XLV Konferencja Statystyka Matematyczna Będlewo 2019

Intermediate efficiency of tests for uniformity under heavy-tailed alternatives

Tadeusz Inglot

Faculty of Pure and Applied Mathematics Wrocław University of Science and Technology

3 XII 2019

 T_1 , T_2 two test statistics of upper-tailed α -level tests compare test T_2 with respect to T_1 T_1 a benchmark procedure

 $p_{\theta}(t) = p_{f,\theta}(t) = (1 - \theta) + \theta f(t) = 1 + \theta(f(t) - 1)$ alternative $f \neq 1$ fixed density f - 1 "direction" of alternative, θ "distance" from P_0

 $N_{\mathcal{T}_1}, N_{\mathcal{T}_2}$ minimal sample sizes guaranteeing power $eta \in (0,1)$ under alternative $p_ heta$

 T_1 , T_2 two test statistics of upper-tailed α -level tests compare test T_2 with respect to T_1 T_1 a benchmark procedure

 $p_{ heta}(t) = p_{f, heta}(t) = (1 - heta) + heta f(t) = 1 + heta(f(t) - 1)$ alternative $f \neq 1$ fixed density f - 1 "direction" of alternative, θ "distance" from P_0

 $N_{\mathcal{T}_1}, N_{\mathcal{T}_2}$ minimal sample sizes guaranteeing power $eta \in (0,1)$ under alternative $p_ heta$

 T_1 , T_2 two test statistics of upper-tailed α -level tests compare test T_2 with respect to T_1 T_1 a benchmark procedure

 $p_{ heta}(t) = p_{f, heta}(t) = (1 - heta) + heta f(t) = 1 + heta(f(t) - 1)$ alternative $f \neq 1$ fixed density f - 1 "direction" of alternative, heta "distance" from P_0

 $N_{\mathcal{T}_1}, N_{\mathcal{T}_2}$ minimal sample sizes guaranteeing power $eta \in (0,1)$ under alternative $p_ heta$

 T_1 , T_2 two test statistics of upper-tailed α -level tests compare test T_2 with respect to T_1 T_1 a benchmark procedure

 $p_{ heta}(t) = p_{f, heta}(t) = (1 - heta) + heta f(t) = 1 + heta(f(t) - 1)$ alternative $f \neq 1$ fixed density f - 1 "direction" of alternative, θ "distance" from P_0

 $N_{\mathcal{T}_1}, N_{\mathcal{T}_2}$ minimal sample sizes guaranteeing power $eta \in (0,1)$ under alternative $p_ heta$

ARE notions

$\theta = \theta_n = O(1/\sqrt{n}), \ \alpha \ { m fixe}$	ed
$ heta$ fixed, $lpha = lpha_n = O(e^{-cn})$)

limitations:

Pitman ARE: Bahadur ARE

> Pitman asymptotic normality under H_0 and under p_θ Bahadur large deviations under H_0

Kallenberg (intermediate) ARE $\theta_n \to 0, \ n\theta_n^2 \to \infty$ $p_{\theta_n}(t) = 1 + \theta_n(f(t) - 1)$ $\alpha_n \to 0, \ (\log \alpha_n)/n \to 0$ rates of $\theta_n, \ \alpha_n$ related each other some asymmetry

advantages:

– only moderate deviations under H₀
 – asymmetry

ARE notions

Pitman ARE:	$ heta= heta_{ extsf{n}}=O(1/\sqrt{ extsf{n}}), \ lpha$ fixed
Bahadur ARE:	$ heta$ fixed, $lpha=lpha_{\it n}={\it O}({\it e}^{-{\it cn}})$
limitations: Pitman	asymptotic normality under H_0 and under p_{θ}

Bahadur large deviations under H_0

Kallenberg (intermediate) ARE
$$\begin{array}{l} \theta_n \to 0, \ n\theta_n^2 \to \infty \\ p_{\theta_n}(t) = 1 + \theta_n(f(t) - 1) \\ \alpha_n \to 0, \ (\log \alpha_n)/n \to 0 \\ rates \ of \ \theta_n, \ \alpha_n \ related \ each \ other \\ some \ asymmetry \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

advantages: – only moderate deviations under H_0

asymmetry

Kallenberg, AS, (1983) Inglot & Ledwina, AS, (1996), Inglot, MMS, (1999) Inglot, Ledwina & Ćmiel, ESAIM PS, (2019)

- there exists level α_n s.t. for sample size n test T_2 under p_{θ_n} attains a power β_n which is asymptotically nondegenerate
- N_{T1}(n) the minimal sample size for which T1 on the same αn and the same pθn attains power at least βn
- $N_{\mathcal{T}_1}(n)/n \to \mathcal{E}(f) = \mathcal{E}_{\mathcal{T}_2\mathcal{T}_1}(f) \in [0,\infty]$ as $n \to \infty$

 $\Rightarrow \mathcal{E}(f)$ Kallenberg ARE of T_2 with respect to T_1

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Typically, ARE, if exists, strongly depends on the "direction" f(t) - 1

Assumptions

Moderate deviations (MD) for T

There exists $c_{\mathcal{T}} \in (0,\infty)$ s.t.

$$-\lim_{n\to\infty}\frac{1}{nx_n^2}\log P(T_n\geq x_n\sqrt{n})=c_T$$

for some (all) sequences $x_n > 0, \; {
m s.t.} \;\; x_n o 0, \; n x_n^2 o \infty$

Kallenberg ARE – crucial sufficient conditions

```
for benchmark test T_1

MD under H_0 for all x_n

for T_2

MD under H_0 possible for marrow class of x_n

often related to \theta_n
```

Assumptions

Moderate deviations (MD) for T

There exists $c_{\mathcal{T}} \in (0,\infty)$ s.t.

$$-\lim_{n\to\infty}\frac{1}{nx_n^2}\log P(T_n\geq x_n\sqrt{n})=c_T$$

for some (all) sequences $x_n > 0$, s.t. $x_n \to 0$, $nx_n^2 \to \infty$

Kallenberg ARE - crucial sufficient conditions

```
for benchmark test T_1

MD under H_0 for all x_n

for T_2

MD under H_0 possible for marrow class of x_n

often related to \theta_n
```

Neyman-Pearson test

natural benchmark test – the NP test for H_0 against p_{θ_n}

standardized NP test statistic

$$V_n = \frac{1}{\sqrt{n}\sigma_{0n}}\sum_{i=1}^n (\log p_{\theta_n}(X_i) - e_{0n}),$$

where

$$e_{0n}=\int_{0}^{1}\log p_{ heta_n}(t)dt, \ \ \sigma_{0n}^2=\int_{0}^{1}\log^2 p_{ heta_n}(t)dt-e_{0n}^2.$$

Inglot & Ledwina, AS, (1996)

Bounded "directions" $f(t) - 1 \Rightarrow MD$ for V_n for all x_n ($c_V = 1/2$) So, NP test may be used as a banchmark test

Neyman-Pearson test

natural benchmark test – the NP test for H_0 against p_{θ_n}

standardized NP test statistic

$$V_n = \frac{1}{\sqrt{n}\sigma_{0n}}\sum_{i=1}^n (\log p_{\theta_n}(X_i) - e_{0n}),$$

where

$$e_{0\,n}=\int_{0}^{1}\log p_{ heta_n}(t)dt, \;\; \sigma_{0\,n}^2=\int_{0}^{1}\log^2 p_{ heta_n}(t)dt-e_{0\,n}^2.$$

Inglot & Ledwina, AS, (1996)

Bounded "directions" $f(t) - 1 \Rightarrow MD$ for V_n for all x_n ($c_V = 1/2$) So, NP test may be used as a banchmark test testing goodness of fit $F = F_0$ on \mathbb{R} against $F = F_1$ often leads to unbounded "directions" after transformation onto [0, 1] by F_0

•
$$F_0(x) = \Phi(x), \ F_1(x) = \Phi(x-\mu)$$
 Gaussian shift $f(t) = arphi(\Phi^{-1}(t)-\mu)/arphi(\Phi^{-1}(t)) \in L_q(0,1) ext{ for all } q > 0$

f always unbounded

•
$$F_0(x) = \Phi(x), F_1(x) = \Phi(x/\sigma), \sigma > 1$$
 Gaussian scale
 $f(t) = \varphi(\Phi^{-1}(t)/\sigma)/\varphi(\Phi^{-1}(t)) \in L_q(0, 1) \text{ for } q < \sigma^2/(\sigma^2 - 1)$

f always unbounded

- 1

MD for the NP statistic for unbounded "directions"

Example

$$f_r(t) = (1-r)t^{-r}, \; r \in (0, 1/2), \quad f_r \in L_q(0, 1) \; {
m for \; all} \; q < 1/r$$

Theorem 1. If $x_n/\theta_n^{r'} \to \infty$ and $x_n^{r/r'-1} \log \theta_n \to 0$ for some r' < r $(x_n \to 0$ slower than θ_n^r) then MD for V_n corresponding to f_r degenerate i.e.

$$\lim_{n\to\infty}\frac{1}{nx_n^2}\log P_0(V_n\geq\sqrt{n}x_n)=0$$

Theorem 2

If
$$f \in L_2(0,1)$$
 is unbounded and $x_n = o(\theta_n)$, $nx_n^2 \to \infty$,
 $(x_n \to 0 \text{ faster than } \theta_n)$ then
 $-\lim_{n \to \infty} \frac{1}{nx_n^2} \log P_0(V_n \ge \sqrt{n}x_n) = \frac{1}{2} = c_V$

MD for the NP statistic for unbounded "directions"

Example

$$f_r(t) = (1-r)t^{-r}, \; r \in (0, 1/2), \quad f_r \in L_q(0, 1) \; {
m for \; all} \; q < 1/r$$

Theorem 1. If $x_n/\theta_n^{r'} \to \infty$ and $x_n^{r/r'-1} \log \theta_n \to 0$ for some r' < r $(x_n \to 0$ slower than θ_n^r) then MD for V_n corresponding to f_r degenerate i.e.

$$\lim_{n\to\infty}\frac{1}{nx_n^2}\log P_0(V_n\geq\sqrt{n}x_n)=0$$

Theorem 2

If
$$f \in L_2(0, 1)$$
 is unbounded and $x_n = o(\theta_n)$, $nx_n^2 \to \infty$,
 $(x_n \to 0 \text{ faster than } \theta_n)$ then
 $-\lim_{n \to \infty} \frac{1}{nx_n^2} \log P_0(V_n \ge \sqrt{n}x_n) = \frac{1}{2} = c_V$

for unbounded $f \in L_2(0,1)$ (or even $\in L_q(0,1)$, q > 2) MD theorem for V_n may not hold in the full range of x_n for unbounded f it may happen that the NP test cannot be a benchmark test

Kolmogorov-Smirnov as benchmark test

Theorem 3

Let

$$K_n = \sqrt{n} \sup_{t \in (0,1)} |\widehat{F}_n(t) - t|,$$

where \widehat{F}_n is ecdf, be the unweighted KS test statistic. Then for every $x_n \to 0$, $nx_n^2 \to \infty$ $-\lim_n \frac{1}{nx_n^2} \log P_0(K_n \ge \sqrt{n}x_n) = 2 = c_K$

KS may always be used as a benchmark test in testing uniformity

Kolmogorov-Smirnov as benchmark test

Theorem 3

Let

$$K_n = \sqrt{n} \sup_{t \in (0,1)} |\widehat{F}_n(t) - t|,$$

where \widehat{F}_n is ecdf, be the unweighted KS test statistic. Then for every $x_n \to 0$, $nx_n^2 \to \infty$ $-\lim_n \frac{1}{nx_n^2} \log P_0(K_n \ge \sqrt{n}x_n) = 2 = c_K$

KS may always be used as a benchmark test in testing uniformity

Theorem 4

If $f \in L_2(0, 1)$ (bounded or not) then Kallenberg ARE of V_n with respect to K_n exists and is equal to

$$\mathcal{E}(f) = rac{||f-1||_2^2}{4||A||_\infty^2},$$

 $(f(u)-1)du$

where $A(t)=\int_0^t (f(u)-1)du$

If f is bounded then Kallenberg ARE of K_n with respect to V_n is equal to (Inglot & Ledwina, JSPI, 2006)

$$\frac{1}{\mathcal{E}(f)} = \frac{4||A||_{\infty}^2}{||f-1||_2^2}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Theorem 4

If $f \in L_2(0, 1)$ (bounded or not) then Kallenberg ARE of V_n with respect to K_n exists and is equal to

$$\mathcal{E}(f)=rac{||f-1||_2^2}{4||A||_\infty^2},$$
 where $A(t)=\int_0^t(f(u)-1)du$

If f is bounded then Kallenberg ARE of K_n with respect to V_n is equal to (Inglot & Ledwina, JSPI, 2006)

$$rac{1}{\mathcal{E}(f)} = rac{4||A||_{\infty}^2}{||f-1||_2^2}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Theorem 4 cannot be extended to $f \notin L_2(0,1)$

Suppose for some $r \in (1/2, 1)$ and $\delta > 0$ f satisfies (*) $f(t)t^r$ bounded from 0 and ∞ on $(0, \delta)$ and f(t) bounded on $(\delta, 1)$

$$(*) \Rightarrow (f \notin L_{1/r}(0,1)) \Rightarrow (f \notin L_2(0,1))$$

Theorem 5

If f satisfies (*) then Kallenberg ARE of V_n with respect to K_n is equal to ∞

$$\lim_{n\to\infty}\frac{N_{K}(n)}{n}=\infty$$

the same holds for all classical tests which have finite Kallenberg ARE with respect to KS

n

Empirical powers (in %) of KS and NP, alternative $f_r(t) = (1 - r)t^{-r}$, $\alpha = 0.05$, small θ and several n

<i>r</i> = 0.7				r = 0.3								
$\theta = 0.05$			$\theta =$	$\theta = 0.02$			heta=0.1			$\ \theta = 0.05$		
п	KS	NP	n	KS	NP	n	KS	NP	n	KS	NP	
11	4	15	39	4	15	160	5	15	640	6	15	
20	4	20	70	5	20	290	7	20	1200	7	20	
<u>42</u>	5	30	<u>155</u>	5	30	<u>610</u>	10	30	<u>2300</u>	10	30	
70	6	40	250	5	40	950	13	40	4800	15	47	
105	7	50	3350	15	99	1200	15	47	6800	20	59	
150	7	60	4900	20	100	1340	17	50	<u>11100</u>	30	77	
540	15	94	<u>7700</u>	30	100	1650	20	58				
750	20	98	10100	40	100	1830	21	60	2800 610	=	4.6	
<u>1200</u>	30	100				<u>2800</u>	30	76				
1600	40	100	$\frac{1200}{42}$	=	28.6	3880	40	86	$\frac{11100}{2300}$	=	4.8	
2080	50	100				5050	50	93				
2500	60	100	$\frac{7700}{155}$	=	49.7	6350	60	97				
										 ▲ 王) E	

Ratios $\mathbf{N}_{\mathbf{K}}(\mathbf{n})/\mathbf{n}$ (<i>n</i> for V_n and $N_{\mathbf{K}}(n)$ for K_n)										
for the alternative $t_r(t) = (1 - r)t^{-r}$, small θ , four values of r ,										
several powers separated from 0 and 1, $lpha={f 0.01}$										
r		power in %								
	θ	15	20	30	40	50	60	70		
0.7	0.10	30.4	23.7	18.2	15.0	12.9	11.0	9.7		
$\notin L_2$	0.05	44.8	36.0	27.3	22.3	19.2	16.7			
	0.02	80.9	63.4	47.5						
0.6	0.10	17.9	14.5	11.2	9.7	8.6	7.8	7.0		
$\notin L_2$	0.05	24.4	19.9	15.5	13.4	11.6	10.5			
	0.02	34.7	29.4	23.1						
0.4	0.20	5.8	5.0	4.4	4.0	3.8	3.6	3.4		
$\in L_2$	0.10	6.2	5.8	5.0	4.6	4.3	4.0	3.8		
$\mathcal{E}{=}5.79$	0.05	6.6	6.3	5.5						
0.3	0.20	4.3	3.9	3.4	3.2	3.0	2.9	2.9		
$\in L_2$	0.10	4.3	4.0	3.6	3.4	3.3	3.1			
E=3.30	0.05	4.4	4.0	3.7						

▲□▶ ▲圖▶ ▲ 필▶ ▲ 필▶
■ の Q ()

PROOF OF THEOREM 5. Set P_n corresponding to $p_{\theta_n}, \ n\theta_n^2 \to \infty$

Step 1 – asymptotic shift (calculation)

$$b_n = E_{P_n} V_n \asymp \sqrt{n} \theta_n^{1/2}$$

Step 2 – asymptotic power (Liapunov's CLT)

 $\begin{aligned} \forall x \quad P_n(V_n \geqslant x + b_n) \text{ bounded away from 0 and 1} \\ x + b_n \text{ critical value,} \quad \alpha_n = P_0(V_n \geqslant x + b_n) \end{aligned}$

Step 3 – MD for V_n under H_0

$$\begin{array}{l} \text{if } x_n = O(\theta_n^{1/2r}), \ nx_n^2 \to \infty \ (x_n \to 0 \ \text{sufficiently fast}) \ \text{then} \\ - \limsup_n \frac{1}{nx_n^2} \log P_0(V_n \geqslant \sqrt{n}x_n) > 0 \end{array}$$

Step 4 – weak convergence and MD for K_n (Theorem 3) under H_0 (Step 3 – very weak version of MD for V_n)