Tomasz Jakubowski

Wroclaw University of Science and Technology, Poland

Critical negative Schrödinger perturbations of fractional Laplacian

Let $p(t, x, y)$ be the fundamental solution of the equation

$$
\partial_{t} u(t, x)=\Delta^{\alpha / 2} u(t, x) .
$$

I will consider the integral equation

$$
\tilde{p}(t, x, y)=p(t, x, y)+\int_{0}^{t} \int_{\mathbb{R}^{d}} p(t-s, x, z) q(z) \tilde{p}(s, z, y) d z d s
$$

where $q(z)=\frac{\kappa}{|z|^{\alpha}}$ and κ is some constant. The function \tilde{p} solving this equation will be called the Schrödinger perturbations of the function p by q. The case $\kappa>0$ where recently studied in [1]. First, I will briefly present the main results of this paper. Next, I will focus on the case of negative κ and present the estimates of the function \tilde{p} for all $\kappa \in(-\infty, 0)$.

References

[1] K. Bogdan, T. Grzywny, T. Jakubowski, and D. Pilarczyk, Fractional Laplacian with Hardy potential, preprint (2017).

