Stanisław Kwapień

Polish Academy of Sciences, Poland

Continuity and boundness of stochastic convolutions

We deal with the stochastic convolutions of two types. The first type are the convolutions of the form

$$\int_0^t P(t-s)dX(s), \ t \ge 0$$

were $P(t), t \ge 0$ is a continuous semigroup of operators in a Hilbert space H and $X(t), t \ge 0$ is a square integrable martingale with values in H. The second type are convolutions of the form

$$\int_0^t Z(t-s) dX(s), t \geq 0$$

where $Z(t), t \ge 0$ is a real continuous process on R^+ with Z(0) = 0 and X is a $X(t), t \ge 0$ is a real square integrable martingale independent of Z. In particular we consider the case in which Z is a deterministic function.

In the both cases we are interested when the convolutions are continuous (or locally bounded) processes. We present some known results as well much more of open questions.