Semigroups of Operators: Theory and Applications Kazimierz Dolny, September 30 – October 5, 2018

Substochastic semigroups and positive perturbations of boundary conditions

Marta Tyran-Kamińska (joint work with Piotr Gwiżdż)

Institute of Mathematics Polish Academy of Sciences and University of Silesia in Katowice

October 5, 2018

Setting

- \diamond (*E*, *E*, *m*) and (*E*_{∂}, *E*_{∂}, *m*_{∂}) two σ -finite measure spaces
- $\diamond L^1 = L^1(E, m)$ and $L^1_{\partial} = L^1(E_{\partial}, m_{\partial})$
- $\diamond~\mathcal{D}$ a linear dense subspace of L^1
- $\diamond A \colon \mathcal{D} \to L^1$ and $\Psi_0 \colon \mathcal{D} \to L^1_\partial$ linear operators
- $◊ A_0 f = Af, f ∈ D(A_0) = N(Ψ_0) = {f ∈ D : Ψ_0 f = 0} generator of a substochastic (positive and contractive C₀) semigroup on L¹$

Problem

Consider the operator $(A_{\Psi}, \mathcal{D}(A_{\Psi}))$ defined by

 $A_{\Psi}f = Af$, $f \in \mathcal{D}(A_{\Psi}) = \{f \in \mathcal{D} : \Psi_0(f) = \Psi(f)\}$,

where $\Psi \colon \mathcal{D} \to L^1_{\partial}$ is a linear operator.

When is $(A_{\Psi}, \mathcal{D}(A_{\Psi}))$ the generator of

- \diamond a *C*₀-semigroup?
- \diamond a positive C_0 -semigroup?
- ◊ a (sub)stochastic semigroup?

Greiner's theorem

 $A_{\Psi}f = Af$, $f \in \mathcal{D}(A_{\Psi}) = \{f \in \mathcal{D} : \Psi_0(f) = \Psi(f)\}$, is the generator of a C_0 -semigroup provided that (a) A: $\mathcal{D} \to L^1$ and $\Psi_0: \mathcal{D} \to L^1_a$ are closed, Ψ_0 is onto (b) $(A_0, \mathcal{D}(A_0))$ generates a C_0 -semigroup (c) there exist constants $\gamma > 0$ and λ_0 such that $\|\Psi_0 f\| > \lambda \gamma \|f\|, \quad f \in \mathcal{N}(\lambda I - A), \lambda > \lambda_0$ (d) $\Psi: L^1 \to L^1_a$ is bounded

G. Greiner. Perturbing the boundary conditions of a generator. Houston J. Math., 13(2):213–229, 1987.

Greiner's approach

Condition

(a) $A: \mathcal{D} \to L^1$ and $\Psi_0: \mathcal{D} \to L^1_{\partial}$ are closed, Ψ_0 is onto implies that $\mathcal{D} = \mathcal{N}(\lambda I - A) \oplus \mathcal{N}(\Psi_0)$,

 $\Psi_0|_{\mathcal{N}(\lambda I - A)}$ is invertible and the Dirichlet operator

$$\Psi(\lambda) := \left(\Psi_0 |_{\mathcal{N}(\lambda I - \mathcal{A})}
ight)^{-1} : L^1_\partial o L^1$$

is bounded for each $\lambda \in \rho(A_0)$

 $A_0f = Af$, $f \in \mathcal{D}(A_0) = \mathcal{N}(\Psi_0) = \{f \in \mathcal{D} : \Psi_0(f) = 0\}$

Greiner's approach

Conditions

(a) $A: \mathcal{D} \to L^1$ and $\Psi_0: \mathcal{D} \to L^1_{\partial}$ are closed, Ψ_0 is onto

(c) there exist constants $\gamma > 0$ and λ_0 such that

 $\|\Psi_0 f\| \geq \lambda \gamma \|f\|, \quad f \in \mathcal{N}(\lambda I - A), \lambda > \lambda_0$

imply that $\Psi(\lambda) = \left(\Psi_0|_{\mathcal{N}(\lambda I - A)}
ight)^{-1}$ satisfies $\|\Psi(\lambda)\| \leq rac{1}{\lambda\gamma}$

Take $f = \Psi(\lambda) f_{\partial}$, $f_{\partial} \in L^{1}_{\partial}$ in (c).

Greiner's approach

If Ψ is bounded then

$$\|\Psi(\lambda)\Psi\| \leq rac{\|\Psi\|}{\lambda\gamma},$$

 $I - \Psi(\lambda)\Psi \colon L^1 \to L^1$ is invertible with bounded inverse and

$$R(\lambda, A_{\Psi}) = (I - \Psi(\lambda)\Psi)^{-1}R(\lambda, A_0)$$

for $\lambda \in \rho(A_0)$, $\lambda > \max\{\lambda_0, \|\Psi\|/\gamma\}$

$$\begin{aligned} A_{\Psi}f &= Af, \quad f \in \mathcal{D}(A_{\Psi}) = \{f \in \mathcal{D} : \Psi_0(f) = \Psi(f)\}, \\ R(\lambda, A_{\Psi}) &:= (\lambda I - A_{\Psi})^{-1} \end{aligned}$$

Nickel's extension to unbounded Ψ

- (a) $A: \mathcal{D} \to L^1$ and $\Psi_0: \mathcal{D} \to L^1_{\partial}$ are closed, Ψ_0 is onto
- (b) $(A_0, \mathcal{D}(A_0))$ generates a C_0 -semigroup
- (cd) $\Psi: \mathcal{D} \to L^1_{\partial}$ and there are constants $C, \omega > 0$: $\Psi(\lambda)\Psi: \mathcal{D} \to L^1$ extends to a bounded operator

$$\|\Psi(\lambda)\Psi\|\leq \frac{C}{\lambda}, \quad \lambda>\omega.$$

Then $(A_{\Psi}, \mathcal{D}(A_{\Psi}))$ generates a C_0 -semigroup.

G. Nickel. A new look at boundary perturbations of generators. Electron. J. Differential Equations 2004(95):1-14, 2004.

Extension to positive semigroups

(i) $A: \mathcal{D} \to L^1$ and $\Psi_0: \mathcal{D} \to L^1_\partial$ are closed, Ψ_0 is onto and positive

(ii) $(A_0, \mathcal{D}(A_0))$ generates a positive C_0 -semigroup (iii) for each nonnegative $f \in \mathcal{D}$

$$\int_{E} Af \, dm - \int_{E_{\partial}} \Psi_{0} f \, dm_{\partial} \leq 0$$

imply: $\Psi(\lambda) = (\Psi_0|_{\mathcal{N}(\lambda/-A)})^{-1}$ is positive and $\|\Psi(\lambda)\| \leq \frac{1}{\lambda}$

P. Gwiżdż, M. Tyran-Kamińska, Positive semigroups and perturbations of boundary conditions, arXiv: 1807.06992

Extension to positive unbounded $\boldsymbol{\Psi}$

(i) $A: \mathcal{D} \to L^1$ and $\Psi_0: \mathcal{D} \to L^1_\partial$ are closed, Ψ_0 is onto and positive

(ii) $(A_0, \mathcal{D}(A_0))$ generates a positive C_0 -semigroup (iii) for each nonnegative $f \in \mathcal{D}$

$$\int_{E} Af \, dm - \int_{E_{\partial}} \Psi_{0} f \, dm_{\partial} \leq 0$$

(iv) $\Psi: \mathcal{D} \to L^1_{\partial}$ is positive and $I_{\partial} - \Psi \Psi(\lambda): L^1_{\partial} \to L^1_{\partial}$ is invertible with positive inverse, $\lambda > \omega$, $I_{\partial} = Id_{L^1_{\partial}}$

Then $(A_{\Psi}, \mathcal{D}(A_{\Psi}))$ generates a positive C_0 -semigroup.

Proof

Consider $\mathcal{X} = L^1 \times L^1_{\partial}$ with norm

$$\|(f,f_{\partial})\| = \int_{E} |f| \, dm + \int_{E_{\partial}} |f_{\partial}| \, dm_{\partial}, \quad (f,f_{\partial}) \in L^{1} \times L^{1}_{\partial}.$$

Define $\mathcal{A}, \mathcal{B}: \mathcal{D}(\mathcal{A}) \to L^1 \times L^1_{\partial}, \mathcal{D}(\mathcal{A}) = \mathcal{D} \times \{0\}$, by

 $\mathcal{A}(f,0) = (\mathcal{A}f, -\Psi_0 f)$ and $\mathcal{B}(f,0) = (0, \Psi f)$ for $f \in \mathcal{D}$.

We have $\overline{\mathcal{D}(\mathcal{A})} = L^1 \times \{0\}, \ \|R(\lambda, \mathcal{A})\| \leq \frac{1}{\lambda}, \ R(\lambda, \mathcal{A}) \geq 0, \\ \lambda > 0, \text{ and } \operatorname{spr}(\mathcal{B}R(\lambda, \mathcal{A})) < 1, \ \lambda > \max\{0, \omega\}$

 $R(\lambda, \mathcal{A} + \mathcal{B}) = R(\lambda, \mathcal{A})(\mathcal{I} - \mathcal{B}R(\lambda, \mathcal{A}))^{-1}, \quad \mathcal{I} = \mathsf{Id}_{\mathcal{X}}$

Proof

 $(\mathcal{A} + \mathcal{B})(f, 0) = (Af, \Psi f - \Psi_0 f), (f, 0) \in \mathcal{D}(\mathcal{A}) = \mathcal{D} \times \{0\},$ its part in $L^1 \times \{0\}$ generates a positive semigroup there

 $(\mathcal{A} + \mathcal{B})_{|}(f, 0) = (\mathcal{A}f, 0)$ $f \in \mathcal{D}, \Psi f - \Psi_0 f = 0$

 $\mathcal{D}((\mathcal{A}+\mathcal{B})_{|}) = \mathcal{D}(\mathcal{A}_{\Psi}) \times \{0\}, \ (\mathcal{A}+\mathcal{B})_{|}(f,0) = (\mathcal{A}_{\Psi}f,0).$

We have

 $R(\lambda, A_{\Psi})f = (I + \Psi(\lambda)(I_{\partial} - \Psi\Psi(\lambda))^{-1}\Psi)R(\lambda, A_{0})f, \quad f \in L^{1}$

and if Ψ is bounded then

$$I + \Psi(\lambda)(I_{\partial} - \Psi\Psi(\lambda))^{-1}\Psi = \sum_{n=0}^{\infty} (\Psi(\lambda)\Psi)^n = (I - \Psi(\lambda)\Psi)^{-1}.$$

Greiner's and Kato's theorems

(i) $A: \mathcal{D} \to L^1$ and $\Psi_0: \mathcal{D} \to L^1_\partial$ are closed, Ψ_0 is onto and positive

(ii) $(A_0, \mathcal{D}(A_0))$ generates a positive C_0 -semigroup (iiiiv) $\Psi: \mathcal{D} \to L^1_{\partial}$ is positive and for nonnegative $f \in \mathcal{D}$

$$\int_{E} Af \, dm - \int_{E_{\partial}} \Psi_{0}f \, dm_{\partial} + \int_{E_{\partial}} \Psi f \, dm_{\partial} = 0 \; (\leq 0)$$

Then there is an extension of $(A_{\Psi}, \mathcal{D}(A_{\Psi}))$ that generates a smallest substochastic semigroup.

 $(A_{\Psi}, \mathcal{D}(A_{\Psi}))$ is the generator of a (sub)stochastic semigroup iff spr $(\Psi\Psi(\lambda)) < 1$ for some $\lambda > 0$.

Cell cycle

the period between two cell divisions, from the birth of a cell until its division into 2 daughter cells

pl.wikipedia.org

Smith–Martin model - two phases: A (all or part of G_1) and B (the rest)

Two-phase cell cycle model

(a, x) - age and size of a cell in each phase T_A - random length of phase A, distributed with density h T_B - constant length of phase B

A piecewise deterministic Markov process

The process X(t) = (a(t), x(t), i(t)) satisfies

$$a'(t) = 1$$
, $x'(t) = g(x(t))$, $i'(t) = 0$,

between consecutive times $t_0, s_0, t_1, s_1, \ldots$, at the time s_n the cell from the *n*th generation enters phase *B*

$$a(s_n) = 0, \quad x(s_n) = x(s_n^-), \quad i(s_n) = 2,$$

 $t_{n+1} = s_n + T_B$ the cell divides into two daughter cells

$$a(t_{n+1}) = 0, \quad x(t_{n+1}) = \frac{1}{2}x(t_{n+1}^{-}), \quad i(t_{n+1}) = 1.$$

Two-phase cell cycle model

 $p_1(t, a, x)$, $p_2(t, a, x)$ - densities of the age and size distribution of cell in A and B phases; g(x) -size growth rate

$$\begin{aligned} \frac{\partial p_1(t, a, x)}{\partial t} &= -\frac{\partial p_1(t, a, x)}{\partial a} - \frac{\partial (g(x)p_1(t, a, x))}{\partial x} - \rho(a)p_1(t, a, x),\\ \frac{\partial p_2(t, a, x)}{\partial t} &= -\frac{\partial p_2(t, a, x)}{\partial a} - \frac{\partial (g(x)p_2(t, a, x))}{\partial x},\\ p_1(t, 0, x) &= 2p_2(t, T_B, 2x), \quad x > 0, t > 0,\\ p_2(t, 0, x) &= \int_0^\infty \rho(a)p_1(t, a, x)da, \quad x > 0, t > 0\\ \rho(a) &= -\frac{H'(a)}{H(a)}, \quad H(a) = \int_a^\infty h(r)dr\end{aligned}$$

Stochastic semigroup

To simplify presentation assume g(0) = 0; $E = E_1 \times \{1\} \cup E_2 \times \{2\}, E_1 = E_2 = (0, \infty)^2,$ $L^1 = L^1(E_1) \times L^1(E_2), f(a, x) = (f_1(a, x), f_2(a, x))$ $E_{\partial} = \Gamma_1^- \times \{1\} \cup \Gamma_2^- \times \{2\}, \Gamma_1^- = \Gamma_2^- = \{0\} \times (0, \infty)$ - incoming boundaries for a'(t) = 1, x'(t) = g(x(t))

We have

$$\|\Psi\Psi(\lambda)f_{\partial}\| \le \max\left\{e^{-\lambda T_{B}}, \int_{0}^{\infty}h(a)e^{-\lambda a}da\right\}\|f_{\partial}\|$$
$$\Psi f(0, x) = \left(2f_{2}(T_{B}, 2x), \int_{0}^{\infty}\rho(a)f_{1}(a, x)da\right)$$

Evolution of densities of the process

There is a stochastic semigroup $\{S(t)\}_{t\geq 0}$ on L^1 which provides solutions of the cell cycle model equations.

Let X(t) = (a(t), x(t), i(t)) be the PDMP.

If the distribution of X(0) has a density $f(||f_1|| + ||f_2|| = 1, f_i \ge 0)$ then X(t) has a density S(t)f, i.e.,

$$\Pr(X(t) \in B_i \times \{i\}) = \int_{B_i} (S(t)f)_i(a, x) dadx$$

for any Borel set $B_i \subset E_i$

P. Gwiżdż, M. Tyran-Kamińska, Densities for piecewise deterministic Markov processes with boundary, in preparation

Greiner's and Kato's theorems

- (i) $A: \mathcal{D} \to L^1$ and $\Psi_0: \mathcal{D} \to L^1_\partial$ are closed, Ψ_0 is onto and positive
- (ii) $(A_0, \mathcal{D}(A_0))$ generates a positive C_0 -semigroup
- (iii) $B: \mathcal{D} \to L^1$ and $\Psi: \mathcal{D} \to L^1_{\partial}$ are positive
- (iv) for nonnegative $f \in \mathcal{D}$

$$\int_{E} (Af + Bf) dm - \int_{E_{\partial}} \Psi_{0} f dm_{\partial} + \int_{E_{\partial}} \Psi f dm_{\partial} = 0 \ (\leq 0)$$

Then there is an extension of $(A_{\Psi} + B, \mathcal{D}(A_{\Psi}))$ that generates a smallest substochastic semigroup.

SPRINGER BRIEFS IN APPLIED SCIENCES AND TECHNOLOGY • MATHEMATICAL METHODS

Ryszard Rudnicki Marta Tyran-Kamińska

Piecewise Deterministic Processes in Biological Models

