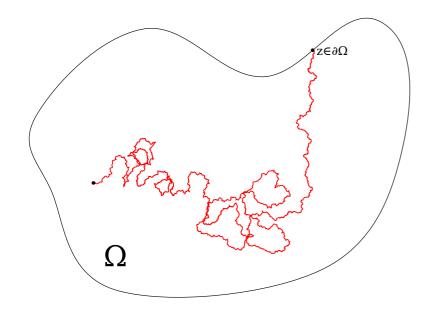


Diffusion with nonlocal boundary conditions on unbounded domains

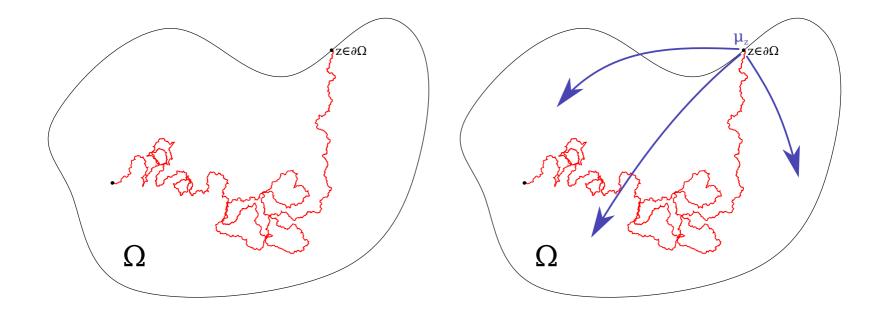
Markus Kunze

Universität Konstanz, October 5th 2018

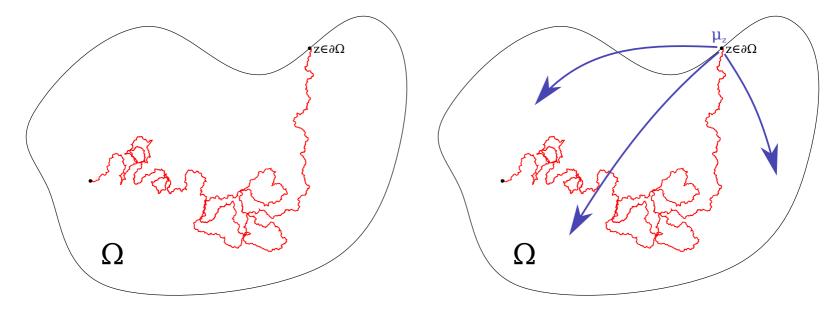
Diffusion



Diffusion with nonlocal boundary conditions



Diffusion with nonlocal boundary conditions



Goal: Study diffusion operator on an unbounded domain with unbounded coefficients subject to nonlocal boundary conditions.

Setting

- $\Omega \subset \mathbb{R}^d$ a (typically unbounded) open and Dirichlet regular set, i.e. in every point $z \in \partial \Omega$ we find a *barrier* at *z*. This is a function $w \in C(\overline{\Omega \cap B_r(z)})$ with w(z) = 0, w(x) > 0 for $x \in \Omega \cap B_r(z)$ and $\Delta w \leq 0$ in the distributional sense.

Setting

- $\Omega \subset \mathbb{R}^d$ a (typically unbounded) open and Dirichlet regular set, i.e. in every point $z \in \partial \Omega$ we find a *barrier* at *z*. This is a function $w \in C(\overline{\Omega \cap B_r(z)})$ with w(z) = 0, w(x) > 0 for $x \in \Omega \cap B_r(z)$ and $\Delta w \leq 0$ in the distributional sense.
- We are given a map $\mu : \partial \Omega \to \mathscr{M}(\Omega)$ that is
 - $\sigma(\mathscr{M}(\Omega), C_b(\Omega))$ -continuous,
 - takes values in the probability measures and
 - there is a ball $B_r(x)$ and $\varepsilon > 0$ such that $\mu(z, B_r(x)) \ge \varepsilon$ for all $z \in \partial \Omega$.

Setting

- $\Omega \subset \mathbb{R}^d$ a (typically unbounded) open and Dirichlet regular set, i.e. in every point $z \in \partial \Omega$ we find a *barrier* at *z*. This is a function $w \in C(\overline{\Omega \cap B_r(z)})$ with w(z) = 0, w(x) > 0 for $x \in \Omega \cap B_r(z)$ and $\Delta w \leq 0$ in the distributional sense.
- We are given a map $\mu : \partial \Omega \to \mathscr{M}(\Omega)$ that is
 - $\sigma(\mathscr{M}(\Omega), C_b(\Omega))$ -continuous,
 - takes values in the probability measures and
 - there is a ball $B_r(x)$ and $\varepsilon > 0$ such that $\mu(z, B_r(x)) \ge \varepsilon$ for all $z \in \partial \Omega$.
- We set $\mathscr{A}u(x) := \Delta u(x) \langle x, \nabla u(x) \rangle$ and define the operator A_{μ} by setting $A_{\mu}u = \mathscr{A}u$ on

$$D(A_{\mu}) := \left\{ u \in C_{b}(\overline{\Omega}) \cap \bigcap_{1$$

Main results

Theorem (K'18) Under the assumptions above:

- The operator A_{μ} generates a Markovian *-semigroup $T_{\mu} = (T_{\mu}(t))_{t>0}$ on $L^{\infty}(\Omega)$.

Main results

Theorem (K'18) Under the assumptions above:

- The operator A_{μ} generates a Markovian *-semigroup $T_{\mu} = (T_{\mu}(t))_{t>0}$ on $L^{\infty}(\Omega)$.
- The semigroup enjoys the strong Feller property, i.e. $T_{\mu}(t)L^{\infty}(\Omega) \subset C_{b}(\overline{\Omega})$ and the restriction to $C_{b}(\overline{\Omega})$ is given through transition kernels.

Main results

Theorem (K'18) Under the assumptions above:

- The operator A_{μ} generates a Markovian *-semigroup $T_{\mu} = (T_{\mu}(t))_{t>0}$ on $L^{\infty}(\Omega)$.
- The semigroup enjoys the strong Feller property, i.e.
 T_μ(t)L[∞](Ω) ⊂ C_b(Ω) and the restriction to *C_b(Ω)* is given through transition kernels.
- If Ω is connected, then T_{μ} has at most one invariant probability measure. If there is an invariant probability measure ν^* , then

$$\mathcal{T}_{\mu}(t)f
ightarrow\int_{\Omega}f\ d
u^{\star}\cdot\mathbb{1}_{\overline{\Omega}}$$
 uniformly on compact subsets of $\overline{\Omega}$

and

 $\mathcal{T}_{\mu}(t)' \nu \rightarrow \nu(\overline{\Omega}) \nu^{\star}$ in total variation norm.

Related results in the Literature

Nonlocal boundary conditions on *bounded* domains.

- Feller '52, '54: one-dimensional theory, *immediate return process*.
- Galakhov, Skubachevskiĭ '01: Strongly continuous semigroup on $C_{\mu}(\overline{\Omega})$.
- Ben-Ari, Pinsky '07, '09: probabilistic construction of the process.
- Arendt, Kunkel, K. '17: Analytic semigroup on $L^{\infty}(\Omega)$, $C(\overline{\Omega})$.

. . .

Related results in the Literature

Nonlocal boundary conditions on *bounded* domains.

- Feller '52, '54: one-dimensional theory, *immediate return process*.
- Galakhov, Skubachevskiĭ '01: Strongly continuous semigroup on $C_{\mu}(\overline{\Omega})$.
- Ben-Ari, Pinsky '07, '09: probabilistic construction of the process.
- Arendt, Kunkel, K. '17: Analytic semigroup on $L^{\infty}(\Omega)$, $C(\overline{\Omega})$.

Diffusion operators with unbounded coefficients

- *Da Prato, Lundardi* '95: Prototype example: Ornstein–Uhlenbeck operator. The semigroup is *not analytic*.
- *Metafune, Pallara, Wacker* '02: General operators on \mathbb{R}^d .
- Fornaro, Metafune, Priola '04: Dirichlet boundary conditions on unbounded domains.
- *Bertoldi, Fornaro* '04 and *Bertoldi, Fornaro, Lorenzi* '07: Neuman boundary conditions on unbounded domains.

....

. . .

*-semigroups

Let X be the dual of a separable Banach space. We write σ^* for the weak*-topology on X*.

- A contractive *-semigroup is a family $T = (T(t))_{t>0} \subset \mathscr{L}(X^*, \sigma^*)$ such that
 - T(t+s) = T(t)T(s) for all t, s > 0,
 - $\|\mathcal{T}(t)\| \leq 1$ for all t > 0 and
 - for all $x \in X$ and $x^* \in X^*$ the map $t \mapsto \langle T(t)x^*, x \rangle$ is measurable.

*-semigroups

Let X be the dual of a separable Banach space. We write σ^* for the weak*-topology on X*.

- A contractive *-semigroup is a family $T = (T(t))_{t>0} \subset \mathscr{L}(X^*, \sigma^*)$ such that
 - T(t+s) = T(t)T(s) for all t, s > 0,
 - $||T(t)|| \le 1$ for all t > 0 and
 - for all $x \in X$ and $x^* \in X^*$ the map $t \mapsto \langle T(t)x^*, x \rangle$ is measurable.
- For $\operatorname{Re}\lambda > 0$, define $R(\lambda) \in \mathscr{L}(X^*, \sigma^*)$ by

$$\langle R(\lambda)x^*,x\rangle = \int_0^\infty e^{-\lambda t} \langle T(t)x^*,x\rangle \, dt.$$

- $(R(\lambda))_{\text{Re}\lambda>0}$ is a pseudoresolvent that determines T uniquely.

*-semigroups

Let X be the dual of a separable Banach space. We write σ^* for the weak*-topology on X*.

- A contractive *-semigroup is a family $T = (T(t))_{t>0} \subset \mathscr{L}(X^*, \sigma^*)$ such that
 - T(t+s) = T(t)T(s) for all t, s > 0,
 - $||T(t)|| \le 1$ for all t > 0 and
 - for all $x \in X$ and $x^* \in X^*$ the map $t \mapsto \langle T(t)x^*, x \rangle$ is measurable.
- For $\operatorname{Re}\lambda > 0$, define $R(\lambda) \in \mathscr{L}(X^*, \sigma^*)$ by

$$\langle R(\lambda)x^*,x\rangle = \int_0^\infty e^{-\lambda t} \langle T(t)x^*,x\rangle \, dt.$$

- $(R(\lambda))_{\text{Re}\lambda>0}$ is a pseudoresolvent that determines T uniquely.
- If ker $R(\lambda) = \{0\}$ for one/all Re $\lambda > 0$, then there exists an operator A with $R(\lambda, A) = R(\lambda)$. We call A the generator of T.

A monotone convergence theorem for *-semigroups

Assume additionally, that X is a KB-space, e.g. $X = L^{1}(\Omega)$.

A monotone convergence theorem for *-semigroups

Assume additionally, that X is a KB-space, e.g. $X = L^{1}(\Omega)$.

Proposition (K. '18) Let two contractive *-semigroups T_1 and T_2 with Laplace transforms R_1 and R_2 be given and assume that T_1 is positive. Then $T_1(t) \leq T_2(t)$ if and only if $R_1(\lambda) \leq R_2(\lambda)$ for all large enough λ .

A monotone convergence theorem for *-semigroups

Assume additionally, that X is a KB-space, e.g. $X = L^{1}(\Omega)$.

Proposition (K. '18) Let two contractive *-semigroups T_1 and T_2 with Laplace transforms R_1 and R_2 be given and assume that T_1 is positive. Then $T_1(t) \leq T_2(t)$ if and only if $R_1(\lambda) \leq R_2(\lambda)$ for all large enough λ .

Proposition (K. '18) Let $(T_n)_{n \in \mathbb{N}}$ be an increasing sequence of positive and contractive *semigroups with Laplace transform $(R_n)_{n \in \mathbb{N}}$. Then $T(t) := \sup_{n \in \mathbb{N}} T_n(t)$ defines a positive and contractive *-semigroup whose Laplace transform is given by $R(\lambda) = \sup_{n \in \mathbb{N}} R_n(\lambda)$ for all $\lambda > 0$.

Sketch of proof of the main theorem

- Set $\Omega_n := \Omega \cap B_{n+1}(0)$. Pick $\rho_n \in C(\mathbb{R}^d)$ such that $\mathbb{1}_{B_n(0)} \le \rho_n \le \mathbb{1}_{B_{n+1}(0)}$ and set

$$\mu_n(z,A) := \begin{cases} \rho_n(z) \int_A \rho_n(x) \mu(z,dx), & z \in \partial \Omega_n \cap \partial \Omega \\ 0, & z \in \partial \Omega_n \setminus \partial \Omega. \end{cases}$$

Sketch of proof of the main theorem

- Set $\Omega_n := \Omega \cap B_{n+1}(0)$. Pick $\rho_n \in C(\mathbb{R}^d)$ such that $\mathbb{1}_{B_n(0)} \le \rho_n \le \mathbb{1}_{B_{n+1}(0)}$ and set

$$\mu_n(z,A) := \begin{cases} \rho_n(z) \int_A \rho_n(x) \mu(z,dx), & z \in \partial \Omega_n \cap \partial \Omega \\ 0, & z \in \partial \Omega_n \setminus \partial \Omega. \end{cases}$$

- Put $A_n u(x) = \mathscr{A} u$ for $u \in D(A_n)$, defined by

$$D(A_n) := \left\{ u \in C_b(\overline{\Omega_n}) \cap \bigcap_{1
$$u(z) = \int_{\Omega_n} u(x) \mu_n(z, dx) \text{ for all } z \in \partial \Omega_n \right\}.$$$$

Sketch of proof of the main theorem

- Set $\Omega_n := \Omega \cap B_{n+1}(0)$. Pick $\rho_n \in C(\mathbb{R}^d)$ such that $\mathbb{1}_{B_n(0)} \le \rho_n \le \mathbb{1}_{B_{n+1}(0)}$ and set

$$\mu_n(z,A) := \begin{cases} \rho_n(z) \int_A \rho_n(x) \mu(z,dx), & z \in \partial \Omega_n \cap \partial \Omega \\ 0, & z \in \partial \Omega_n \setminus \partial \Omega. \end{cases}$$

- Put $A_n u(x) = \mathscr{A} u$ for $u \in D(A_n)$, defined by

$$D(A_n) := \left\{ u \in C_b(\overline{\Omega_n}) \cap \bigcap_{1
$$u(z) = \int_{\Omega_n} u(x) \mu_n(z, dx) \text{ for all } z \in \partial \Omega_n \right\}.$$$$

- By results on bounded domains: A_n is the generator of an analytic semigroup T_n on $L^{\infty}(\Omega_n)$, that is positive and contractive and enjoys the strong Feller property.

- we can view $R(\lambda, A_n)$ and $T_n(t)$ as operators on $L^{\infty}(\Omega)$, extending functions with zero outside Ω_n (\rightsquigarrow operators take values in $C(\overline{\Omega})$).

- we can view $R(\lambda, A_n)$ and $T_n(t)$ as operators on $L^{\infty}(\Omega)$, extending functions with zero outside Ω_n (\rightsquigarrow operators take values in $C(\overline{\Omega})$).
- Maximum principle \rightsquigarrow for every $\lambda > 0$ the sequence $R(\lambda, A_n)$ is increasing. Show that $R(\lambda) := \sup_n R(\lambda, A_n)$ is an injective, positive, adjoint operator that takes values in $D(A_\mu)$ and $u := R(\lambda)f$ solves the elliptic equation $\lambda u \mathscr{A}u = f$.

- we can view $R(\lambda, A_n)$ and $T_n(t)$ as operators on $L^{\infty}(\Omega)$, extending functions with zero outside Ω_n (\rightsquigarrow operators take values in $C(\overline{\Omega})$).
- Maximum principle \rightsquigarrow for every $\lambda > 0$ the sequence $R(\lambda, A_n)$ is increasing. Show that $R(\lambda) := \sup_n R(\lambda, A_n)$ is an injective, positive, adjoint operator that takes values in $D(A_\mu)$ and $u := R(\lambda)f$ solves the elliptic equation $\lambda u \mathscr{A}u = f$.
- Use Lyapunov function $V(x) = |x|^2$ and concentration assumption to prove that $\lambda \mathscr{A}$ is injective on $D(A_{\mu})$, from which it follows that $R(\lambda) = R(\lambda, A_{\mu})$.

- we can view $R(\lambda, A_n)$ and $T_n(t)$ as operators on $L^{\infty}(\Omega)$, extending functions with zero outside Ω_n (\rightsquigarrow operators take values in $C(\overline{\Omega})$).
- Maximum principle \rightsquigarrow for every $\lambda > 0$ the sequence $R(\lambda, A_n)$ is increasing. Show that $R(\lambda) := \sup_n R(\lambda, A_n)$ is an injective, positive, adjoint operator that takes values in $D(A_\mu)$ and $u := R(\lambda)f$ solves the elliptic equation $\lambda u \mathscr{A}u = f$.
- Use Lyapunov function $V(x) = |x|^2$ and concentration assumption to prove that $\lambda \mathscr{A}$ is injective on $D(A_{\mu})$, from which it follows that $R(\lambda) = R(\lambda, A_{\mu})$.
- By the monotone convergence theorem, A_{μ} is the generator of a positive and contractive *-semigroup T_{μ} .

- we can view $R(\lambda, A_n)$ and $T_n(t)$ as operators on $L^{\infty}(\Omega)$, extending functions with zero outside Ω_n (\rightsquigarrow operators take values in $C(\overline{\Omega})$).
- Maximum principle \rightsquigarrow for every $\lambda > 0$ the sequence $R(\lambda, A_n)$ is increasing. Show that $R(\lambda) := \sup_n R(\lambda, A_n)$ is an injective, positive, adjoint operator that takes values in $D(A_\mu)$ and $u := R(\lambda)f$ solves the elliptic equation $\lambda u \mathscr{A}u = f$.
- Use Lyapunov function $V(x) = |x|^2$ and concentration assumption to prove that $\lambda \mathscr{A}$ is injective on $D(A_{\mu})$, from which it follows that $R(\lambda) = R(\lambda, A_{\mu})$.
- By the monotone convergence theorem, A_{μ} is the generator of a positive and contractive *-semigroup T_{μ} .
- Strong Feller property: $0 \le f \le 1 \longrightarrow T_{\mu}(t)f = \sup_{n} T_{n}f$ is lower semicontinuous as supremum of continuous functions.

- we can view $R(\lambda, A_n)$ and $T_n(t)$ as operators on $L^{\infty}(\Omega)$, extending functions with zero outside Ω_n (\rightsquigarrow operators take values in $C(\overline{\Omega})$).
- Maximum principle \rightsquigarrow for every $\lambda > 0$ the sequence $R(\lambda, A_n)$ is increasing. Show that $R(\lambda) := \sup_n R(\lambda, A_n)$ is an injective, positive, adjoint operator that takes values in $D(A_\mu)$ and $u := R(\lambda)f$ solves the elliptic equation $\lambda u \mathscr{A}u = f$.
- Use Lyapunov function $V(x) = |x|^2$ and concentration assumption to prove that $\lambda \mathscr{A}$ is injective on $D(A_{\mu})$, from which it follows that $R(\lambda) = R(\lambda, A_{\mu})$.
- By the monotone convergence theorem, A_{μ} is the generator of a positive and contractive *-semigroup T_{μ} .
- Strong Feller property: $0 \le f \le 1 \longrightarrow T_{\mu}(t)f = \sup_{n} T_{n}f$ is lower semicontinuous as supremum of continuous functions.
- On the other hand, $\mathbb{1} \in \ker A_{\mu}$ so $T_{\mu}(t)\mathbb{1} \equiv \mathbb{1}$. Thus $\mathbb{1} T_{\mu}(t)f = \sup_{n} T_{n}(t)(\mathbb{1} f)$ is also lower semicontinuous, whence $T_{\mu}f$ is upper semicontinuous. Altogether, $T_{\mu}(t)f$ is continuous.

- Using again the Lyapunov function $V(x) = |x|^2$ one can show that if Ω is connected, then ker $A_{\mu} = \text{span}\{1\}$.

- Using again the Lyapunov function $V(x) = |x|^2$ one can show that if Ω is connected, then ker $A_{\mu} = \text{span}\{1\}$.
- As T_{μ} enjoys the strong Feller property, it follows from results of *Gerlach, K.* '14 that T_{μ} has at most one invariant probability measure.

- Using again the Lyapunov function $V(x) = |x|^2$ one can show that if Ω is connected, then ker $A_{\mu} = \text{span}\{1\}$.
- As T_{μ} enjoys the strong Feller property, it follows from results of *Gerlach, K.* '14 that T_{μ} has at most one invariant probability measure.
- If T_{μ} has an invariant probability measure, the claimed asymptotic behavior follows from recent results of *Gerlach*, *Glück* '18+.

- Using again the Lyapunov function $V(x) = |x|^2$ one can show that if Ω is connected, then ker $A_{\mu} = \text{span}\{1\}$.
- As T_{μ} enjoys the strong Feller property, it follows from results of *Gerlach, K.* '14 that T_{μ} has at most one invariant probability measure.
- If T_{μ} has an invariant probability measure, the claimed asymptotic behavior follows from recent results of *Gerlach*, *Glück* '18+.

```
Theorem (K. '18)
```

```
Assume that ker A_{\mu} = \operatorname{span}\{1\} and that there exists a function V \in C(\overline{\Omega}) \cap \bigcap_{1  such that
```

- 1. $V \ge 0$ and $V(x) \to \infty$ as $|x| \to \infty$;
- 2. $\mathscr{A}V$ has a version that is continuous on Ω , bounded on bounded subsets of Ω and satisfies $\mathscr{A}V(x) \to -\infty$ as $|x| \to \infty$.
- 3. *V* is integrable with respect to $\mu(z)$ and $\int V(x)\mu(z, dx) \leq V(z)$ for all $z \in \partial \Omega$.

Then $T\mu$ has a unique invariant probability measure.

- Consider d = 1, $\Omega = (0, \infty)$ and $\mathscr{A}u(x) = u''(x) - xu'(x)$.

- Consider d = 1, $\Omega = (0, \infty)$ and $\mathscr{A}u(x) = u''(x) xu'(x)$.
- $V(x) = x^2$ satisfies points 1. and 2., as $\mathscr{A}u(x) = 2 2x^2$.

- Consider d = 1, $\Omega = (0, \infty)$ and $\mathscr{A}u(x) = u''(x) xu'(x)$.
- $V(x) = x^2$ satisfies points 1. and 2., as $\mathscr{A}u(x) = 2 2x^2$.
- Suppose *V* is integrable with respect to $\mu = \mu(0)$. Pick 0 < r < R such that

$$\mu((0,r)) \leq rac{1}{2}$$
 and $\int_R^\infty V(x) \, d\mu(x) \leq rac{1}{2}.$

- Consider d = 1, $\Omega = (0, \infty)$ and $\mathscr{A}u(x) = u''(x) xu'(x)$.
- $V(x) = x^2$ satisfies points 1. and 2., as $\mathscr{A}u(x) = 2 2x^2$.
- Suppose V is integrable with respect to $\mu = \mu(0)$. Pick 0 < r < R such that

$$\mu((0,r)) \leq \frac{1}{2}$$
 and $\int_{R}^{\infty} V(x) d\mu(x) \leq \frac{1}{2}.$

- We find $0 \leq \tilde{V} \in C^2(0, \infty) \cap C([0, \infty)$ with $\tilde{V}(0) = 1$, $\tilde{V}(x) = 0$ for $x \in [r, R]$ and $\tilde{V}(x) = x^2$ for $x \geq R + 1$. We may arrange $\tilde{V}(x) \leq 1$ for $x \in [0, r]$ and $\tilde{V}(x) \leq V(x)$ for $x \in [R, R + 1]$. Then \tilde{V} satisfies 1., 2. and 3.

- Consider d = 1, $\Omega = (0, \infty)$ and $\mathscr{A}u(x) = u''(x) xu'(x)$.
- $V(x) = x^2$ satisfies points 1. and 2., as $\mathscr{A}u(x) = 2 2x^2$.
- Suppose V is integrable with respect to $\mu = \mu(0)$. Pick 0 < r < R such that

$$\mu((0,r)) \leq \frac{1}{2}$$
 and $\int_{R}^{\infty} V(x) d\mu(x) \leq \frac{1}{2}.$

- We find $0 \leq \tilde{V} \in C^2(0, \infty) \cap C([0, \infty))$ with $\tilde{V}(0) = 1$, $\tilde{V}(x) = 0$ for $x \in [r, R]$ and $\tilde{V}(x) = x^2$ for $x \geq R + 1$. We may arrange $\tilde{V}(x) \leq 1$ for $x \in [0, r]$ and $\tilde{V}(x) \leq V(x)$ for $x \in [R, R + 1]$. Then \tilde{V} satisfies 1., 2. and 3.
- We may argue similar on exterior domains.

The end

Thank you for your attention

Referenzen:

- W. Arendt, S. Kunkel, M.K., *Diffusion with nonlocal boundary conditions*, J. Funct. Anal., Vol. 270(7), 2017, 663–706.
- W. Arendt, S. Kunkel, M.K., *Diffusion with nonlocal Robin boundary conditions*, J. Math. Soc. Japan, Vol. 70(4), 2018, 1523–1556
- M.K., *Diffusion with nonlocal Dirichlet boundary conditions on unbounded domains*, in preparation.