Mustapha Mokhtar-Kharroubi

Université de Bourgogne-Franche Comté

Existence of invariant densities for conservative linear kinetic equations on the torus without spectral gaps

This work is the continuation of a general theory, given in J. Funct. Anal, **266** (11) (2014), on time asymptotics of conservative linear kinetic equations on the torus exhibiting a spectral gap. We consider neutron transport-like equations on $L^1(\mathcal{T}^n \times V)$ $(n \ge 1)$ where $\mathcal{T}^n := \mathbb{R}^n/(\mathbb{Z})^n$ is the *n*-dimensional torus under the conservativity assumption $\sigma(x, v) = \int_V k(x, v', v)\mu(dv')$ where σ is the collision frequency and k is the scattering kernel while μ is a velocity Radon measure on \mathbb{R}^n with support V. The "collisionless" equation on $\mathcal{T}^n \times V$ is governed by a weighted shift C_0 -semigroup $(U(t))_{t\ge 0}$ whose type (or growth bound) $\omega(U) < 0$ if and only if there exist $C_1 > 0$ and $\overline{C_2} > 0$ such that

$$\int_{0}^{C_{1}} \sigma(x + sv, v) ds \ge C_{2} \quad \text{a.e. on } \mathcal{T}^{n} \times V.$$
(1)

The full dynamics is governed by a *stochastic* (i.e. mass-preserving on the positive cone) C_0 -semigroup $(W(t))_{t\geq 0}$. Under very general assumptions, $(U(t))_{t\geq 0}$ and $(W(t))_{t\geq 0}$ have the same essential type $\omega_{ess}(W) = \omega_{ess}(U)$. In particular, under $(1) \omega_{ess}(W) < 0 = \omega(W)$ i.e. $(W(t))_{t\geq 0}$ exhibits a spectral gap and 0 is an isolated eigenvalue of T + K with finite algebraic multiplicity. In particular $(W(t))_{t\geq 0}$ tends exponentially to the spectral projection associated to the 0 eigenvalue of the generator. The object of the present work is to consider the critical case $\omega(U) = 0$, i.e. when $\sigma(.,.)$ vanishes on some characteristic curve. In this case, $(W(t))_{t\geq 0}$ has not a spectral gap. We provide general tools to study the existence of an invariant density.