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Introduction of the model Bounded size Unbounded size

Size-structured population model

We consider the model: Farkas and Hinow (2011)

∂tu(t, s) +
transport︷ ︸︸ ︷

∂s(γ(s)u(t, s)) =
diffusion︷ ︸︸ ︷

∂s(d(s)∂s(u(t, s)))−
mortality︷ ︸︸ ︷

µ(s)u(t, s)
+
∫ m

0
β(s, y)u(t, y)dy︸ ︷︷ ︸

reproduction

, ∀s ∈ [0,m],

with Feller boundary conditions

[∂s(d(s)∂su(t, s))]s=0 − b0∂su(t, 0) + c0u(t, 0) = 0,
[∂s(d(s)∂su(t, s))]s=m + bm∂su(t,m) + cmu(t,m) = 0.

→ Asymptotic behavior of the solutions ?
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Introduction of the model Bounded size Unbounded size

Hypotheses

1 The functions µ, γ′ and s 7→ β(s, y) are continuous at s = 0 and at
s = m for every y ∈ [0,m];

2 Let β0 = β(0, .) and βm = β(m, .);

3 γ, d ∈W 1,∞(0,m) and µ, β0, βm ∈ L∞(0,m);
4 b0, bm > 0, c0, cm ≥ 0, β, µ ≥ 0 and d(s) ≥ d0 > 0 for every

s ∈ [0,m];
5 the operator

L1(0,m) 3 u →
∫ m

0
β(·, y)u(y)dy ∈ L1(0,m)

is weakly compact.
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Dynamic boundary conditions
We rewrite the boundary conditions under the dynamics form

∂tu(t, 0) = −u(t, 0)ρ0 + ∂su(t, 0)(b0 − γ(0)) +
∫ m

0
β0(y)u(t, y)dy ,

∂tu(t,m) = −u(t,m)ρm − ∂su(t,m)(bm + γ(m)) +
∫ m

0
βm(y)u(t, y)dy ,

where
ρ0 = γ′(0) + µ(0) + c0, ρm = γ′(m) + µ(m) + cm.

We work in the Banach space

X = (L1(0,m)× R2, ‖.‖X ),

‖(u, u0, um)‖X = ‖u‖L1(0,m) + c1|u0|+ c2|um|,

where c1 = d(0)
b0 − γ(0) , c2 = d(m)

bm + γ(m) .
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Well-posedness

Let

AK

 u
u0
um

 = A

 u
u0
um

+ K

 u
u0
um


=

 (du′)′ − (γu)′ − µu
(b0 − γ(0))u′(0)− ρ0u0

−(bm + γ(m))u′(m)− ρmum

+


∫m

0 β(·, y)u(y)dy∫m
0 β0(y)u(y)dy∫m
0 βm(y)u(y)dy

 ,
in a suitable domain D(A). We get{

U ′(t) = AK U(t),
U(0) = (u0, u0

0 , u0
m) ∈ X ,

for U(t) = (u(t), u0(t), um(t))T .
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Well-posedness

Let
As : D(As)→ X ,

D(As) = {(u, u0, um) ∈ C 2[0,m]× R2 : u(0) = u0, u(m) = um} ⊂ D(AK ).

Farkas and Hinow (2011):

As is dissipative;
the closure of As is a generator.

Theorem
The domain of the generator is

D(AK ) = {(u, u0, um) ∈W 2,1(0,m)× R2 : u(0) = u0, u(m) = um}.
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Asynchronous exponential growth

Definition (Webb (1987))
Let {T (t)}t≥0 a C0-semigroup of bounded linear operators in X . The
semigroup has the property of asynchronous exponential growth with
intrinsic growth constant λ0 ∈ R if there exists a nonzero finite rank
operator P0 in X , such that

lim
t→∞

e−λ0tT (t) = P0.

In practice, this behavior relies on two conditions:
the irreducibility of the semigroup;
the existence of a spectral gap.
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Irreducibility

A positive C0-semigroup {T (t)}t≥0 in X is irreducible if, for every
f ∈ X , f > 0 and x ∈ X ′, x > 0, there exists t > 0 such that
〈T (t)f , x〉 > 0;
A positive operator A in X is positivity improving if, for every
f ∈ X , f > 0 and x ∈ X ′, x > 0, we have 〈Af , x〉 > 0.

Let {TA(t)}t≥0 a positive C0-semigroup in X , with generator A. Then
the semigroup is irreducible if and only if, for λ large enough, the
resolvent (λ−A)−1 is positivity improving.
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Spectral gap

A C0-semigroup {T (t)}t≥0 has a spectral gap if

ωess({T (t)}t≥0) < ω0({T (t)}t≥0),

where
ωess({T (t)}t≥0) = lim

t→∞
ln(‖T (t)‖ess)

t .

Let {T (t)}t≥0 a positive C0-semigroup in X . If

ωess({T (t)}t≥0) < ω0({T (t)}t≥0),

and if {T (t)}t≥0 is irreducible, then {T (t)}t≥0 has the property of
asynchronous exponential growth, with rank one projection operator P0.
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Irreducibility of the semigroup

Under the assumption C([0,m]2) 3 β(·, ·) > 0 a.e., the C0-semigroup
{TAK (t)}t≥0 generated by AK is irreducible: Farkas and Hinow (2011).

Theorem
The C0-semigroup {TAK (t)}t≥0 is irreducible.

Proof.
For λ large enough, we have

(λI − AK )−1 = (λI − A)−1 + (λI − A)−1
∞∑

n=1
(K (λI − A)−1)n

≥ (λ− A)−1

and (λI − A)−1 is positivity improving (Hopf’s maximum principle).
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Asynchronous exponential growth

Theorem
If K 6= 0, then {TAK (t)}t≥0 has the property of asynchronous exponential
growth.

Proof: the semigroup {TAK (t)}t≥0 is irreducible and we have

TAK (t) = TA(t) +
∫ t

0
TA(t − s)KTAK (s)ds.

Since K is weakly compact, then the strong integral∫ t

0
TA(t − s)KTAK (s)ds

is a weakly compact operator (Schlüchtermann (1992)). Moreover,
{TA(t)}t≥0 and {TAK (t)}t≥0 have the same essential spectrum, and

ωess({TAK (t)}t≥0) = ωess({TA(t)}t≥0) ≤ ω0({TA(t)}t≥0) = s(A).
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Asynchronous exponential growth

The resolvent (λ− AK )−1 is compact, irreducible and

(λ− A)−1 ≤ (λ− AK )−1, 0 ≤ (λ− A)−1 6= (λ− AK )−1.

Marek’s comparison theorem (1970) implies

rσ((λ− A)−1) < rσ((λ− AK )−1),

so
1

λ− s(A) = rσ((λ− A)−1) < rσ((λ− AK )−1) = 1
λ− s(AK )

for λ large enough. Consequently

ωess({TAK (t)}t≥0) ≤ s(A) < s(AK ) = ω0({TAK (t)}t≥0)

and therefore there is a spectral gap. �
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Model

In the case m =∞, we study the model

∂tu(t, s) + ∂s(γ(s)u(t, s)) = ∂s(d(s)∂su(t, s))− µ(s)u(t, s)
+
∫∞

0 β(s, y)u(y , t)dy ,
[∂s(d(s)∂su(t, s))]s=0 − b0∂su(t, 0) + c0u(t, 0) = 0.

Same hypotheses as in the finite case, then we rewrite the boundary
condition as

∂tu(t, 0) = −u(t, 0)ρ0 + ∂su(t, 0)(b0 − γ(0)) +
∫ ∞

0
β0(y)u(t, y)dy ,

and we work in X = (L1(0,∞)× R, ‖ · ‖X ) with norm

‖(x , x0)‖X = ‖x‖L1(0,∞) + c1|x0|.
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Well-posedness

AK

(
u
u0

)
= A

(
u
u0

)
+ K

(
u
u0

)

=
(

(du′)′ − (γu)′ − µu
(b0 − γ(0))u′(0)− ρ0u0

)
+
(∫∞

0 β(·, y)u(y)dy∫∞
0 β0(y)u(y)dy

)

with domain D(AK ) given by

{(u, u0) ∈ X ; u ∈W 2,1
loc (R+), u(0) = u0, (du′)′ − (γu)′ ∈ L1(R+)

and lims→∞ d(s)u′(s)− γ(s)u(s) = 0},

where

W 2,1
loc (R+) :=

{
u ∈ L1

loc(R+); u ∈W 2,1(0, c), ∀c > 0
}
.
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Well-posedness

Theorem
The operator AK generates an irreducible C0-semigroup {TAK (t)}t≥0 in X .

However, in the infinite case:
the resolvent (λI − AK )−1 is not compact;
we cannot use Marek’s arguments, and the spectral gap is not
insured.
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Asynchronous exponential growth

Theorem
Suppose that there exists a measurable subset I ⊂ R+ with positive
measure, such that

u ∈ L1(R+), u(y) > 0 a.e. =⇒
∫ ∞

0
β(s, y)u(y)dy > 0 a.e. s ∈ I.

If
lim

λ→s(A)
rσ(K (λ− A)−1) > 1,

then the semigroup {TAK (t)}t≥0 generated by AK has the property of
asynchronous exponential growth.
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Asynchronous exponential growth
Sketch of proof:

1 ωess({TAK (t)}t≥0) = ωess({TA(t)}t≥0) ≤ s(A);

2 rσ(K (λ− A)−1) > 0 (λ > s(A));
3 the function

(s(A),∞) 3 λ 7→ rσ(K (λ− A)−1)

is strictly decreasing;
4 there exists a unique λ > s(A) such that

rσ(K (λ− A)−1) = 1 ∈ σp(K (λ− A)−1);

5 finally, λ ∈ σp(AK ) and

ω0({TAK (t)}t≥0) = s(AK ) ≥ λ > s(A) ≥ ωess({TAK (t)}t≥0). �
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A practical criterion

Lemma
If β is bounded below by a separable kernel

β(x , y) ≥ β1(x)β2(y),

where β1 ∈ L1(0,∞), β2 ∈ L∞(0,∞) and β1 continuous in 0, then

rσ
(

K (λ− A)−1
)
≥
∥∥∥∥∥β2

(
(λ− A)−1

(
β1
β1(0)

))
1

∥∥∥∥∥
L1(R+)

,

where (·)1 denotes the first component.
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Constant case

Theorem
Suppose that

d ≡ 1, γ ∈ R, µ ∈ R+.

Let I1, I2 ⊂ R+ with positive measures. Assume that

β(x , y) ≥ β1(x)β2(y)

where β1 ∈ L1(0,∞), β2 ∈ L∞(0,∞) are such that

β1(s) > 0 a.e. s ∈ I1, β2(s) > 0 a.e. s ∈ I2

with β1 continuous in 0.

Then

lim
λ→s(A)

∥∥∥∥∥β2

(
(λ− A)−1

(
β1
β1(0)

))
1

∥∥∥∥∥
L1

=∞.
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Thank you for your attention !
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