Mustapha Mokhtar-Kharroubi

Université de Bourgogne-Franche Comté, France

Relative operator bounds for positive operators in ordered Banach spaces and related topics

It is known that if $A : D(A) \subset X \to X$ is a semibounded (say bounded from above) self-adjoint operator in a Hilbert space X and if $S : D(A) \to X$ is A-bounded then the *relative* A-bound of S is equal to

$$\lim_{\lambda \to \infty} \left\| S(\lambda - A)^{-1} \right\|_{\mathcal{L}(X)}.$$

(This result which is still true when A is just α -dissipative is no longer true outside the realm of Hilbert spaces.) We show that this result remains true in real ordered Banach spaces X whose duality map is uniformly monotone on the positive cone (this covers L^p spaces with $p \geq 2$) if A generates a positive C_0 -semigroup on X and S is positive, i.e. $S : D(A) \cap X_+ \to X_+$. This result turns out to be a consequence of "contractivity on the positive cone" of I - C for certain positive contractions C. Related results on ergodic projections are also given.

Ref: Contractivity results in ordered spaces. Applications to relative operator bounds and projections with norm one. *Math. Nachr*, 290 (2016).