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Focus of Presentation

1 In this presentation, we study the discrete
coagulation–fragmentation models with growth, decay and
sedimentation. We demonstrate the existence and uniqueness
of classical global solutions, using the theory of linear and
semilinear semigroups of operators, provided the linear
processes are sufficiently strong.

2 The conclusions obtained from the theories are supported by
numerical simulations.
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Applications

In the applications of coagulation-fragmentation models to life
sciences, the clusters consist of living organisms and can
change their size not only due to the coalescence or splitting,
but also due to internal demographic processes such as death
or birth of organisms inside.

Specifically, in the phytoplankton dynamics, the removal of
whole clusters due to their sedimentation is an important
process that is responsible for rapid clearance of the organic
material from the surface of the sea.

The removal of clusters of suspended solid particles from a
mixture is also important in water treatment, biofuel
production, or beer fermentation.

L. O. Joel, J. Banasiak and S. Shindin The Discrete Coagulation-Fragmentation Equation
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The Phytoplankton

Phytoplankton serves as the oxygen-producing foundation of many marine
food chains and humans (about 50% of the world’s oxygen).

Aggregates of phytoplankton are formed due to collisions of smaller
aggregates and due to their stickiness resulting from the presence of
organic glues such as carbohydrates and Transparent Exopolymer
Particles (TEP).

Jackson (1990) in modelling the dynamics of Phytoplankton,

d

dt
C1 = µC1 − αC1

∞∑
i=1

Ciβ1,i −
C1wi

z
,

d

dt
Cn =

α

2

n−1∑
i=1

CiCn−iβi,n−i − αCn

∞∑
i=1

Ciβn,i −
Cnwn

z︸ ︷︷ ︸
sedimentation of aggregate

, n ≥ 2.

He suggested a generalization of the above model.

Hence, the model should include fragmentation, growth and death terms

L. O. Joel, J. Banasiak and S. Shindin The Discrete Coagulation-Fragmentation Equation
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The full Model

The full model, [Banasiak J.], would be:

dfi
dt

= (gi−1fi−1 − gi fi )︸ ︷︷ ︸
growth of a cell

+(di+1fi+1 − di fi )︸ ︷︷ ︸
death of a cell (decay)

−si fi︸ ︷︷ ︸
death of aggregate (sedimentation)

−ai fi +
∞∑

j=i+1

ajbi,j fj︸ ︷︷ ︸
Fragmentation of aggregate

+
1

2

i−1∑
j=1

ki−j,j fi−j fj −
∞∑
j=1

ki,j fi fj︸ ︷︷ ︸
coagulation of aggregate

, i ≥ 1,

fi (0) = f 0
i , i ≥ 1.

(1)
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Assumptions

As clusters can fragment into two or more smaller pieces
(multiple fragmentation) but not into bigger clusters, we note
the following:

a1 = 0, ai ≥ 0 ∈ R, i ≥ 2,

b1,j = 0,

bi ,j = 0, j ≥ i .

(2)

Naturally, for this system to conserve mass, the following
assumption has to be imposed

j−1∑
i=1

ibi ,j = j , j ≥ 2. (3)

From the physical point of view, both the fragmentation term
and the coagulation term should be symmetric.

L. O. Joel, J. Banasiak and S. Shindin The Discrete Coagulation-Fragmentation Equation
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Literature

The discrete model is not as popular in the literature as the continuous model.
We decided to contribute to the discrete case.

For the continuous case, some authors (Arlotti & Banasiak, 2004; Banasiak &

Lamb, 2003 & 2009; Banasiak, 2006; Banasiak & Oukouomi, 2009; Cai et al,

1991; Edwards et al, 1990; Huang et al, 1991; Mischler & Scher, 2016; Omari,

2011; Poka, 2012; ) have worked on equation (1) with either

the decay, sedimentation and coagulation terms are not
included, or
the growth and sedimentation terms are not included

Smith et al (2011), worked on the discrete equation of (1) but with a bounded
coagulation term and without the growth and sedimentation term using the
discrete form of the mass loss condition

j−1∑
n=1

nbn,j = j(1− λj ) for j ≥ 2. (4)

L. O. Joel, J. Banasiak and S. Shindin The Discrete Coagulation-Fragmentation Equation
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Abstract Cauchy Problem

Formulating the equation as an Abstract Cauchy Problem (ACP):

df

dt
= Ypf + Kpf , f (0) = (fn)∞n . (5)

where Yp is the linear part, and Kp is the nonlinear part

[Ypf ]i = gi−1fi−1 − (gi + di + si + ai )fi , i ≥ 1, a1 = 0,

+ di+1fi+1 +
∞∑

j=i+1

ajbi,j fj , i ≥ 2. (6)

[Kpf ]i =
1

2

i−1∑
j=1

ki−j,j fi−j fj −
∞∑
j=1

ki,j fi fj , i ≥ 1 (7)
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Growth-sedimentation-fragmentation equation

We shall use the fact that equation (6) can be written as the
growth-sedimentation-fragmentation model

dfn
dt

= gn−1fn−1 − (gn + an + sn)fn +
∞∑

i=n+1

aibn,i fi , n ≥ 1,

fn(0) = f inn , n ≥ 1, (8)

where an = an + dn, n ≥ 2, (with a1 = 0) and

bn,i =

{
an+1bn,n+1+dn+1

an+1+dn+1
, i = n + 1,

aibn,i
ai+di

, i ≥ n + 2.
(9)

L. O. Joel, J. Banasiak and S. Shindin The Discrete Coagulation-Fragmentation Equation
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We note that the fragmentation part of this model no longer is
conservative as

i−1∑
n=1

nbn,i = i

(
1− di

i(ai + di )

)
, i ≥ 2, (10)

so it corresponds to the model with the so-called discrete mass-loss with
mass-loss fraction λn = dn/n(an + dn), ( see Cai, 1991), mathematically
analysed in (Smith, 2011).

The analysis of the pure fragmentation equation most often is carried out
in the space X1 := `1

1 with the norm

‖f ‖[1] =
∞∑
n=1

n|fn| (11)

which, for a nonnegative f , gives the mass of the ensemble.

However, it is much better to consider (1) in the spaces with finite higher
moments, Xp := `1

p, with the norm

‖f ‖[p] =
∞∑
n=1

np|fn|, p ≥ 1. (12)

L. O. Joel, J. Banasiak and S. Shindin The Discrete Coagulation-Fragmentation Equation
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Operators

We consider the operators (Tp,D(Tp)), (G−p ,D(Gp)),
(D+

p ,D(Dp)) and (Bp,D(Bp)) defined by

[Tpf ]i = −θi fi , [G−p f ]i = gi−1fi−1,

[D+
p f ]i = di+1fi+1, [Bpf ]i =

∞∑
j=i+1

ajbi ,j fj , i ≥ 1,

where θi := ai + gi + di + si , i ≥ 1, and g0 = a1 = 0. Further, we
denote

∆
(p)
i := ip −

i−1∑
j=1

jpbj ,i , i ≥ 2, p ≥ 0. (13)

Then the following holds (see Banasiak et al, 2018 for the details):

L. O. Joel, J. Banasiak and S. Shindin The Discrete Coagulation-Fragmentation Equation



General Introduction
Analysis

Numerical Simulations
References

Linear Part
Nonlinear Part

Generation of Analytic Semigroup

Theorem (1)

If for some p > 1

lim inf
i→∞

ai
θi

∆
(p)
i

ip
> 0, (14)

then for any p > 1 the sum
(Yp,D(Yp)) = (Tp + Gp + Dp + Bp,D(Tp)) generates a positive
analytic C0-semigroup {Sp(t)}t≥0 in Xp.

Proof: - the diagonal operator generates a substochastic analytic
semigroup
- perturbation by [G−p f ]
- perturbation by [Bpf ], and
- by Arendt-Rhandi theorem, the sum generates an analytic
semigroup

L. O. Joel, J. Banasiak and S. Shindin The Discrete Coagulation-Fragmentation Equation
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Local Mild Solution

We assume that all the conditions of Theorem 1 are satisfied. In addition, we
impose the following bound on the coefficients of the coagulation kernel

ki,j ≤ κ((1 + θi )
α + (1 + θj)

α), i , j ≥ 1, 0 < α < 1. (15)

Then, we proved the following theorem
where the norm of the intermediate spaces, Xp,α, is given by the expression

‖f ‖p,α =
∞∑
i=1

ip(1 + θi )
α|fi |, 0 < α < 1. (16)

Lemma (1)

Assume for some p > 1 conditions (14) and (15) are satisfied. Then for each
f0 ∈ X+

p,α and some T > 0, the initial value problem (1) has a unique
non-negative mild solution f ∈ C([0,T ],Xp,α).

L. O. Joel, J. Banasiak and S. Shindin The Discrete Coagulation-Fragmentation Equation
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Local Classical Solution

Theorem (2)

Assume that conditions (14) and (15) are satisfied. Then, for each
f0 ∈ Xp,α there is T = T (f0) > 0 such that the initial value
problem (1) has a unique non-negative classical solution
f ∈ C ([0,T ],Xp,α) ∩ C 1((0,T ),Xp) ∩ C ((0,T ),Xp,1).

Proof: - We use the variation of constant formula
-We prove the map is bounded, locally lipschitz continuous and it
is a contraction
- We prove the differentiability of the mild solution

L. O. Joel, J. Banasiak and S. Shindin The Discrete Coagulation-Fragmentation Equation
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Global Solution

Lemma (2)

Assume that f0 ∈ X+
p,α and for some ω1

gi − di
i
− si ≤ ω1 (17)

Then, under the assumptions of Theorem (2), the local solution
satisfies

‖f ‖1 ≤ eω1t‖f0‖1, t ∈ (0,T (f0)). (18)

Theorem (3)

Under the assumptions of Theorem (2) and Lemma (2), any
solution of (1) with f0 ∈ X+

p,α, p ≥ 1, is global in time.

L. O. Joel, J. Banasiak and S. Shindin The Discrete Coagulation-Fragmentation Equation
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Truncated Equation

In numerical simulations, we approximate the original infinite dimensional
system (1) by the following finite dimensional counterpart:

dui
dt

= gi−1ui − θiui + di+1ui+1 +
N∑

j=i+1

ajbi,juj

+
1

2

i−1∑
j=1

ki−j,jui−juj −
N∑
j=1

ki,juiuj +
δN,i
N

N∑
j=1

N∑
n=N+1−j

jkn,junuj ,

ui (0) = u0,i , 1 ≤ i ≤ N.

(19)

The quadratic penalty term ensures that the discrete coagulation process is
conservative – this property is important when dealing with pure
coagulation-fragmentation models.

We show that if u(N) is the solution of the truncated problem (19) with the

initial condition u
(N)
0 , then the sequence INu

(N) approaches f as the truncation
index N increases.

L. O. Joel, J. Banasiak and S. Shindin The Discrete Coagulation-Fragmentation Equation
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Solvability of the Truncated Equation

Theorem (4)

Assume (14), (15) and (17) hold. The truncated problem in (19)
is locally solvable, i.e. for each p > 1 there exists some T > 0 such
that for each N

u(N) ∈ C ([0,T ],Xp,α) ∩ C 1((0,T ),Xp) ∩ C ((0,T ),Xp,1), (20)

and the respective norms of u(N) are bounded independently of N.

If, in addition, the initial datum u
(N)
0 is non-negative, (20) holds

for any fixed T > 0. Finally, if for some q > p − 1, q ≥ 0 we have

f0 ∈ X+
q+1,α and limN→∞ ‖INu(N)

0 − f0‖p,α = 0, then INu
(N) → f in

C ([0,T ],Xp,α) as N →∞.

Proof: See Banasiak et al, 2018
L. O. Joel, J. Banasiak and S. Shindin The Discrete Coagulation-Fragmentation Equation



General Introduction
Analysis

Numerical Simulations
References

Truncated Equation
Simulations

Fragmentation and Coagulation Kernels

In our simulations, we make use of the following two fragmentation kernels:

bi,j =
2

j − 1
, (21a)

bi,j =
iσ(j − i)σ

αj
, αj =

1

j

j−1∑
i=1

i1+σ(j − i)σ , σ > −1. (21b)

And the coagulation process is driven by one of the unbounded kernels:

ki,j = k1(i1/3 + j1/3)
7
3 , (22a)

ki,j = k2(i + k3)(j + k3), (22b)

where k1, k2 and k3 are positive constants.

L. O. Joel, J. Banasiak and S. Shindin The Discrete Coagulation-Fragmentation Equation
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Parameters

The transport, the sedimentation and the fragmentation rates
are chosen to be

gi = giα, di = diβ, si = siγ , ai = aiδ,

for all i ≥ 1, except for d1 = a1 = 0.

In view of Theorem (1), in the calculations below it is
assumed that either

max{α, β, γ} ≤ δ, p > 1, (23a)

or
max{β, δ} ≤ γ, p = 1, (23b)

The conditions ensure that the associated semigroups
{Sp(t)}t≥0, equipped with either of the fragmentation kernels
(21a) or (21b), are analytic in Xp, p ≥ 1.

L. O. Joel, J. Banasiak and S. Shindin The Discrete Coagulation-Fragmentation Equation
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The pure coagulation-fragmentation

To begin, we consider (1) with g = d = s = 0, fragmentation
kernel (21a) and coagulation kernel (22a). Here, the

coagulation coefficients satisfy ki ,j = O(i
7
9 + j

7
9 ) hence

Threorem (3) applies, provided δ > 7
9 .

In our simulations, we let: N = 200, a = 1, δ = 1 and
k1 = 5 · 10−3. Since N is fixed, we shorten the notation
setting uN = u. As the initial conditions, we take

un(0) = 10, 5 ≤ n ≤ 20 and un(0) = 0 otherwise

and integrate (19) in time interval [0, 1] using ode15s built-in
Matlab ODE solver.

The results of the simulations are shown below.

L. O. Joel, J. Banasiak and S. Shindin The Discrete Coagulation-Fragmentation Equation
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The pure coagulation-fragmentation contd
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The pure coagulation-fragmentation contd 2
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The fragmentation-coagulation equation with
growth-decay-sedimentation

We consider the complete model (1), with
g = d = s = a = 1, β = γ = 0 and α = δ = 1.

The fragmentation and the coagulation processes are
controlled respectively by the kernels (21a) and (22a), with
k1 = 5 · 10−3.

The truncation index N, the time interval [0,T ] and the initial
condition u0 are chosen to be the same as in Examples 1.

The death and the sedimentation processes dominate and
yield a slow decay in the moments as time increases.
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The fragmentation-coagulation equation with
growth-decay-sedimentation contd
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The fragmentation-coagulation equation with
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Strong Sedimentation case
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