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Testing for uniformity

X1, ...,Xn a sample from a distribution P on [0, 1]
P0 the uniform distribution
H0 : P = P0

T1, T2 two test statistics of upper-tailed α−level tests
compare test T2 with respect to T1

T1 a benchmark procedure

pθ(t) = pf ,θ(t) = (1− θ) + θf (t) = 1 + θ(f (t)− 1) alternative
f 6= 1 �xed density
f − 1 "direction" of alternative, θ "distance" from P0

NT1
,NT2

minimal sample sizes guaranteeing power β ∈ (0, 1)
under alternative pθ

ARE (T2,T1) � NT1
/NT2

after some limiting process
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ARE notions

Pitman ARE: θ = θn = O(1/
√
n), α �xed

Bahadur ARE: θ �xed, α = αn = O(e−cn)

limitations:
Pitman asymptotic normality under H0 and under pθ
Bahadur large deviations under H0

Kallenberg (intermediate) ARE θn → 0, nθ2n →∞
pθn(t) = 1 + θn(f (t)− 1)
αn → 0, (logαn)/n→ 0
rates of θn, αn related each other
some asymmetry

advantages: � only moderate deviations under H0

� asymmetry
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Kallenberg ARE de�nition (sketch)

Kallenberg, AS, (1983)
Inglot & Ledwina, AS, (1996), Inglot, MMS, (1999)
Inglot, Ledwina & �miel, ESAIM PS, (2019)

• there exists level αn s.t. for sample size n test T2 under pθn
attains a power βn which is asymptotically nondegenerate

• NT1
(n) the minimal sample size for which T1

on the same αn and the same pθn attains power at least βn

• NT1
(n)/n→ E(f ) = ET2T1

(f ) ∈ [0,∞] as n→∞

⇒ E(f ) Kallenberg ARE of T2 with respect to T1

Typically, ARE, if exists, strongly depends
on the "direction" f (t)− 1



Assumptions

Moderate deviations (MD) for T

There exists cT ∈ (0,∞) s.t.

− lim
n→∞

1
nx2n

logP(Tn ≥ xn
√
n) = cT

for some (all) sequences xn > 0, s.t. xn → 0, nx2n →∞

Kallenberg ARE � crucial su�cient conditions

for benchmark test T1

MD under H0 for all xn
for T2

MD under H0 possible for narrow class of xn
often related to θn
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Neyman-Pearson test

natural benchmark test � the NP test for H0 against pθn

standardized NP test statistic

Vn =
1√
nσ0n

n∑
i=1

(log pθn(Xi )− e0n),

where

e0n =

∫
1

0

log pθn(t)dt, σ20n =

∫
1

0

log2 pθn(t)dt − e20n.

Inglot & Ledwina, AS, (1996)

Bounded "directions" f (t)− 1 ⇒ MD for Vn for all xn (cV = 1/2)
So, NP test may be used as a banchmark test
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unbounded "directions"

testing goodness of �t F = F0 on R against F = F1 often leads
to unbounded "directions" after transformation onto [0, 1] by F0

• F0(x) = Φ(x), F1(x) = Φ(x − µ) Gaussian shift

f (t) = ϕ(Φ−1(t)− µ)/ϕ(Φ−1(t)) ∈ Lq(0, 1) for all q > 1

f always unbounded

• F0(x) = Φ(x), F1(x) = Φ(x/σ), σ > 1 Gaussian scale

f (t) = ϕ(Φ−1(t)/σ)/ϕ(Φ−1(t)) ∈ Lq(0, 1) for q < σ2/(σ2 − 1)

f always unbounded



MD for the NP statistic for unbounded "directions"

Example

fr (t) = (1− r)t−r , r ∈ (0, 1/2), fr ∈ Lq(0, 1) for all q < 1/r

Theorem 1. If xn/θr
′

n →∞ and x
r/r ′−1
n log θn → 0 for some r ′ < r

(xn → 0 slower than θrn) then MD for Vn corresponding to fr
degenerate i.e.

lim
n→∞

1
nx2n

logP0(Vn ≥
√
nxn) = 0

Theorem 2

If f ∈ L2(0, 1) is unbounded and xn = o(θn), nx2n →∞,
(xn → 0 faster than θn) then

− lim
n→∞

1
nx2n

logP0(Vn ≥
√
nxn) =

1
2

= cV
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conclussion � disappointment

for unbounded f ∈ L2(0, 1) (or even ∈ Lq(0, 1), q > 2)
MD theorem for Vn may not hold in the full range of xn

for unbounded f it may happen that the NP test cannot be a
benchmark test



Kolmogorov-Smirnov as benchmark test

Theorem 3

Let
Kn =

√
n sup
t∈(0,1)

|F̂n(t)− t|,

where F̂n is ecdf, be the unweighted KS test statistic. Then for
every xn → 0, nx2n →∞

− lim
n

1
nx2n

logP0(Kn >
√
nxn) = 2 = cK

KS may always be used as a benchmark test in testing uniformity
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Kallenberg ARE for Vn with respect to Kn

Theorem 4

If f ∈ L2(0, 1) (bounded or not) then Kallenberg ARE of Vn with
respect to Kn exists and is equal to

E(f ) =
||f − 1||2

2

4||A||2∞
,

where A(t) =
∫ t
0

(f (u)− 1)du

If f is bounded then Kallenberg ARE of Kn with respect to Vn is
equal to (Inglot & Ledwina, JSPI, 2006)

1
E(f )

=
4||A||2∞
||f − 1||2

2
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heavy-tailed alternatives

Theorem 4 cannot be extended to f /∈ L2(0, 1)

Suppose for some r ∈ (1/2, 1) and δ > 0 f satis�es

(∗) f (t)tr bounded from 0 and∞ on (0, δ) and f (t) bounded on (δ, 1)

(∗)⇒ (f /∈ L1/r (0, 1))⇒ (f /∈ L2(0, 1))

Theorem 5

If f satis�es (∗) then Kallenberg ARE of Vn with respect to Kn is
equal to ∞

lim
n→∞

NK (n)

n
=∞

the same holds for all classical tests which have
�nite Kallenberg ARE with respect to KS



Empirical powers (in %) of KS and NP, alternative fr (t) = (1− r)t−r ,

α = 0.05, small θ and several n

r = 0.7 r = 0.3
θ = 0.05 θ = 0.02 θ = 0.1 θ = 0.05
n KS NP n KS NP n KS NP n KS NP
11 4 15 39 4 15 160 5 15 640 6 15
20 4 20 70 5 20 290 7 20 1200 7 20
42 5 30 155 5 30 610 10 30 2300 10 30

70 6 40 250 5 40 950 13 40 4800 15 47
105 7 50 3350 15 99 1200 15 47 6800 20 59
150 7 60 4900 20 100 1340 17 50 11100 30 77
540 15 94 7700 30 100 1650 20 58
750 20 98 10100 40 100 1830 21 60 2800

610
= 4.6

1200 30 100 2800 30 76
1600 40 100 1200

42
= 28.6 3880 40 86 11100

2300
= 4.8

2080 50 100 5050 50 93
2500 60 100 7700

155
= 49.7 6350 60 97



Ratios NK(n)/n (n for Vn and NK (n) for Kn)
for the alternative fr (t) = (1− r)t−r , small θ, four values of r ,

several powers separated from 0 and 1, α = 0.01
r power in %

θ 15 20 30 40 50 60 70
0.7 0.10 30.4 23.7 18.2 15.0 12.9 11.0 9.7

/∈ L2 0.05 44.8 36.0 27.3 22.3 19.2 16.7

0.02 80.9 63.4 47.5

0.6 0.10 17.9 14.5 11.2 9.7 8.6 7.8 7.0

/∈ L2 0.05 24.4 19.9 15.5 13.4 11.6 10.5

0.02 34.7 29.4 23.1

0.4 0.20 5.8 5.0 4.4 4.0 3.8 3.6 3.4

∈ L2 0.10 6.2 5.8 5.0 4.6 4.3 4.0 3.8

E=5.79 0.05 6.6 6.3 5.5

0.3 0.20 4.3 3.9 3.4 3.2 3.0 2.9 2.9

∈ L2 0.10 4.3 4.0 3.6 3.4 3.3 3.1

E=3.30 0.05 4.4 4.0 3.7



PROOF OF THEOREM 5. Set Pn corresponding to pθn , nθ
2
n →∞

Step 1 � asymptotic shift (calculation)

bn = EPnVn �
√
nθ

1/2r
n

Step 2 � asymptotic power (Liapunov's CLT)

∀x Pn(Vn > x + bn) bounded away from 0 and 1
x + bn critical value, αn = P0(Vn > x + bn)

Step 3 � MD for Vn under H0

if xn = O(θ
1/2r
n ), nx2n →∞ (xn → 0 su�ciently fast) then

− lim sup
n

1
nx2n

logP0(Vn >
√
nxn) > 0

Step 4 � weak convergence and MD for Kn (Theorem 3) under H0

(Step 3 � very weak version of MD for Vn)


