C_{0}-semi-groups associated with evolutionary equations.

Sascha Trostorff

Technische Universität Dresden
01.10.18, Kazimierz Dolny, Poland
(1) Motivation: Initial values and histories
(2) Evolutionary equations
(3) Initial value problems for evolutionary equations
(1) Motivation: Initial values and histories

(2) Evolutionary equations

3 Initial value problems for evolutionary equations

Examples

We consider different types of diff. eq. on Hilbert space H :

- Let $M_{0}, M_{1} \in L(H)$ and $A: \operatorname{dom}(A) \subseteq H \rightarrow H$ densely defined, closed linear.

$$
\begin{aligned}
\left(\partial_{t} M_{0}+M_{1}+A\right) u & =0 \text { on }] 0, \infty[\\
u(0+) & =u_{0}
\end{aligned}
$$

Examples

We consider different types of diff. eq. on Hilbert space H :

- Let $M_{0}, M_{1} \in L(H)$ and $A: \operatorname{dom}(A) \subseteq H \rightarrow H$ densely defined, closed linear.

$$
\begin{aligned}
\left(\partial_{t} M_{0}+M_{1}+A\right) u & =0 \text { on }] 0, \infty[\\
u(0+) & =u_{0}
\end{aligned}
$$

- If $0 \in \rho\left(M_{0}\right)$, then equivalently

$$
\begin{aligned}
\left(\partial_{t}+M_{0}^{-1}\left(M_{1}+A\right)\right) u & =0 \text { on }] 0, \infty[\\
u(0+) & =u_{0}
\end{aligned}
$$

\rightsquigarrow well-posedness, if $-M_{0}^{-1}\left(M_{1}+A\right)$ generates $C_{0}-\mathrm{sg}$

Examples

We consider different types of diff. eq. on Hilbert space H :

- Let $M_{0}, M_{1} \in L(H)$ and $A: \operatorname{dom}(A) \subseteq H \rightarrow H$ densely defined, closed linear.

$$
\begin{aligned}
\left(\partial_{t} M_{0}+M_{1}+A\right) u & =0 \text { on }] 0, \infty[\\
u(0+) & =u_{0}
\end{aligned}
$$

- If $0 \in \rho\left(M_{0}\right)$, then equivalently

$$
\begin{aligned}
\left(\partial_{t}+M_{0}^{-1}\left(M_{1}+A\right)\right) u & =0 \text { on }] 0, \infty[\\
u(0+) & =u_{0}
\end{aligned}
$$

\rightsquigarrow well-posedness, if $-M_{0}^{-1}\left(M_{1}+A\right)$ generates C_{0}-sg

- If $\operatorname{ker}\left(M_{0}\right) \neq\{0\} \rightsquigarrow$ Differential-algebraic equation. What are admissible initial values?

Examples cont.

- Let $M_{0}, M_{1} \in L(H)$ and $A: \operatorname{dom}(A) \subseteq H \rightarrow H$ dd, closed, linear.

$$
\begin{aligned}
& \left.\left(\partial_{t} M_{0}+M_{1} \tau_{h}+A\right) u=0 \text { on }\right] 0, \infty[\\
& u(t)=g(t) \text { on }[h, 0] .
\end{aligned}
$$

What are admissible histrories?

Examples cont.

- Let $M_{0}, M_{1} \in L(H)$ and $A: \operatorname{dom}(A) \subseteq H \rightarrow H$ dd, closed, linear.

$$
\begin{aligned}
& \left.\left(\partial_{t} M_{0}+M_{1} \tau_{h}+A\right) u=0 \text { on }\right] 0, \infty[\\
& u(t)=g(t) \text { on }[h, 0] .
\end{aligned}
$$

What are admissible histrories?

- M_{0}, A as above and $k \in L_{1}\left(\mathbb{R}_{\geq 0}\right)$.

$$
\begin{aligned}
\left(\partial_{t} M_{0}+k *+A\right) u & =0 \text { on }] 0, \infty[\\
u(t) & =g(t) \text { on }]-\infty, 0] .
\end{aligned}
$$

What are admissible histrories?

Examples cont.

- Let $M_{0}, M_{1} \in L(H)$ and $A: \operatorname{dom}(A) \subseteq H \rightarrow H$ dd, closed, linear.

$$
\begin{aligned}
& \left.\left(\partial_{t} M_{0}+M_{1} \tau_{h}+A\right) u=0 \text { on }\right] 0, \infty[\\
& u(t)=g(t) \text { on }[h, 0] .
\end{aligned}
$$

What are admissible histrories?

- M_{0}, A as above and $k \in L_{1}\left(\mathbb{R}_{\geq 0}\right)$.

$$
\begin{aligned}
\left(\partial_{t} M_{0}+k *+A\right) u & =0 \text { on }] 0, \infty[\\
u(t) & =g(t) \text { on }]-\infty, 0] .
\end{aligned}
$$

What are admissible histrories?

Examples cont.

- Let $M_{0}, M_{1} \in L(H)$ and $A: \operatorname{dom}(A) \subseteq H \rightarrow H$ dd, closed, linear.

$$
\begin{aligned}
& \left.\left(\partial_{t} M_{0}+M_{1} \tau_{h}+A\right) u=0 \text { on }\right] 0, \infty[\\
& u(t)=g(t) \text { on }[h, 0] .
\end{aligned}
$$

What are admissible histrories?

- M_{0}, A as above and $k \in L_{1}\left(\mathbb{R}_{\geq 0}\right)$.

$$
\begin{aligned}
\left(\partial_{t} M_{0}+k *+A\right) u & =0 \text { on }] 0, \infty[\\
u(t) & =g(t) \text { on }]-\infty, 0] .
\end{aligned}
$$

What are admissible histrories?
Common framework: Evolutionary equations.

(1) Motivation: Initial values and histories

(2) Evolutionary equations

3 Initial value problems for evolutionary equations

The setting

Definition

Let $\nu \geq 0$ and H HS. Define
$L_{2, \nu}(\mathbb{R} ; H):=\left\{f: \mathbb{R} \rightarrow H ; f\right.$ meas., $\left.\int_{\mathbb{R}}\|f(t)\|^{2} \exp (-2 \nu t) \mathrm{d} t<\infty\right\}$

The setting

Definition

Let $\nu \geq 0$ and H HS. Define
$L_{2, \nu}(\mathbb{R} ; H):=\left\{f: \mathbb{R} \rightarrow H ; f\right.$ meas., $\left.\int_{\mathbb{R}}\|f(t)\|^{2} \exp (-2 \nu t) \mathrm{d} t<\infty\right\}$
Moreover, define

$$
\partial_{t, \nu}: H_{\nu}^{1}(\mathbb{R} ; H) \subseteq L_{2, \nu}(\mathbb{R} ; H) \rightarrow L_{2, \nu}(\mathbb{R} ; H), u \mapsto u^{\prime}
$$

with

$$
H_{\nu}^{1}(\mathbb{R} ; H):=\left\{u \in L_{2, \nu}(\mathbb{R} ; H) ; u^{\prime} \in L_{2, \nu}(\mathbb{R} ; H) \text { as distribution }\right\} .
$$

The setting

Definition

Let $\nu \geq 0$ and H HS. Define
$L_{2, \nu}(\mathbb{R} ; H):=\left\{f: \mathbb{R} \rightarrow H ; f\right.$ meas., $\left.\int_{\mathbb{R}}\|f(t)\|^{2} \exp (-2 \nu t) \mathrm{d} t<\infty\right\}$
Moreover, define

$$
\partial_{t, \nu}: H_{\nu}^{1}(\mathbb{R} ; H) \subseteq L_{2, \nu}(\mathbb{R} ; H) \rightarrow L_{2, \nu}(\mathbb{R} ; H), u \mapsto u^{\prime}
$$

with

$$
H_{\nu}^{1}(\mathbb{R} ; H):=\left\{u \in L_{2, \nu}(\mathbb{R} ; H) ; u^{\prime} \in L_{2, \nu}(\mathbb{R} ; H) \text { as distribution }\right\} .
$$

Remark

If $\nu>0$, then $0 \in \rho\left(\partial_{t, \nu}\right)$ with $\left\|\partial_{t, \nu}^{-1}\right\|=\frac{1}{\nu}$ and

$$
\partial_{t, \nu}^{-1} f=\int_{-\infty}^{(\cdot)} f(s) \mathrm{d} s
$$

Definition

For $\varphi \in C_{c}(\mathbb{R} ; H)$ define

$$
\left(\mathcal{L}_{\nu} \varphi\right)(t):=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \mathrm{e}^{-(\mathrm{i} t+\nu) s} \varphi(s) \mathrm{d} s \quad(t \in \mathbb{R})
$$

Definition

For $\varphi \in C_{c}(\mathbb{R} ; H)$ define

$$
\left(\mathcal{L}_{\nu} \varphi\right)(t):=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \mathrm{e}^{-(\mathrm{i} t+\nu) s} \varphi(s) \mathrm{d} s \quad(t \in \mathbb{R})
$$

Theorem (Plancharel)
\mathcal{L}_{ν} extends to unitary operator $\mathcal{L}_{\nu}: L_{2, \nu}(\mathbb{R} ; H) \rightarrow L_{2}(\mathbb{R} ; H)$.

Definition

For $\varphi \in C_{c}(\mathbb{R} ; H)$ define

$$
\left(\mathcal{L}_{\nu} \varphi\right)(t):=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \mathrm{e}^{-(\mathrm{i} t+\nu) s} \varphi(s) \mathrm{d} s \quad(t \in \mathbb{R})
$$

Theorem (Plancharel)

\mathcal{L}_{ν} extends to unitary operator $\mathcal{L}_{\nu}: L_{2, \nu}(\mathbb{R} ; H) \rightarrow L_{2}(\mathbb{R} ; H)$. Moreover

$$
\partial_{t, \nu}=\mathcal{L}_{\nu}^{*}(\mathrm{im}+\nu) \mathcal{L}_{\nu},
$$

where $\mathrm{m} f=(t \mapsto t f(t))$ with

$$
\operatorname{dom}(m):=\left\{f \in L_{2}(\mathbb{R} ; H) ;(t \mapsto t f(t)) \in L_{2}(\mathbb{R} ; H)\right\} .
$$

$$
\partial_{t, \nu}=\mathcal{L}_{\nu}^{*}(\mathrm{im}+\nu) \mathcal{L}_{\nu}
$$

$$
\partial_{t, \nu}=\mathcal{L}_{\nu}^{*}(\mathrm{im}+\nu) \mathcal{L}_{\nu}
$$

Definition

Let $M: \mathbb{C}_{\operatorname{Re}>\nu_{0}} \rightarrow L(H)$ bdd, analytic. For $\nu>\nu_{0}$ set

$$
M(\mathrm{i} \mathrm{~m}+\nu): L_{2}(\mathbb{R} ; H) \rightarrow L_{2}(\mathbb{R} ; H), u \mapsto(t \mapsto M(\mathrm{i} t+\nu) u(t))
$$

as well as

$$
M\left(\partial_{t, \nu}\right):=\mathcal{L}_{\nu}^{*} M(\mathrm{i} \mathrm{~m}+\nu) \mathcal{L}_{\nu} .
$$

$$
\partial_{t, \nu}=\mathcal{L}_{\nu}^{*}(\mathrm{im}+\nu) \mathcal{L}_{\nu}
$$

Definition

Let $M: \mathbb{C}_{\operatorname{Re}>\nu_{0}} \rightarrow L(H)$ bdd, analytic. For $\nu>\nu_{0}$ set

$$
M(\mathrm{im}+\nu): L_{2}(\mathbb{R} ; H) \rightarrow L_{2}(\mathbb{R} ; H), u \mapsto(t \mapsto M(\mathrm{i} t+\nu) u(t))
$$

as well as

$$
M\left(\partial_{t, \nu}\right):=\mathcal{L}_{\nu}^{*} M(\mathrm{im}+\nu) \mathcal{L}_{\nu}
$$

Theorem

Let $\nu>\nu_{0}$. Then $M\left(\partial_{t, \nu}\right)$ is causal, that is

$$
\operatorname{spt} u \subseteq \mathbb{R}_{\geq a} \Rightarrow \operatorname{spt} M\left(\partial_{t, \nu}\right) u \subseteq \mathbb{R}_{\geq a}
$$

$$
\partial_{t, \nu}=\mathcal{L}_{\nu}^{*}(\mathrm{i} \mathrm{~m}+\nu) \mathcal{L}_{\nu}
$$

Definition

Let $M: \mathbb{C}_{\operatorname{Re}>\nu_{0}} \rightarrow L(H)$ bdd, analytic. For $\nu>\nu_{0}$ set

$$
M(\mathrm{im}+\nu): L_{2}(\mathbb{R} ; H) \rightarrow L_{2}(\mathbb{R} ; H), u \mapsto(t \mapsto M(\mathrm{i} t+\nu) u(t))
$$

as well as

$$
M\left(\partial_{t, \nu}\right):=\mathcal{L}_{\nu}^{*} M(\mathrm{im}+\nu) \mathcal{L}_{\nu}
$$

Theorem

Let $\nu>\nu_{0}$. Then $M\left(\partial_{t, \nu}\right)$ is causal, that is

$$
\operatorname{spt} u \subseteq \mathbb{R}_{\geq a} \Rightarrow \operatorname{spt} M\left(\partial_{t, \nu}\right) u \subseteq \mathbb{R}_{\geq a}
$$

Moreover, for $u \in L_{2, \nu} \cap L_{2, \mu}$:

$$
M\left(\partial_{t, \nu}\right) u=M\left(\partial_{t, \mu}\right) u
$$

Examples revisited

- DAEs: Let $M_{0}, M_{1} \in L(H)$. Set

$$
M(z):=M_{0}+z^{-1} M_{1} .
$$

Then

Examples revisited

- DAEs: Let $M_{0}, M_{1} \in L(H)$. Set

$$
M(z):=M_{0}+z^{-1} M_{1} .
$$

Then

$$
\partial_{t, \nu} M_{0}+M_{1}+A=\partial_{t, \nu}\left(M_{0}+\partial_{t, \nu}^{-1} M_{1}\right)+A
$$

Examples revisited

- DAEs: Let $M_{0}, M_{1} \in L(H)$. Set

Then

$$
M(z):=M_{0}+z^{-1} M_{1} .
$$

$$
\partial_{t, \nu} M_{0}+M_{1}+A=\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A
$$

Examples revisited

- DAEs: Let $M_{0}, M_{1} \in L(H)$. Set

Then

$$
M(z):=M_{0}+z^{-1} M_{1} .
$$

$$
\partial_{t, \nu} M_{0}+M_{1}+A=
$$

- Delay-DE: Let $M_{0}, M_{1} \in L(H), h \leq 0$. Set

$$
M(z):=M_{0}+z^{-1} \mathrm{e}^{z h} M_{1} .
$$

Then

$$
\partial_{t, \nu} M_{0}+M_{1} \tau_{h}+A=\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A
$$

Examples revisited

- DAEs: Let $M_{0}, M_{1} \in L(H)$. Set

$$
M(z):=M_{0}+z^{-1} M_{1}
$$

Then

$$
\partial_{t, \nu} M_{0}+M_{1}+A=
$$

- Delay-DE: Let $M_{0}, M_{1} \in L(H), h \leq 0$. Set

$$
M(z):=M_{0}+z^{-1} \mathrm{e}^{z h} M_{1} .
$$

Then

$$
\partial_{t, \nu} M_{0}+M_{1} \tau_{h}+A=\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A
$$

- Integro-DE: Let $M_{0} \in L(H), k \in L_{1}\left(\mathbb{R}_{\geq 0}\right)$. Set

$$
M(z):=M_{0}+z^{-1} \widehat{k}(z)
$$

Then

$$
\partial_{t, \nu} M_{0}+k *+A=\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A
$$

Examples revisited

- DAEs: Let $M_{0}, M_{1} \in L(H)$. Set

$$
M(z):=M_{0}+z^{-1} M_{1}
$$

Then

$$
\partial_{t, \nu} M_{0}+M_{1}+A=
$$

- Delay-DE: Let $M_{0}, M_{1} \in L(H), h \leq 0$. Set

$$
M(z):=M_{0}+z^{-1} \mathrm{e}^{z h} M_{1} .
$$

Then

$$
\partial_{t, \nu} M_{0}+M_{1} \tau_{h}+A=\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A
$$

- Integro-DE: Let $M_{0} \in L(H), k \in L_{1}\left(\mathbb{R}_{\geq 0}\right)$. Set

$$
M(z):=M_{0}+z^{-1} \widehat{k}(z)
$$

Then

$$
\partial_{t, \nu} M_{0}+k *+A=\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A
$$

$$
\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A
$$

$$
\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A
$$

Theorem (Picard '09, T.'18)

Let $M: \mathbb{C}_{\operatorname{Re}>\nu_{0}} \rightarrow L(H)$ analytic, bdd and $A: \operatorname{dom}(A) \subseteq H \rightarrow H$ dd, closed, linear.

$$
\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A
$$

Theorem (Picard '09, T.'18)

Let $M: \mathbb{C}_{\operatorname{Re}>\nu_{0}} \rightarrow L(H)$ analytic, bdd and $A: \operatorname{dom}(A) \subseteq H \rightarrow H$ dd, closed, linear. Assume that

- $\forall z \in \mathbb{C}_{\operatorname{Re}>\nu_{0}}: 0 \in \rho(z M(z)+A)$,
- $\mathbb{C}_{\operatorname{Re}>\nu_{0}} \ni z \mapsto(z M(z)+A)^{-1} \in L(H) b d d$.

$$
\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A
$$

Theorem (Picard '09, T.'18)

Let $M: \mathbb{C}_{\operatorname{Re}>\nu_{0}} \rightarrow L(H)$ analytic, bdd and $A: \operatorname{dom}(A) \subseteq H \rightarrow H$ dd, closed, linear. Assume that

- $\forall z \in \mathbb{C}_{\operatorname{Re}>\nu_{0}}: 0 \in \rho(z M(z)+A)$,
- $\mathbb{C}_{\operatorname{Re}>\nu_{0}} \ni z \mapsto(z M(z)+A)^{-1} \in L(H) b d d$.

Then

$$
\mathcal{S}_{\nu}:=\left(\overline{\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A}\right)^{-1} \in L\left(L_{2, \nu}(\mathbb{R} ; H)\right)
$$

for each $\nu>\nu_{0}$.

$$
\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A
$$

Theorem (Picard '09, T.'18)

Let $M: \mathbb{C}_{\operatorname{Re}>\nu_{0}} \rightarrow L(H)$ analytic, bdd and $A: \operatorname{dom}(A) \subseteq H \rightarrow H$ dd, closed, linear. Assume that

- $\forall z \in \mathbb{C}_{\mathrm{Re}>\nu_{0}}: 0 \in \rho(z M(z)+A)$,
- $\mathbb{C}_{\operatorname{Re}>\nu_{0}} \ni z \mapsto(z M(z)+A)^{-1} \in L(H)$ bdd.

Then

$$
\mathcal{S}_{\nu}:=\left(\overline{\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A}\right)^{-1} \in L\left(L_{2, \nu}(\mathbb{R} ; H)\right)
$$

for each $\nu>\nu_{0}$. Moreover, \mathcal{S}_{ν} is causal and $\mathcal{S}_{\nu}=\mathcal{S}_{\mu}$ on $L_{2, \nu} \cap L_{2, \mu}$.

(1) Motivation: Initial values and histories

(2) Evolutionary equations

(3) Initial value problems for evolutionary equations

Assume well-posedness conditions and consider

$$
\begin{align*}
\left(\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A\right) u & =0 \text { on }] 0, \infty[\tag{1}\\
u & =g \text { on }]-\infty, 0]
\end{align*}
$$

for given $g:]-\infty, 0] \rightarrow H$.

Assume well-posedness conditions and consider

$$
\begin{align*}
\left(\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A\right) u & =0 \text { on }] 0, \infty[\tag{1}\\
u & =g \text { on }]-\infty, 0]
\end{align*}
$$

for given $g:]-\infty, 0] \rightarrow H$.
Goal: Formulate as a suitable evolutionary eq.

Assume well-posedness conditions and consider

$$
\begin{align*}
\left(\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A\right) u & =0 \text { on }] 0, \infty[\tag{1}\\
u & =g \text { on }]-\infty, 0]
\end{align*}
$$

for given $g:]-\infty, 0] \rightarrow H$.
Goal: Formulate as a suitable evolutionary eq.
Heuristics: Assume $u \in H_{\nu}^{1}(\mathbb{R} ; H) \hookrightarrow C(\mathbb{R} ; H)$ (Sobolev) and decompose $u=v+g$ with $v:=\mathbb{1}_{\mathbb{R}_{>0}} u$.

Assume well-posedness conditions and consider

$$
\begin{align*}
\left(\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A\right) u & =0 \text { on }] 0, \infty[\tag{1}\\
u & =g \text { on }]-\infty, 0]
\end{align*}
$$

for given $g:]-\infty, 0] \rightarrow H$.
Goal: Formulate as a suitable evolutionary eq.
Heuristics: Assume $u \in H_{\nu}^{1}(\mathbb{R} ; H) \hookrightarrow C(\mathbb{R} ; H)$ (Sobolev) and decompose $u=v+g$ with $v:=\mathbb{1}_{\mathbb{R}_{>0}} u$.
$0 \stackrel{(1)}{=} \mathbb{1}_{\mathbb{R}_{>0}}\left(\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A\right) u$

Assume well-posedness conditions and consider

$$
\begin{align*}
\left(\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A\right) u & =0 \text { on }] 0, \infty[\tag{1}\\
u & =g \text { on }]-\infty, 0]
\end{align*}
$$

for given $g:]-\infty, 0] \rightarrow H$.
Goal: Formulate as a suitable evolutionary eq.
Heuristics: Assume $u \in H_{\nu}^{1}(\mathbb{R} ; H) \hookrightarrow C(\mathbb{R} ; H)$ (Sobolev) and decompose $u=v+g$ with $v:=\mathbb{1}_{\mathbb{R}_{>0}} u$.
$0 \stackrel{(1)}{=} \mathbb{1}_{\mathbb{R}_{>0}}\left(\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A\right) u$
$=\mathbb{1}_{\mathbb{R}_{>0}} \partial_{t, \nu} M\left(\partial_{t, \nu}\right) v+A v+\mathbb{1}_{\mathbb{R}_{>0}} \partial_{t, \nu} M\left(\partial_{t, \nu}\right) g$

Assume well-posedness conditions and consider

$$
\begin{align*}
\left(\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A\right) u & =0 \text { on }] 0, \infty[\tag{1}\\
u & =g \text { on }]-\infty, 0]
\end{align*}
$$

for given $g:]-\infty, 0] \rightarrow H$.
Goal: Formulate as a suitable evolutionary eq.
Heuristics: Assume $u \in H_{\nu}^{1}(\mathbb{R} ; H) \hookrightarrow C(\mathbb{R} ; H)$ (Sobolev) and decompose $u=v+g$ with $v:=\mathbb{1}_{\mathbb{R}_{>0}} u$.

$$
\begin{aligned}
0 & \stackrel{(1)}{=} \mathbb{1}_{\mathbb{R}_{>0}}\left(\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A\right) u \\
& =\mathbb{1}_{\mathbb{R}_{>0}} \partial_{t, \nu} M\left(\partial_{t, \nu}\right) v+A v+\mathbb{1}_{\mathbb{R}_{>0}} \partial_{t, \nu} M\left(\partial_{t, \nu}\right) g \\
& =\partial_{t, \nu} \mathbb{1}_{\mathbb{R}_{>0}} M\left(\partial_{t, \nu}\right) v+A v-\delta_{0}\left(M\left(\partial_{t, \nu}\right) v\right)(0+)+\mathbb{1}_{\mathbb{R}_{>0}} \partial_{t, \nu} M\left(\partial_{t, \nu}\right) g
\end{aligned}
$$

Assume well-posedness conditions and consider

$$
\begin{align*}
\left(\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A\right) u & =0 \text { on }] 0, \infty[\tag{1}\\
u & =g \text { on }]-\infty, 0]
\end{align*}
$$

for given $g:]-\infty, 0] \rightarrow H$.
Goal: Formulate as a suitable evolutionary eq.
Heuristics: Assume $u \in H_{\nu}^{1}(\mathbb{R} ; H) \hookrightarrow C(\mathbb{R} ; H)$ (Sobolev) and decompose $u=v+g$ with $v:=\mathbb{1}_{\mathbb{R}_{>0}} u$.

$$
\begin{aligned}
0 & \stackrel{(1)}{=} \mathbb{1}_{\mathbb{R}_{>0}}\left(\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A\right) u \\
& =\mathbb{1}_{\mathbb{R}_{>0}} \partial_{t, \nu} M\left(\partial_{t, \nu}\right) v+A v+\mathbb{1}_{\mathbb{R}_{>0}} \partial_{t, \nu} M\left(\partial_{t, \nu}\right) g \\
& =\partial_{t, \nu} \mathbb{1}_{\mathbb{R}_{>0}} M\left(\partial_{t, \nu}\right) v+A v-\delta_{0}\left(M\left(\partial_{t, \nu}\right) v\right)(0+)+\mathbb{1}_{\mathbb{R}_{>0}} \partial_{t, \nu} M\left(\partial_{t, \nu}\right) g \\
& =\left(\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A\right) v-\delta_{0}\left(M\left(\partial_{t, \nu}\right) v\right)(0+)+\mathbb{1}_{\mathbb{R}_{>0}} \partial_{t, \nu} M\left(\partial_{t, \nu}\right) g .
\end{aligned}
$$

Assume well-posedness conditions and consider

$$
\begin{align*}
\left(\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A\right) u & =0 \text { on }] 0, \infty[\tag{1}\\
u & =g \text { on }]-\infty, 0]
\end{align*}
$$

for given $g:]-\infty, 0] \rightarrow H$.
Goal: Formulate as a suitable evolutionary eq.
Heuristics: Assume $u \in H_{\nu}^{1}(\mathbb{R} ; H) \hookrightarrow C(\mathbb{R} ; H)$ (Sobolev) and decompose $u=v+g$ with $v:=\mathbb{1}_{\mathbb{R}_{>0}} u$.
$0 \stackrel{(1)}{=} \mathbb{1}_{\mathbb{R}_{>0}}\left(\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A\right) u$
$=\mathbb{1}_{\mathbb{R}_{>0}} \partial_{t, \nu} M\left(\partial_{t, \nu}\right) v+A v+\mathbb{1}_{\mathbb{R}_{>0}} \partial_{t, \nu} M\left(\partial_{t, \nu}\right) g$
$=\partial_{t, \nu} \mathbb{1}_{\mathbb{R}_{>0}} M\left(\partial_{t, \nu}\right) v+A v-\delta_{0}\left(M\left(\partial_{t, \nu}\right) v\right)(0+)+\mathbb{1}_{\mathbb{R}_{>0}} \partial_{t, \nu} M\left(\partial_{t, \nu}\right) g$
$=\left(\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A\right) v-\delta_{0} \underbrace{\left(M\left(\partial_{t, \nu}\right) v\right)(0+)}_{=: x}+\mathbb{1}_{\mathbb{R}_{>0}} \partial_{t, \nu} M\left(\partial_{t, \nu}\right) g$.

Evolutionary eq. for v :

$$
\left(\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A\right) v=\delta_{0} x-\mathbb{1}_{\mathbb{R}_{>0}} \partial_{t, \nu} M\left(\partial_{t, \nu}\right) g
$$

and $u=v+g \in H_{\nu}^{1}(\mathbb{R} ; H)$.

Evolutionary eq. for v :

$$
\left(\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A\right) v=\delta_{0} x-\mathbb{1}_{\mathbb{R}_{>0}} \partial_{t, \nu} M\left(\partial_{t, \nu}\right) g
$$

and $u=v+g \in H_{\nu}^{1}(\mathbb{R} ; H)$.

Definition

Define

$$
\operatorname{His}_{\nu}:=\left\{g ; \exists x \in H: \mathcal{S}_{\nu}\left(\delta_{0} x-\mathbb{1}_{\mathbb{R}_{>0}} \partial_{t, \nu} M\left(\partial_{t, \nu}\right) g\right)+g \in H_{\nu}^{1}\right\}
$$

Evolutionary eq. for v :

$$
\left(\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A\right) v=\delta_{0} x-\mathbb{1}_{\mathbb{R}_{>0}} \partial_{t, \nu} M\left(\partial_{t, \nu}\right) g
$$

and $u=v+g \in H_{\nu}^{1}(\mathbb{R} ; H)$.

Definition

Define
$\operatorname{His}_{\nu}:=\left\{g ; \exists x \in H: \mathcal{S}_{\nu}\left(\delta_{0} x-\mathbb{1}_{\mathbb{R}_{>0}} \partial_{t, \nu} M\left(\partial_{t, \nu}\right) g\right)+g \in H_{\nu}^{1}\right\}$ and

$$
\mathrm{IV}_{\nu}:=\left\{g(0-) ; g \in \operatorname{His}_{\nu}\right\}
$$

Evolutionary eq. for v :

$$
\left(\partial_{t, \nu} M\left(\partial_{t, \nu}\right)+A\right) v=\delta_{0} x-\mathbb{1}_{\mathbb{R}_{>0}} \partial_{t, \nu} M\left(\partial_{t, \nu}\right) g
$$

and $u=v+g \in H_{\nu}^{1}(\mathbb{R} ; H)$.

Definition

Define
$\operatorname{His}_{\nu}:=\left\{g ; \exists x \in H: \mathcal{S}_{\nu}\left(\delta_{0} x-\mathbb{1}_{\mathbb{R}_{>0}} \partial_{t, \nu} M\left(\partial_{t, \nu}\right) g\right)+g \in H_{\nu}^{1}\right\}$ and

$$
\mathrm{IV}_{\nu}:=\left\{g(0-) ; g \in \operatorname{His}_{\nu}\right\}
$$

Remark

If $g \in \operatorname{His}_{\nu}$, then x is uniquely determined and given by

$$
\begin{aligned}
x & =\left(M\left(\partial_{t, \nu}\right) \mathbb{1}_{\mathbb{R}_{>0}} g(0-)\right)(0+) \\
& =\left(M\left(\partial_{t, \nu}\right) g\right)(0-)-\left(M\left(\partial_{t, \nu}\right) g\right)(0+) \\
& =: \Gamma g .
\end{aligned}
$$

For $g \in \operatorname{His}_{\nu}$ set $v:=\mathcal{S}_{\nu}\left(\delta_{0} x-\mathbb{1}_{\mathbb{R}_{>0}} \partial_{t, \nu} M\left(\partial_{t, \nu}\right) g\right)$ and $u:=v+g$.

For $g \in \operatorname{His}_{\nu}$ set $v:=\mathcal{S}_{\nu}\left(\delta_{0} x-\mathbb{1}_{\mathbb{R}_{>0}} \partial_{t, \nu} M\left(\partial_{t, \nu}\right) g\right)$ and $u:=v+g$.

Theorem (T.'18)

Define $D_{\nu}:=\left\{(g(0-), g) ; g \in \operatorname{His}_{\nu}\right\}$ and

$$
T(t): D_{\nu} \subseteq \mathrm{IV}_{\nu} \times \operatorname{His}_{\nu} \rightarrow \mathrm{IV}_{\nu} \times \operatorname{His}_{\nu}
$$

for $t \geq 0$ with

$$
T(t)(g(0-), g):=\left(u(t), \mathbb{1}_{\mathbb{R}_{\leq t}} u\right)
$$

For $g \in \operatorname{His}_{\nu}$ set $v:=\mathcal{S}_{\nu}\left(\delta_{0} x-\mathbb{1}_{\mathbb{R}_{>0}} \partial_{t, \nu} M\left(\partial_{t, \nu}\right) g\right)$ and $u:=v+g$.

Theorem (T.'18)

Define $D_{\nu}:=\left\{(g(0-), g) ; g \in \operatorname{His}_{\nu}\right\}$ and

$$
T(t): D_{\nu} \subseteq \mathrm{IV}_{\nu} \times \operatorname{His}_{\nu} \rightarrow \mathrm{IV}_{\nu} \times \operatorname{His}_{\nu}
$$

for $t \geq 0$ with

$$
T(t)(g(0-), g):=\left(u(t), \mathbb{1}_{\mathbb{R}_{\leq t}} u\right)
$$

Then $T(t) \xrightarrow{t \rightarrow 0+} T(0)=\operatorname{id}_{D_{\nu}}$ strongly and

$$
T(t+s)=T(t) T(s) \quad(t, s \geq 0)
$$

For $g \in \operatorname{His}_{\nu}$ set $v:=\mathcal{S}_{\nu}\left(\delta_{0} x-\mathbb{1}_{\mathbb{R}_{>0}} \partial_{t, \nu} M\left(\partial_{t, \nu}\right) g\right)$ and $u:=v+g$.

Theorem (T.'18)

Define $D_{\nu}:=\left\{(g(0-), g) ; g \in \operatorname{His}_{\nu}\right\}$ and

$$
T(t): D_{\nu} \subseteq \mathrm{IV}_{\nu} \times \operatorname{His}_{\nu} \rightarrow \mathrm{IV}_{\nu} \times \operatorname{His}_{\nu}
$$

for $t \geq 0$ with

$$
T(t)(g(0-), g):=\left(u(t), \mathbb{1}_{\mathbb{R}_{\leq t}} u\right)
$$

Then $T(t) \xrightarrow{t \rightarrow 0+} T(0)=\mathrm{id}_{D_{\nu}}$ strongly and

$$
T(t+s)=T(t) T(s) \quad(t, s \geq 0)
$$

Remark
Note: $T(t)$ not bounded and D_{ν} not closed!

For $g \in \operatorname{His}_{\nu}$ set $v:=\mathcal{S}_{\nu}\left(\delta_{0} x-\mathbb{1}_{\mathbb{R}_{>0}} \partial_{t, \nu} M\left(\partial_{t, \nu}\right) g\right)$ and $u:=v+g$.

Theorem (T.'18)

Define $D_{\nu}:=\left\{(g(0-), g) ; g \in \operatorname{His}_{\nu}\right\}$ and

$$
T(t): D_{\nu} \subseteq \mathrm{IV}_{\nu} \times \operatorname{His}_{\nu} \rightarrow \mathrm{IV}_{\nu} \times \operatorname{His}_{\nu}
$$

for $t \geq 0$ with

$$
T(t)(g(0-), g):=\left(u(t), \mathbb{1}_{\mathbb{R}_{\leq t}} u\right)
$$

Then $T(t) \xrightarrow{t \rightarrow 0+} T(0)=\mathrm{id}_{D_{\nu}}$ strongly and

$$
T(t+s)=T(t) T(s) \quad(t, s \geq 0)
$$

Remark

Note: $T(t)$ not bounded and D_{ν} not closed!Hille-Yosida condition yields boundedness of $T(t)$ and extension to C_{0}-sg on $\overline{D_{\nu}}$.

Example (DAEs)

Assume $A=0$ and $M(z)=M_{0}+z^{-1} M_{1}$ for $M_{0}, M_{1} \in L(H)$. Moreover, assume well-posedness condition and $\operatorname{ran}\left(M_{0}\right)$ closed.

Example (DAEs)

Assume $A=0$ and $M(z)=M_{0}+z^{-1} M_{1}$ for $M_{0}, M_{1} \in L(H)$. Moreover, assume well-posedness condition and $\operatorname{ran}\left(M_{0}\right)$ closed. Then

$$
\begin{aligned}
\operatorname{IV}_{\nu} & =\left\{u_{0} \in H ; M_{1} u_{0} \in \operatorname{ran}\left(M_{0}\right)\right\} \\
\operatorname{His}_{\nu} & =\left\{g ; g(0-) \in \mathrm{IV}_{\nu}\right\} .
\end{aligned}
$$

Example (DAEs)

Assume $A=0$ and $M(z)=M_{0}+z^{-1} M_{1}$ for $M_{0}, M_{1} \in L(H)$. Moreover, assume well-posedness condition and $\operatorname{ran}\left(M_{0}\right)$ closed. Then

$$
\begin{aligned}
\operatorname{IV}_{\nu} & =\left\{u_{0} \in H ; M_{1} u_{0} \in \operatorname{ran}\left(M_{0}\right)\right\} \\
\operatorname{His}_{\nu} & =\left\{g ; g(0-) \in \mathrm{IV}_{\nu}\right\} .
\end{aligned}
$$

This coincides with the consistent initial values for DAEs in finite dimensions.

Example (DAEs)

Assume $A=0$ and $M(z)=M_{0}+z^{-1} M_{1}$ for $M_{0}, M_{1} \in L(H)$. Moreover, assume well-posedness condition and $\operatorname{ran}\left(M_{0}\right)$ closed. Then

$$
\begin{aligned}
\operatorname{IV}_{\nu} & =\left\{u_{0} \in H ; M_{1} u_{0} \in \operatorname{ran}\left(M_{0}\right)\right\} \\
\operatorname{His}_{\nu} & =\left\{g ; g(0-) \in \mathrm{IV}_{\nu}\right\} .
\end{aligned}
$$

This coincides with the consistent initial values for DAEs in finite dimensions.

Theorem (T.'18)

The following are equivalent:
(1) $\operatorname{His}_{\nu}=\left\{g ; g(0-) \in \mathrm{IV}_{\nu}\right\}$,

Example (DAEs)

Assume $A=0$ and $M(z)=M_{0}+z^{-1} M_{1}$ for $M_{0}, M_{1} \in L(H)$. Moreover, assume well-posedness condition and $\operatorname{ran}\left(M_{0}\right)$ closed. Then

$$
\begin{aligned}
\mathrm{IV}_{\nu} & =\left\{u_{0} \in H ; M_{1} u_{0} \in \operatorname{ran}\left(M_{0}\right)\right\} \\
\operatorname{His}_{\nu} & =\left\{g ; g(0-) \in \mathrm{IV}_{\nu}\right\} .
\end{aligned}
$$

This coincides with the consistent initial values for DAEs in finite dimensions.

Theorem (T.'18)

The following are equivalent:
(1) $\operatorname{His}_{\nu}=\left\{g ; g(0-) \in \mathrm{IV}_{\nu}\right\}$,
(1) $M(z)=M_{0}+z^{-1} M_{1}$ for some $M_{0}, M_{1} \in L(H)$.

Thank you for your attention!

T., Exponential Stability and Initial Value Problems for Evolutionary Equations. Habilitation Thesis, TU Dresden, 2018.

