Agnieszka Bartłomiejczyk

Gdańsk University of Technology

Karolina Lademann

University of Gdańsk

Monika Wrzosek

University of Gdańsk

Newton's method for the McKendrick equation

We consider the initial value problem for the McKendrick equation with renewal

$$\frac{d\mathbf{u}}{dt} + \mathcal{A}(t)\mathbf{u} = \mathbf{u}\,\Lambda(t,\mathbf{u}), \quad t \in [0,T],$$

$$\mathbf{u}(0) = u_0$$
(1)

where

$$\mathcal{A}(t) = c(t, x) \frac{\partial}{\partial x},$$

$$\mathcal{D}(\mathcal{A}(t)) = \{ u(t, \cdot) \in C^1 \cap L^1 \cap L^\infty : u(t, 0) = \mathcal{K}\mathbf{u} \},$$

$$\mathcal{K}\mathbf{u} = \int_0^\infty k(y) u(t, y) dy.$$

We formulate the Newton scheme for (1) and prove its second order convergence.