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Generators for Markov processes

An E-valued process is Markov wrt {Ft} if X is {Ft)}-adapted and

E[f(X(t+ s))|Ft] = E[f(X(t+ s))|X(t)] ≡ T (s)f(X(t)), f ∈ B(E)

E[f(X(t+ s+ r))|Ft] = T (s+ r)f(X(t))

= E[E[f(X(t+ s+ r))|Ft+s]|Ft]
= E[T (r)f(X(t+ s))|Ft]
= T (s)T (r)f(X(t))

{T (t), t ≥ 0} is a semigroup of bounded operators on B(E). The
generator for {T (t)} satisfies

T (t)f = f +

∫ t

0

AT (s)fds = f +

∫ t

0

T (s)Afds

for f in a domain D(A).
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Martingale properties

The second equality T (t)f = f +
∫ t

0 T (s)Afds can be written as

E[f(X(r + t))|X(r)] = E[f(X(r + t))|Fr]

= f(X(r)) + E[

∫ r+t

r

Af(X(s))ds|Fr]

which in turn implies

E[f(X(r + t))− f(X(r))−
∫ r+t

r

Af(X(s))ds|Fr] = 0

which in turn implies

Mf(t) = f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds

is a martingale, that is E[Mf(t+ r)|Fr] = Mf(r).

This martingale property can be used to characterize the correspond-
ing Markov process. (Stroock and Varadhan (1979))
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Forward equations

Let νt be the distribution of X(t) where X is a solution of the martin-
gale problem for A. Then the fact that

f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds

is a martingale (and hence has expectation zero) implies

νtf = ν0f +

∫ t

0

νsAf, f ∈ D(A),

νtf =

∫
fdνt

Of course, if A generates a semigroup,

νtf = ν0T (t)f
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Examples of generators

Poisson process (E = {0, 1, 2 . . .}, D(A) = B(E))

Af(k) = λ(f(k + 1)− f(k))

Pure jump process (E arbitrary)

Af(x) = λ(x)

∫
E

(f(y)− f(x))µ(x, dy)

Diffusion process (E = Rd, D(A) = C2
c (Rd))

Af(x) =
1

2

∑
i,j

aij(x)
∂2

∂xi∂xj
f(x) +

∑
i

bi(x)
∂

∂xi
f(x)

ODE Ẋ = F (X) (E = Rd, D(A)− C1
c (Rd))

Af(x) = F (x) · ∇f(x)
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The martingale problem for A
X is a solution for the martingale problem for (A, ν0), ν0 ∈ P(E), if
PX(0)−1 = ν0 and there exists a filtration {Ft} such that

f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds

is an {Ft}-martingale for all f ∈ D(A).

Theorem 1 If any two solutions of the martingale problem forA satisfying
PX1(0)−1 = PX2(0)−1 also satisfy PX1(t)

−1 = PX2(t)
−1 for all t ≥ 0,

then the f.d.d. of a solution X are uniquely determined by PX(0)−1

If X is a solution of the MGP for A and Ya(t) = X(a + t), then Ya is a
solution of the MGP for A.

Theorem 2 If the conclusion of the above theorem holds, then any solution
of the martingale problem for A is a Markov process.
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Stochastic differential equations for diffusions

X(t) = X(0) +

∫ t

0

σ(X(s))dW (s) +

∫ t

0

b(X(s))ds

where W is a standard Brownian motion corresponds to

Af(x) =
1

2

∑
i,j

aij(x)
∂2

∂xi∂xj
f(x) +

∑
i

bi(x)
∂

∂xi
f(x)

where a(x) = σ(x)σ(x)T .
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Stochastic equations for jump processes

X(t) = X(0) +

∫
[0,t]×[0,∞)×[0,1]

1[0,λ(X(s−)](u)(H(X(s−), v)−X(s−))

×ξ(ds, du, dv)

where ξ is a Poisson random measure with mean measure ds×du×dv
(i.e., Lebesgue measure), corresponds to

Af(x) = λ(x)

∫
E

(f(y)− f(x))µ(x, dy)

provided for ζ uniform [0, 1],

P{H(x, ζ) ∈ C} = µ(x,C)
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Equivalence theorem: First direction

Theorem 3 Every solution of the stochastic equation gives a solution of
the martingale problem. Every solution of the martingale problem gives a
solution of the forward equation.

Proof. Itô’s formula. �
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Equivalence theorem: Other direction

Theorem 4 Suppose D(A) ⊂ Cb is closed under multiplication and sepa-
rates points and (1, 0) ∈ A (plus technical conditions that are almost cer-
tainly satisfied). Then every solution of the forward equation corresponds
to a solution of the martingale problem and every solution of the martingale
problem corresponds to a solution of the stochastic equation.

Proof. Existence of solutions of the martingale problem correspond-
ing to solutions of the forward equations follows from work by Echev-
errı́a (1982); Ethier and Kurtz (1986); Bhatt and Karandikar (1993).

For diffusions, existence of solutions to stochastic equations corre-
sponding to solutions of the martingale problem was given by Stroock
and Varadhan (1979). For general Markov processes in Rd, see Kurtz
(2011). For reflecting diffusions, see Kang and Ramanan (2017). For
processes whose generators can be written as an infinite sum of bounded
generators, see Etheridge and Kurtz (2018). �
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Constrained martingale problems

E compact (think E = Rd ∪ {∞}), E0 ⊂ E, open, A, the generator for
a Markov process on E. For example,

Af(x) =
1

2

∑
i,j

aij(x)
∂2

∂xi∂xj
f(x)+

∑
i

bi(x)
∂

∂xi
f(x), D(A) = C2

c (Rd).

A determines the behavior of the process in E0.

B, the generator of a Markov process (almost) which determines the
behavior of the process in Ec

0 and “constrains” the process to stay in
E0. For example,

Bf(x) = γ(x) · ∇f(x),

where γ determines the direction a constraining “force” pushes when
the process is on ∂E0.
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A controlled martingale problem Kurtz (1991)

Let
Cf(y, u, v) = vAf(y) + (1− v)Bf(y, u)

with controls (u, v) ∈ U × [0, 1]. We allow relaxed controls so the
formulation of the martingale problem becomes

Definition 5 (Y, µ), with Y ∈ DE[0,∞), and µ a P(U × [0, 1])-valued
process, is a solution of the controlled martingale problem if there exists a
filtration {Ft} such that (Y, µ) is {Ft}-adapted and

f(Y (t))−f(Y (0))−
∫ t

0

(V (s)Af(Y (s))ds−
∫ t

0

∫
U×[0,1]

(1−v)Bf(Y (s), u)µs(du, dv))ds

is an {Ft}-martingale, where V (s) =
∫
vµs(du, dv).

The choice of controls must be restricted so that V (t) = 1 if Y (t) ∈ E0,
V (t) = 0 if Y (t) ∈ Ec

0, 0 ≤ V (t) ≤ 1 if Y (t) ∈ ∂E0.
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Reflecting diffusions

Suppose

Af(x) =
∑
i,j

1

2
aij(x)∂i∂jf(x) +

∑
i

bi(x)∂if(x)

and Bf(x) = κ(x) · ∇f(x). Let

λ0(t) =

∫ t

0

V (s)ds λ1(t) =

∫ t

0

(1− V (s))ds

Then the martingale is

f(Y (t))−f(Y (0))−
∫ t

0

Af(Y (s))dλ0(s)−
∫ t

0

κ(Y (s)) ·∇f(Y (s))dλ1(s).

Of course
λ0(t) + λ1(t) = t.
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Time change

We have martingales

f(Y (t))−f(Y (0))−
∫ t

0

Af(Y (s))dλ0(s)−
∫ t

0

κ(Y (s)) ·∇f(Y (s))dλ1(s),

where λ0(t) + λ1(t) = t. If the boundary is smooth with n(y) the
inward normal at y ∈ ∂E0, and κ(y) · n(y) > 0, y ∈ ∂E0, then λ0 is
strictly increasing and τ(t) = inf{s : λ0(s) > t} is continuous. Define
X(t) = Y (τ(t)) and λ(t) = λ1(τ(t)). Then

f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds−
∫ t

0

κ(X(s)) · ∇f(X(s))dλ(s)

is a {Fτ(t)}-martingale (or perhaps a local martingale).
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Controlled stochastic differential equation

The corresponding SDE should be

Y (t) = Y (0) +

∫ t

0

√
V (s)

∑
j

σij(Y (s))dWj(s) +

∫ t

0

V (s)
∑
i

bi(Y (s))ds

+

∫ t

0

(1− V (s))κ(Y (s))ds,

and by the same arguments used in Stroock and Varadhan (1979)
or those in Kurtz (2011), every solution of the controlled martingale
problem corresponds to a solution of the SDE.
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Stochastic differential equation

Inverting λ0 as above,

X(t) = X(0) +

∫ t

0

∑
j

σij(X(s))dW V
j (s) +

∫ t

0

∑
i

bi(X(s))ds

+

∫ t

0

κ(X(s))dλ(s),

where the

W V
j (s) =

∫ τ(t)

0

√
V (s)dWj(s)

are independent standard Brownian motions.
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Nonlocal boundary conditions
cf. Arendt, Kunkel, and Kunze (2016) and talk by Markus Kunze on Friday

As before

Af(x) =
1

2

∑
i,j

aij(x)
∂2

∂xi∂xj
f(x)+

∑
i

bi(x)
∂

∂xi
f(x), D(A) = C2

c (Rd),

but now take

Bf(x) =

∫
E0

(f(y)− f(x))µ(x, dy)

where we assume µ(x,E0) = 1. The controlled martingale then be-
comes

f(Y (t))− f(Y (0))−
∫ t

0

V (s)Af(Y (s))ds−
∫ t

0

(1− V (s))Bf(Y (s))ds.

or

f(Y (t))− f(Y (0))−
∫ t

0

Af(Y (s))dλ0(s)−
∫ t

0

Bf(Y (s))dλ1(s).
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Corresponding SDE

The controlled process will satisfy

Y (t) = Y (0) +

∫ t

0

√
V (s)

∑
j

σij(Y (s))dWj(s) +

∫ t

0

V (s)
∑
i

bi(Y (s))ds

+

∫
[0,t]×[0,∞)×[0,1]

1[0,1](u)(H(Y (s−), v)− Y (s−))ξ((1− V (s))ds, du, dv)

As before, every solution of the controlled martingale problem corre-
sponds to a solution of the controlled SDE, but λ0 need not be (prob-
ably isn’t) strictly increasing.
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Stochastic equation for X

If, for the diffusion corresponding to A, P{inf{t : Z(t) ∈ ∂E0} =
inf{t : Z(t) ∈ E

c
0} = 1, then Y (s) ∈ ∂E0 implies V (s) = 0 and

X(t) = Y (τ(t)) satisfies

X(t) = X(0) +

∫ t

0

∑
j

σij(X(s))dW V
j (s) +

∫ t

0

∑
i

bi(X(s))ds

+

∫ t

0

(H(X(s−), ξN(s))−X(s−))dN(s)

where N(t) counts the number times X hits ∂E0 by time t, ξk is the
v-coordinate at the kth jump time of Y (note that the ξk are indepen-
dent, uniform [0, 1]) and, as before,

W V
j (s) =

∫ τ(t)

0

√
V (s)dWj(s)

are independent standard Brownian motions.
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Adam’s question

Introduce an extra point ∂ and define

Bf(x) = κ(x) · ∇f(x) + c(x)(f(∂)− f(x)).

Then the process satisfies

X(t) = X(0) +

∫ t

0

∑
j

σij(X(s))dW V
j (s) +

∫ t

0

∑
i

bi(X(s))ds

+

∫ t

0

κ(X(s))dλ(s),

until a killing time γ satisfying∫ γ

0

c(X(s))dλ(s) = ∆,

where ∆ is an independent unit exponential random variable.
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The corresponding martingale problem

X is a solution of the martingale problem if there exists a filtration
{Ft} and a nondecreasing process λ such that λ increases only when
X(s) ∈ ∂E0 and for each f ∈ C2

c (Rd ∪ {∂}), taking Af(∂) = 0,

f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds

−
∫ t

0

(κ(X(s)) · ∇f(X(s)) + c(X(s))(f(∂)− f(X(s)))dλ(s)

is an {Ft}-martingale.
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Viscosity solutions for the H-Y range condition
Costantini and Kurtz (2015)

Let Y be a solution of the controlled martingale problem

f(Y (t))− f(Y (0))−
∫ t

0

Af(Y (s))dλ0(s)−
∫ t

0

Bf(Y (s))dλ1(s),

and assuming λ0(s)→∞, let τ(t) = inf{s : λ0(s) > t}, and define

X(t) = lim
s→t+

Y (τ(s)).

Then
∫∞

0 e−λ0(s)f(Y (s))dλ0(s) =
∫∞

0 e−tf(X(t))dt and for Y (0) = x,
we should have

E[

∫ ∞

0

e−λ0(s)f(Y (s))dλ0(s)] = E[

∫ ∞

0

e−tf(X(t))dt] = (I − Â)−1f(x)

where Â is the generator for X ,

Â ⊃ {(f, Af) : Bf = 0}
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Sub and super solutions

Let Πx be the collection of distributions of solutions of the controlled
martingale problem (Y, λ0). Then assuming that for all x ∈ E0, Πx is
nonempty and compact and . . .

u+
h (x) = sup

P∈Πx

E[

∫ ∞

0

e−λ0(s)h(Y (s))dλ0(s)]

is a subsolution of (I − Â)u = h in the sense that u+ is upper semi-
continuous and if f ∈ D and x0 ∈ E0 satisfy

sup
x

(u+ − f)(x) = (u+ − f)(x0), (1)

then

λu+(x0)− Af(x0) ≤ h(x0), if x0 ∈ E0,

(λu+(x0)− Af(x0)− h(x0)) ∧ (−Bf(x0)) ≤ 0, if x0 ∈ ∂E0.
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Notions of convergence

(Y n, λn0) → (Y, λ0) in distribution on (DE[0,∞) × C[0,∞)[0,∞) taking
the Skorohod (J1) topology on DE[0,∞) and the compact uniform
topology on C[0,∞)[0,∞).

Lemma 6 If (Y n, λn0)→ (Y, λ0) as above thenXn → X taking the Jakubowski
(1997) topology on DE[0,∞).
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Abstract
Generators, martingale problems, and stochastic equations
A natural way of specifying a Markov process is by defining its generator. Classi-
cally, one then shows that the generator, or some natural extension, is the genera-
tor of a positive, contraction semigroup which determines the transition function
of the Markov process which must satisfy the Kolmogorov forward and backward
equations.

Standard semigroup identities and the relationship between the process and the
semigroup also imply that the process has certain martingale properties which are
the basis for the classical identity known as Dynkin’s identity. In work on diffu-
sions, Stroock and Varadhan, exploiting these properties, formulated a martingale
problem as an approach to uniquely determining the process corresponding to the
generator.

For many processes, in particular diffusions, the process can also be determined
as a solution of a stochastic equation. Very generally, the forward equation, the
martingale problem, and, if one exists, the corresponding stochastic equation, are
equivalent in the sense that a solution of one corresponds to solutions of the others.
In particular, uniqueness of one implies uniqueness of the others.
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The formulation of the three problems becomes more complicated in the case of
constrained Markov processes (for example, reflecting diffusions). Associating a
constrained martingale problem with a certain controlled martingale problem in
a sense reduces the problem of equivalence of the three approaches to specifying
the process to the unconstrained case. The forward equations, martingale prob-
lems, and (in examples) stochastic equations will be formulated and proof of their
equivalence outlined.


