Krzysztof Bogdan

Wrocław University of Technology

Heat kernel of isotropic nonlocal operators

I will discuss joint results with Tomasz Grzywny and Michał Ryznar [1, 3, 2]. Let $d = 1, 2, \ldots$ Let $\nu : [0, \infty) \to (0, \infty]$ be nonincreasing and denote $\nu(z) = \nu(|z|)$ for $z \in \mathbb{R}^d$. In particular, $\nu(z) = \nu(-z)$. We assume that $\int_{\mathbb{R}^d} \nu(z) dz = \infty$ and

$$\int_{\mathbb{R}^d} \left(|z|^2 \wedge 1 \right) \nu(z) dz < \infty.$$

Summarizing, ν is a strictly positive density function of an isotropic infinite unimodal Lévy measure on \mathbb{R}^d . In short $-\nu$ is *unimodal*. For $x \in \mathbb{R}^d$ and $u : \mathbb{R}^d \to \mathbb{R}$,

$$Lu(x) := \lim_{\epsilon \to 0^+} \int_{|x-y| > \epsilon} (u(y) - u(x))\nu(y-x) \, dy$$

= $\frac{1}{2} \int_{\mathbb{R}^d} (u(x+z) + u(x-z) - 2u(x))\nu(z) \, dz$

The limit exists, e.g., for $u \in C_c^{\infty}(\mathbb{R}^d)$, the smooth functions with compact support. Note that L is a non-local symmetric translation-invariant linear operator on $C_c^{\infty}(\mathbb{R}^d)$ with positive maximum principle. For example, if $0 < \alpha < 2$ and

$$\nu(z) = \frac{2^{\alpha} \Gamma((d+\alpha)/2)}{\pi^{d/2} |\Gamma(-\alpha/2)|} |z|^{-d-\alpha}, \quad z \in \mathbb{R}^d,$$

then L is the fractional Laplacian, denoted by $\Delta^{\alpha/2}$. In general, L is the generator of a Markovian semigroup—the transition semigroup of the isotropic pure-jump Lévy processes $\{X_t, t \geq 0\}$ with the Lévy measure ν . Thus, X is a càdlàg stochastic process with law \mathbb{P} , such that X(0) = 0 almost surely, the increments of X are independent, with radially nonincreasing density function $p_t(x)$ on \mathbb{R}^d , and the following Lévy-Khintchine formula holds for $\xi \in \mathbb{R}^d$:

$$\mathbb{E}e^{i\langle\xi,X_t\rangle} = \int_{\mathbb{R}^d} e^{i\langle\xi,x\rangle} p_t(x) dx = e^{-t\psi(\xi)}, \quad \text{where } \psi(\xi) = \int_{\mathbb{R}^d} \left(1 - \cos\left\langle\xi,x\right\rangle\right) \nu(dx).$$

Here \mathbb{E} is the integration with respect to \mathbb{P} . We note that the Lévy-Khintchine exponent ψ is radial with the radial profile $\psi(\theta) = \psi(\xi)$ for $\xi \in \mathbb{R}^d$, $|\xi| = \theta$.

We estimate the heat kernel $p_D(t, x, y)$, t > 0, $x, y \in D$, of smooth open sets $D \subset \mathbb{R}^d$ for the operator L. Our estimates have a form of explicit factorization involving the transition density $p_t(x)$ of the Lévy process on the whole of \mathbb{R}^d , and the survival probability $\mathbb{P}^x(\tau_D > t)$, where $\tau_D = \inf\{t > 0 : X_t \notin D\}$ is the time of the first exit of X_t from D. Here $x \in \mathbb{R}^d$ and \mathbb{P}^x is the law of x + X. For instance,

if the radial profile of ψ has the so-called global lower and upper scalings, and D is a C^2 halfspace-like open set, then

$$p_D(t, x, y) \approx \mathbb{P}^x(\tau_D > t) \ p(t, x, y) \ \mathbb{P}^y(\tau_D > t), \qquad t > 0, \ x, y \in D.$$

Here,

$$p_t(x) \approx \psi^{-1} (1/t)^d \wedge \frac{t \psi(1/|x|)}{|x|^d},$$

$$\mathbb{P}^{x}(\tau_{D} > t) \approx 1 \lor (\psi(1/\delta_{D}(x))t)^{-1/2},$$

and $\delta_D(x) = \text{dist}(x, D^c)$. The scaling conditions are understood as follows.¹ We say that ψ satisfies the weak *lower* scaling condition at infinity (WLSC) if there are numbers $\underline{\alpha} > 0, \underline{\theta} \ge 0$ and $\underline{c} \in (0, 1]$, such that

$$\psi(\lambda\theta) \ge \underline{c}\lambda^{\underline{\alpha}}\psi(\theta) \quad \text{for} \quad \lambda \ge 1, \quad \theta > \underline{\theta}.$$

We write $\psi \in \text{WLSC}(\underline{\alpha}, \underline{\theta}, \underline{c})$ or $\psi \in \text{WLSC}$. If $\psi \in \text{WLSC}(\underline{\alpha}, 0, \underline{c})$, then we say that ψ satisfies the global WLSC. The weak *upper* scaling condition at infinity (WUSC) means that there are numbers $\overline{\alpha} < 2$, $\overline{\theta} \ge 0$ and $\overline{C} \in [1, \infty)$ such that

$$\psi(\lambda\theta) \leq \overline{C}\lambda^{\overline{\alpha}}\psi(\theta) \quad \text{for} \quad \lambda \geq 1, \quad \theta > \overline{\theta}.$$

In short, $\psi \in \text{WUSC}(\overline{\alpha}, \overline{\theta}, \overline{C})$ or $\psi \in \text{WUSC}$. Global WUSC means WUSC $(\overline{\alpha}, 0, \overline{C})$. Explicit estimates are also given for bounded smooth sets D, etc.

References

- Krzysztof Bogdan, Tomasz Grzywny, and Michał Ryznar, Density and tails of unimodal convolution semigroups, J. Funct. Anal. 266 (2014), no. 6, 3543– 3571. MR 3165234
- [2] _____, Dirichlet heat kernel for unimodal Lévy processes, Stochastic Process. Appl. 124 (2014), no. 11, 3612–3650. MR 3249349
- [3] _____, Barriers, exit time and survival probability for unimodal Lévy processes, Probab. Theory Related Fields 162 (2015), no. 1-2, 155–198. MR 3350043

¹The notation that follows is a bit heavy, but it quantifies monotonicity properties of $\psi(\lambda)/\lambda^{\alpha}$.