Tomasz Jakubowski

Wroclaw University of Science and Technology, Poland

Critical negative Schrödinger perturbations of fractional Laplacian

Let p(t, x, y) be the fundamental solution of the equation

$$\partial_t u(t,x) = \Delta^{\alpha/2} u(t,x).$$

I will consider the integral equation

$$\tilde{p}(t,x,y) = p(t,x,y) + \int_0^t \int_{\mathbb{R}^d} p(t-s,x,z)q(z)\tilde{p}(s,z,y)dzds,$$

where $q(z) = \frac{\kappa}{|z|^{\alpha}}$ and κ is some constant. The function \tilde{p} solving this equation will be called the Schrödinger perturbations of the function p by q. The case $\kappa > 0$ where recently studied in [1]. First, I will briefly present the main results of this paper. Next, I will focus on the case of negative κ and present the estimates of the function \tilde{p} for all $\kappa \in (-\infty, 0)$.

References

[1] K. Bogdan, T. Grzywny, T. Jakubowski, and D. Pilarczyk, *Fractional Laplacian with Hardy potential*, preprint (2017).