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Testing for uniformity

Py the uniform distribution

Xi, ..., Xn a sample from a distribution P on [0, 1]
Ho P = Po I

Ty, T, two test statistics of upper-tailed a—Ilevel tests
compare test T, with respect to T3
T1 a benchmark procedure

f # 1 fixed density

po(t) = pro(t) = (1 —0) +0f(t) =1+ 0(f(t) — 1) alternative
f —1 "direction" of alternative, 6 "distance" from P, I

Nt,, N7, minimal sample sizes guaranteeing power 3 € (0, 1)
under alternative pyg

ARE(Ty, T1) — N7, /N, after some limiting process
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Pitman ARE: 0 =0,=0(1/y/n), a fixed
Bahadur ARE: 0 fixed, o = a, = O(e™")
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Pitman ARE: 0 =0,=0(1/y/n), a fixed
Bahadur ARE: 0 fixed, o = a, = O(e™")

limitations:
Pitman  asymptotic normality under Hy and under pyg

Bahadur large deviations under Hy

Kallenberg (intermediate) ARE 6, — 0, nf% — oo
oy () = 1+ 0a(F(£) — 1)
ap — 0, (logap)/n—0
rates of 0,, «, related each other
some asymmetry

advantages: — only moderate deviations under Hy
— asymmetry



Kallenberg ARE definition (sketch)

Kallenberg, AS, (1983)
Inglot & Ledwina, AS, (1996), Inglot, MMS, (1999)
Inglot, Ledwina & Cmiel, ESAIM PS, (2019)

e there exists level o, s.t. for sample size n test T, under pyg,
attains a power 3, which is asymptotically nondegenerate

e N, (n) the minimal sample size for which T;
on the same «, and the same pyg, attains power at least /3,

e N7,(n)/n— E(f) =Er,1,(f) € [0,00] as n — 0
= &(f) Kallenberg ARE of T, with respect to T;

Typically, ARE, if exists, strongly depends
on the "direction" f(t) — 1



Assumptions

Moderate deviations (MD) for T

There exists c1 € (0, 00) s.t.

1
— lim — log P(T, > xp\/n) = cT

n—o0 nx,27

2
for some (all) sequences x, > 0, s.t. x, — 0, nx; — o0
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Moderate deviations (MD) for T

There exists c1 € (0, 00) s.t.

1
— lim — log P(T, > x,/n) = c1

n—o0 nx,27

2
for some (all) sequences x, > 0, s.t. x, — 0, nx; — o0

Kallenberg ARE - crucial sufficient conditions

for benchmark test T;
MD under Hy for all x,

for T,
MD under Hy possible for narrow class of x,
often related to 0,




Neyman-Pearson test

natural benchmark test — the NP test for Hy against py, J

standardized NP test statistic

1 n
Vn: | XI' — €0n),
oo 2N, X) ~ ) J

where
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con = [ 1ogpu,(t)dt. 0B, = [ log? p,(0)ck - &,
0 0



Neyman-Pearson test

natural benchmark test — the NP test for Hy against py, |

standardized NP test statistic

n

ﬁlaon Z(|og po,(Xi) — €on),

i=1

V, =

where

1 1
con = [ 1ogpu,(t)dt. 0B, = [ log? p,(0)ck - &,
0 0

Inglot & Ledwina, AS, (1996)

Bounded "directions" f(t) —1 = MD for V,, for all x, (cy = 1/2)
So, NP test may be used as a banchmark test




unbounded "directions"

testing goodness of fit F = Fy on R against F = F; often leads
to unbounded "directions" after transformation onto [0, 1] by Fqo

o Fo(x) = ®(x), Fi(x) = ®(x — p1) Gaussian shift
F(t) = o(®71(t) — 1)/p(®7H(t)) € Lg(0,1) for all g > 1
f always unbounded

o Fo(x) = ®(x), Fi(x) = d(x/o), o > 1 Gaussian scale

f(t) = p(®71(t)/0)/o(®7H(t)) € Lg(0,1) for g < 0/(0® ~ 1)

f always unbounded




MD for the NP statistic for unbounded "directions"

f(t)y=0-r)t7", re(0,1/2), f € Lq(0,1)forallg<1/r

Theorem 1. If x,/07 — oo and x/" " log 0, — 0 for some r' < r
(xn — 0 slower than 6;,) then MD for V), corresponding to f,

degenerate i.e.

. 1
lim 5
n—o0 an

log Po(Va > v/ix) = 0




MD for the NP statistic for unbounded "directions"

f(t)y=0-r)t7", re(0,1/2), f € Lq(0,1)forallg<1/r

Theorem 1. If x,/07 — oo and x/" " log 0, — 0 for some r' < r

(xn — 0 slower than 6;,) then MD for V), corresponding to f,
degenerate i.e.
lim —Iog Po(Vy, > V/nxp) =0

n—oo NX

Theorem 2
If f € L»(0,1) is unbounded and x, = o(f,), nx; — oo,
(xn — 0 faster than 6,) then

1
— lim —IogPo(V >fx,,)—§:CV
n

n—oo NX;

|




conclussion — disappointment

for unbounded f € L»(0,1) (or even € L4(0,1), g > 2)
MD theorem for V,, may not hold in the full range of x,

for unbounded f it may happen that the NP test cannot be a
benchmark test




Kolmogorov-Smirnov as benchmark test

Theorem 3
Let

Ko =/n sup |Fn(t) —t|,

te(0,1)
where F, is ecdf, be the unweighted KS test statistic. Then for
every x, — 0, nx2 — 0o

—I|m IogPo( > Vnx,) =2 =ck




Kolmogorov-Smirnov as benchmark test

Theorem 3
Let

Ko =/n sup |Fn(t) —t|,

te(0,1)
where F, is ecdf, be the unweighted KS test statistic. Then for
every x, — 0, nx2 — 0o

—I|m IogPo( > Vnx,) =2 =ck

KS may always be used as a benchmark test in testing uniformity J




Kallenberg ARE for V,, with respect to K,

Theorem 4

If f € L5(0,1) (bounded or not) then Kallenberg ARE of V,, with
respect to K, exists and is equal to

CF 13
€)= "aar,
where A(t) = [;(f(u) — 1)du




Kallenberg ARE for V,, with respect to K,

Theorem 4
If f € L5(0,1) (bounded or not) then Kallenberg ARE of V,, with
respect to K, exists and is equal to
If —1]13
E(f) ="
4[| All%,
where A(t) = [;(f(u) — 1)du

If £ is bounded then Kallenberg ARE of K, with respect to V,, is
equal to (Inglot & Ledwina, JSPI, 2006)

1 _ 4AL

e(f) IIf =113




heavy-tailed alternatives

Theorem 4 cannot be extended to f ¢ L,(0,1)

Suppose for some r € (1/2,1) and 6 > 0 f satisfies
(*) f(t)t" bounded from 0 and oo on (0,0) and f(t) bounded on (4, 1)

(¥) = (f ¢ L1/,(0,1)) = (f ¢ L2(0,1))

If f satisfies () then Kallenberg ARE of V,, with respect to Kj, is
equal to oo

lim Nic(n)

n—o0 n

the same holds for all classical tests which have
finite Kallenberg ARE with respect to KS



Empirical powers (in %) of KS and NP, alternative f,(t) = (1 — r)t ™",
a = 0.05, small € and several n
r=20.7 r=20.3
6 =0.05 6 =0.02 6 =0.1 6 =0.05
n |KS NP n |KS NPJ| n |KS NP n |KS NP
11 4 15| 39 4 15| 160 | 5 15| 640 6 15

20 [ 4 20| 70 | 5 20(200| 7 20| 1200| 7 20
42 | 5 30| 155 | 5 30| 610 |10 30| 2300 | 10 30
70 | 6 40| 250 | 5 40| 950 | 13 40| 4800 | 15 47
105 | 7 50 3350 | 15 991200 15 47 6800 | 20 59
150 | 7 60 4900 | 20 100 1340| 17 50| 11100|30 77
540 | 15 94| 7700 | 30 1001650 | 20 58

750 | 20 98|/10100| 40 100 1830| 21 60| 2% | = 4.6
1200 | 30 100 2800| 30 76

1600 | 40 100 | 299 | = 28.6|(3880| 40 86| L0 | = 438
2080 | 50 100 5050 | 50 93

2500| 60 100 7% | = 49.7(6350| 60 97




Ratios Nk(n)/n (n for V,, and Nk(n) for K,)
for the alternative f,(t) = (1 — r)t~", small 6, four values of r,
several powers separated from 0 and 1, o = 0.01
r power in %

0 15 20 30 40 50 60 70
0.7 |0.10/30.4 23.7 18.2 15.0 12.9 11.0 9.7
¢ L, |0.05/44.8 36.0 27.3 22.3 19.2 16.7
0.02/80.9 63.4 475
06 |0.10(179 145 11.2 9.7 86 7.8 7.0
¢ L, [0.05/24.4 19.9 155 13.4 11.6 10.5
0.02|34.7 294 23.1

04 (02058 50 44 40 38 3.6 34

el, [010/6.2 58 50 46 43 4.0 3.8
£=579(0.05| 6.6 6.3 5.5

03 (020|143 39 34 32 3.0 29 29

el, [010/43 40 36 34 33 31
£=330(0.05| 44 4.0 3.7




PROOF OF THEOREM 5. Set P, corresponding to py,, nf? — oo

Step 1 — asymptotic shift (calculation)
by = Ep, Vi, = /n0y/*"

Step 2 — asymptotic power (Liapunov’'s CLT)

Vx  Pn(Vn = x + by) bounded away from 0 and 1
x + by, critical value, «a, = Po(V, = x + by)

Step 3 — MD for V,, under Hy
if x, = O(05/%"), nx2 = 0o (x, — 0 sufficiently fast) then

1
— lim sup — log Po(V;, > Vnx,) >0
n nx2

Step 4 — weak convergence and MD for K, (Theorem 3) under Hy
(Step 3 — very weak version of MD for V)



