |Ω̂−10 Ω̂| = −n ln |Ω̂−10 | − n ln |Ω̂|

- LRT cannot be performed, when n is smaller than the dimension qp - common in
many real data analyses.
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Rao score test (RST)

Filipiak et al. (2016, 2017) and Roy et al. (2018) - Rao score test was proposed and
studied

RST is an alternative or competitor to LRT - proposed by Rao (1948), also based on
the likelihood principles.

RST statistic RS can be expressed in terms of the trace of Ω̂−10 Ω̂

RS = n
2 Tr

[
Ω̂−10 Ω̂− Iqp

]2

Exact null distribution of the test statistic is unknown, RS the test statistic has
asymtotically χ2 distribution.
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Test comparison

LRT requires Ω̂ to be regular, in contrary to RST
- RST can be performed in the so-called high-dimensional case - n < qp.

Minimum sample size

LRT RST
ΨUN ⊗Ω

qp+1

max{q, p}+ 1
ΨUN ⊗Ω

q+1ΨUN ⊗Ω
BCS
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Test comparison

Simulation studies - quicker convergence to the limiting χ2 distribution of RST
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Figure: Plots of the empirical histogram and its limiting χ2 distribution for LRT and RST statistics for sample sizes 20 and 100 for p = 3.
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Test comparison

Simulation studies - quicker convergence to the limiting χ2 distribution of RST
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Figure: Plots of the empirical histogram and its limiting χ2 distribution for LRT and RST statistics for sample sizes 20 and 100 for p = 5.
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Test comparison
Speed of convergence of Type I error when the limiting χ2 distribution is used

ΨUN ⊗Σ ΨCS ⊗Σ

ΨAR ⊗Σ BCS

Figure: p = q = 3, % = 0.5, α = 0.05. Plot lines: Dashed – LRT; Solid – RST.Daniel Klein Estimation and testing in MLM Bȩdlewo 2021 151 / 165



Small sample size

Both tests, LRT as well as RST, works under large sample asymtotics:

dimension (say p) is fixed, n→∞

- relatively big sample size comparing to p is needed

It has been observed that several well-known methods in multivariate analysis become
inefficient or even misleading when the data dimension p is close to sample size n

- Dempster (1958) - proposed non-exact test for testing the mean vectors equality
in two normal populations for high-dimensional case

- Bai and Saranadasa (1996) - proved analytically that Dempster’s test is more
powerful than the well-defined Hotelling’s test for p close to n.

Daniel Klein Estimation and testing in MLM Bȩdlewo 2021 152 / 165



Small sample size

To deal with such large-dimensional data - area in asymptotic statistics has been
developed where the data dimension p is no longer fixed but tends to infinity together
with the sample size n

- large-dimensional asymptotics: n, p →∞, p
n → c, c ∈ (0, 1)

- high-dimensional asymptotics: n, p →∞, p
n → c, c > 1

Yao J., Zheng S., Bai Z. (2015). Large Sample Covariance Matrices and
High-Dimensional Data Analysis. Cambridge University Press.
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The sphericity test
Assume Y ∼ Nn,p(1nµ,Ω). The hypothesis:

H0 : Ω = σ2Ip vs. H1 : Ω unstructured

LRT statistic

Λ =
( pp|S|

(Tr[S])p

)n/2
=
(

(`1 · · · `p)1/p

1
p (`1 + · · ·+ `p)

)np/2

,

where `i are the eigenvalues of S.

Under large-sample asymtotics:

−2 ln Λ D→ χ2ν , ν = p(p + 1)/2

Box-Bartlett correction (BBLRT) - expansion of the distribution function of −2 ln Λ
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The sphericity test

John (1971) - so called John’s test

T2 = n
2 Tr

[
p

Tr[S] S− Ip
]2

= np
2 ·

1
p
∑

(`i − ¯̀)2

¯̀2 , ¯̀ = 1
p
∑

`i

Under large-sample asymtotics:
T2

D→ χ2ν

with ν = p(p + 1)/2

Nagao (1973) - expansion of the distribution function of T2
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The sphericity test

Performance of BBLRT and Nagao’s test with growing dimension p:
- n = 64, various p, α = 0.05

p 4 8 16 32 48 56 60
BBLRT 0.0483 0.0523 0.0491 0.0554 0.1262 0.3989 0.7605
Nagao’s test 0.0485 0.0495 0.0478 0.0518 0.0518 0.0513 0.0495

When p
n <

1
2 - empirical significance level close to the nominal one for both tests

With growing ratio p
n - BBLRT becomes quickly biased, while Nagao’s test keeps

correct empirical significance level
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The sphericity test

LRT large-dimensional distribution - corrected LRT (CLRT): let LR = −(2/n) ln Λ and
let p

n−1 = cn → c ∈ (0, 1), then

LR +(p − n − 1) ln (1− cn)− p D→ N
(
−1

2 ln(1− c),−2 ln(1− c)− 2c
)

Limiting distribution of the test crucially depends on the limiting dimension-to-sample
size ratio c through the factor -log(1 - c)

- when c approaches 1 - the asymptotic variance blow up quickly, so the power will
seriously break down
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The sphericity test

Ledoit and Wolf (2002)
John’s test large-dimensional distribution - corrected John’s test (CJT): let

p
n−1 = cn → c > 0, then

2
ncn

T2 − p D→ N (1, 4)

Remarks to CJT
- valid also for high-dimensional case (p > n) - in contrast to CLRT, where this
ratio should be kept smaller than 1 to avoid null eigenvalues

- John’s test is in fact Rao score test - CJT is corrected RST (CRST)
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Test of BCS structure

The advantage of testing the BCS structure: the likelihood estimators of unknown
parameter are given in explicit form

∆̂1 = 1
n BTrq[(Pp ⊗ Iq)S] ∼Wq

(
1
n ∆2, n − 1

)
,

∆̂2 = 1
n(p−1) BTrq[(Qp ⊗ Iq)S] ∼Wq

(
1

n(p−1) ∆2, (n − 1)(p − 1)
)
.

Large-dimensional distribution of LRT and RST?
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Test of BCS structure

LRT distribution of the test statistic W = −n ln Λ
- Mitsui et al. (2015) - asymptotic normality under qp

n−1 → c ∈ (0, 1)

- Sun and Xie (2020) - allowed c = 1 and also under mild asymptotic restrictions

- Coelho and Roy (2017) - derived a near-exact approximation of the distribution

Large-dimensional distribution of RST statistic RS

RS = n
2 Tr

[(
Pp ⊗ ∆̂

−1
1 + Qp ⊗ ∆̂

−1
2

)
S− Iqp

]2
only for q = 1
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Test of CS structure

Theorem
Under model Y ∼ Nn,p(1nµ, In,Ω) and hypothesis H0 : Ω = ΩCS , and when
cn = p−1

n−1 → c > 0, the following holds:

1
ncn

RS − p+2
2

D→ N (0, 1) ,

where RS is the Rao score test statistic.
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Test of CS structure

RST large- and high-dimensional distribution - simulated empirical null distribution of RS test
statistic (blue) together with approximation by standard normal distribution (red)
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Test of CS structure

LRT large- and high-dimensional distribution - transformed exact null distribution of LR test
statistic (blue) together with approximation by standard normal distribution (red)
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Test of CS structure

Simulations - empirical Type I error, α̂

Type I error as a function of p based on simulations for n = 10, 30, 50, 80, 100
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Thank you for your attention!
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