Jan Kisyński

Petrovsky condition for forward evolution and semigroups

About ten years ago suddenly I get infected by interest in theory of distributions, especially in rapidly decreasing distributions on \mathbb{R}^n whose set is denoted by $O'_C(\mathbb{R}^n)$. During these ten years I proved the following:

$$O'_C(\mathbb{R}^n) * S(\mathbb{R}^n) \subset L(S(\mathbb{R}^n), S(\mathbb{R}^n)),$$

so that $O'_{C}(\mathbb{R}^{n})$ can be equipped with topology op induced from $L(S(\mathbb{R}^{n}), S(\mathbb{R}^{n}))_{b}$. The locally convex space $(O'_{C}(\mathbb{R}^{n}), op)$ is complete. The Fourier transformation yields an isomorphism of locally convex spaces $(O'_{C}(\mathbb{R}^{n}), op)$ and $O_{M}(\mathbb{R}^{n})$ such that $F(O'_{C}(\mathbb{R}^{n})*S'(\mathbb{R}^{n})) = F(O'_{C}(\mathbb{R}^{n})) \bullet F(S'(\mathbb{R}^{n}))$. Thanks to the fact that $O_{M}(\mathbb{R}^{n})$ is algebra of multipliers of $S(\mathbb{R}^{n})$ the last isomorphism implies at once that for $(O'_{C}(\mathbb{R}^{n}), op)$ the fundamental Theorem XV from Chapter VII of the book of L.Schwartz is true. The topology β in $O'_{C}(\mathbb{R}^{n})$, invented originally by L.Schwartz, is strictly finer than the topology op, so that $(O'_{C}(\mathbb{R}^{n}), \beta)$ is not isomorphic with $O_{M}(\mathbb{R}^{n})$. The aforementioned relation between the Petrovsky condition for forward evolution and one-parameter convolution semigroups (in $O'_{C}(\mathbb{R}^{n})$ and in $S'(\mathbb{R}^{n})$) has secondary importance, but agrees with scope of the conference.