Damir Kinzebulatov

Université Laval

A new approach to the L^p theory of $-\Delta + b \cdot \nabla$ and its application to Feller processes with general drifts

I will discuss joint results with Yu.A.Semenov (Toronto). In \mathbb{R}^d , $d \ge 3$, consider the following classes of vector fields:

(1) We say that a $b : \mathbb{R}^d \to \mathbb{C}^d$ belongs to the Kato class $\mathbf{K}_{\delta}^{d+1}$, and write $b \in \mathbf{K}_{\delta}^{d+1}$, if $|b| \in L^1_{\text{loc}}$ and there exists $\lambda = \lambda_{\delta} > 0$ such that

$$\|b(\lambda - \Delta)^{-\frac{1}{2}}\|_{1 \to 1} \leqslant \delta.$$

(2) We say that a $b : \mathbb{R}^d \to \mathbb{C}^d$ belongs to \mathbf{F}_{δ} , the class of form-bounded vector fields, and write $b \in \mathbf{F}_{\delta}$, if $|b| \in L^2_{\text{loc}}$ and there exists $\lambda = \lambda_{\delta} > 0$ such that

$$\|b(\lambda - \Delta)^{-\frac{1}{2}}\|_{2 \to 2} \leqslant \sqrt{\delta}.$$

(3) We say that a $b : \mathbb{R}^d \to \mathbb{C}^d$ belongs to $\mathbf{F}_{\delta}^{\frac{1}{2}}$, the class of *weakly* form-bounded vector fields, and write $b \in \mathbf{F}_{\delta}^{1/2}$, if $|b| \in L^1_{\text{loc}}$ and there exists $\lambda = \lambda_{\delta} > 0$ such that

$$||b|^{\frac{1}{2}}(\lambda - \Delta)^{-\frac{1}{4}}||_{2 \to 2} \leqslant \sqrt{\delta}.$$

The classes \mathbf{F}_{δ} , $\mathbf{K}_{\delta}^{d+1}$ cover singularities of b of critical order, at isolated points or along hypersurfaces, respectively. Both classes have been thoroughly studied in the literature: after 1996, the Kato class $\mathbf{K}_{\delta}^{d+1}$, with $\delta > 0$ sufficiently small (yet allowed to be non-zero), has been recognized as 'the right' class for the Gaussian upper and lower bounds on the fundamental solution of $\partial_t - \Delta + b \cdot \nabla$ which, in turn, allow to construct an associated Feller semigroup (in C_b). The class \mathbf{F}_{δ} , $\delta < 4$, is responsible for dissipativity of $\Delta - b \cdot \nabla$ in L^p , $p \ge \frac{2}{2-\sqrt{\delta}}$, needed to run an iterative procedure taking $p \to \infty$ (assuming additionally $\delta < \min\{4/(d-2)^2, 1\}$), which produces an associated Feller semigroup in C_{∞} ; see [1] for details. We emphasize that, in general, the Gaussian bounds are not valid if $|b| \in L^d$ ($\subsetneq \mathbf{F}_0 := \bigcap_{\delta>0} \mathbf{F}_{\delta}$), while $b \in \mathbf{K}_0^{d+1}$ (:= $\bigcap_{\delta>0} \mathbf{K}_{\delta}^{d+1}$), in general, destroys L^p -dissipativity.

The class $\mathbf{F}_{\delta}^{1/2}$ contains both classes \mathbf{F}_{δ} and $\mathbf{K}_{\delta}^{d+1}$:

$$\mathbf{K}_{\delta}^{d+1} \subsetneq \mathbf{F}_{\delta}^{1/2}, \qquad \mathbf{F}_{\delta_1} \subsetneq \mathbf{F}_{\delta}^{1/2} \quad \text{for } \delta = \sqrt{\delta_1},$$
$$\left(b \in \mathbf{F}_{\delta_1} \text{ and } \mathbf{f} \in \mathbf{K}_{\delta_2}^{d+1}\right) \Longrightarrow \left(b + \mathbf{f} \in \mathbf{F}_{\delta}^{1/2}, \ \sqrt{\delta} = \sqrt[4]{\delta_1} + \sqrt{\delta_2}\right)$$

To deal with such general class of vector fields we will use ideas of E. Hille and J. Lions (alternatively, ideas of E. Hille and H.F. Trotter) to construct the generator $-\Lambda \equiv -\Lambda(b)$ (an operator realization of $\Delta - b \cdot \nabla$) of a quasi bounded holomorphic semigroup in L^2 . This operator has some remarkable properties. Namely,

General classes of vector fields $b : \mathbb{R}^d \to \mathbb{R}^d$ studied in the literature in connection with operator $-\Delta + b \cdot \nabla$. Here \to stands for strict inclusion, and $\stackrel{*}{\to}$ reads "if $b = b_1 + b_2 \in [L^{d,\infty} + L^{\infty}]^d$, then $b \in \mathbf{F}_{\delta^2}$ with $\delta > 0$ determined by the value of the $L^{d,\infty}$ -norm of $|b_1|$,

$$\begin{split} \rho(-\Lambda) \supset \mathcal{O} &:= \{ \zeta \mid \operatorname{Re} \zeta > \lambda \}, \text{ and, for every } \zeta \in \mathcal{O}, \\ (\zeta + \Lambda)^{-1} &= J_{\zeta}^3 (1 + H_{\zeta}^* S_{\zeta}))^{-1} J_{\zeta} \\ &= J_{\zeta}^4 - J_{\zeta}^3 H_{\zeta}^* (1 + S_{\zeta} H_{\zeta}^*)^{-1} S_{\zeta} J_{\zeta}; \\ &\| H_{\zeta}^* S_{\zeta} \| \leq \delta, \quad \| (\zeta + \Lambda)^{-1} \|_{2 \to 2} \leq |\zeta|^{-1} (1 - \delta)^{-1}; \\ &\| e^{-t\Lambda_r} \|_{r \to q} \leq c \; e^{t\lambda} t^{-\frac{d}{2}(\frac{1}{r} - \frac{1}{q})}, \quad 2 \leq r < q \leq \infty; \end{split}$$

where $J_{\zeta} := (\zeta - \Delta)^{-\frac{1}{4}}, H_{\zeta} := |b|^{\frac{1}{2}} J_{\bar{\zeta}}, S := b^{\frac{1}{2}} \cdot \nabla J_{\zeta}^{3}, b^{\frac{1}{2}} := |b|^{-\frac{1}{2}} b.$

As in the case $b \in \mathbf{F}_{\delta}$, it is reasonable to expect that there exists a strong dependence between the value of δ (effectively playing the role of a "coupling constant" for $b \cdot \nabla$) and smoothness of the solutions to the equation $(\zeta + \Lambda_r)u =$ $f, \zeta \in \rho(-\Lambda_r), f \in L^r (-\Lambda_r \equiv -\Lambda_r(b)$ is an operator realization of $\Delta - b \cdot \nabla$). Such a dependence does exist. Set

$$m_d := \pi^{\frac{1}{2}} (2e)^{-\frac{1}{2}} d^{\frac{d}{2}} (d-1)^{-\frac{d-1}{2}}, \quad \kappa_d := \frac{d}{d-1}, \quad r_{\mp} := \frac{2}{1 \pm \sqrt{1 - m_d \delta}}$$

It will be established that if $b \in \mathbf{F}_{\delta}^{1/2}$ and $m_d \delta < 1$, then $(e^{-t\Lambda_r(b)}, r \in [2, \infty[))$ extends by continuity to a quasi bounded C_0 semigroup in L^r for all $r \in]r_-, \infty[$. For every $r \in I_s :=]r_-, r_+[$, the semigroup is holomorphic, the resolvent set $\rho(-\Lambda_r(b))$ contains the half-plane $\mathcal{O} := \{\zeta \in \mathbb{C} \mid \operatorname{Re} \zeta > \kappa_d \lambda_\delta\}$, and the resolvent admits the representation

$$(\zeta + \Lambda_r(b))^{-1} = (\zeta - \Delta)^{-1} - Q_r(1 + T_r)^{-1}G_r, \quad \zeta \in \mathcal{O},$$
 (*)

where Q_r, G_r, T_r are bounded linear operators on L^r ; $D(\Lambda_r(b)) \subset W^{1+\frac{1}{q},r}$ (q > r). In particular, for $m_d \delta < 4 \frac{d-2}{(d-1)^2}$, there exists $r \in I_s$, r > d-1, such that

In particular, for $m_d o < 4 \frac{1}{(d-1)^2}$, there exists $r \in I_s$, r > d-1, such that $(\zeta + \Lambda_r(b))^{-1} L^r \subset C^{0,\gamma}, \gamma < 1 - \frac{d-1}{r}$.

The results above yield the following: Let $b \in \mathbf{F}_{\delta}^{1/2}$ for some δ such that $m_d \delta < 4 \frac{d-2}{(d-1)^2}$. Let $\{b_n\}$ be any sequence of bounded smooth vector fields, such that $b_n \to b$ strongly in L^1_{loc} , and, for a given $\varepsilon > 0$ and some $\delta_1 \in]\delta, \delta + \varepsilon], \{b_n\} \subset \mathbf{F}_{\delta_1}^{1/2}$. Then

$$s - C_{\infty} - \lim_{n \uparrow \infty} e^{-t\Lambda_{C_{\infty}}(b_n)} \tag{**}$$

exists uniformly in $t \in [0, 1]$, and hence determines a Feller semigroup $e^{-t\Lambda_{C_{\infty}}(b)}$.

The results (\star) , $(\star\star)$ can be obtained via direct investigation in L^r of the operator-valued function $\Theta_r(\zeta, b)$ defined by the right hand side of $(\star\star)$ without appealing to L^2 theory (but again appealing to the ideas of E. Hille and H. F. Trotter). See [1] for details.

References

[1] Kinzebulatov D. and Semenov Yu. A. On the theory of the kolmogorov operator in the spaces l^p and c_{∞} . *i*, Preprint, arXiv:1709.08598 (2017).