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Convergence of positive semigroups

Theorem (Lotz, 1986 [Lot86])
Let (Tt)t∈(0,∞) be a positive and bounded operator semigroup on Lp (or,
more generally, on a Banach lattice).

If re(Ts) < 1 for some s ∈ (0,∞), then Tt converges with respect to the
operator norm as t →∞.

Question
Let T be a positive operator on Lp. What are non-trivial criteria to ensure
that the essential spectral radius of T fulfils re(T ) < 1?
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Hyper-bounded operators

Let (Ω, µ) be a finite measure space.

Definition
Let p ∈ [1,∞). A bounded linear operator T : Lp(Ω, µ)→ Lp(Ω, µ) is
called hyper-bounded if

there exists q ∈ (p,∞] such that
TLp(Ω, µ) ⊆ Lq(Ω, µ).

Question (Simon & Høegh-Krohn, 1972 [SH72])

Let T be a self-adjoint operator on L2(Ω, µ) with spectral radius 1.
Assume that T is positive (in the sense of Banach lattices) and that its
fixed space consists of the constant functions.
If T is hyper-bounded, does it follow that 1 is an isolated spectral value of
T?
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Miclo’s theorem

Theorem (Miclo, 2015 [Mic15])
The answer to the question of Høegh-Krohn & Simon is “yes”.

Corollary
We actually have re(T ) < 1 (by a bit of Perron–Frobenius theory).

Miclo’s proof relies on an approximation procedure and on certain
dimension-independent estimates on finite graphs.
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Weakening the assumptions

Theorem (Miclo, 2015)
Let (Ω, µ) be a finite measure space.

Let T be a positive operator on L2(Ω).
Assume that T is self-adjoint and let r(T ) = 1.
Assume that ker(1− T ) consists of the constant functions.

If T is hyper-bounded, then re(T ) < 1.
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Theorem (G., 2018 [Glu18])
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Theorem
Let 0 ≤ T : Lp → Lp be contractive and hyper-bounded. Then re(T ) < 1.

Proof (Step 1):

Fix a free ultra filter U on N and consider the following diagram:

(Lp)U (Lp)U (Lq)U

Lp Lp Lq

TU jU

T j

The fixed space ker(1− TU ) is a closed sublattice of (Lp)U .
Is is also isomorphic to a closed sublattice of (Lq)U/ ker(jU ).

⇒ ker(1−TU ) is isomorphic to an Lp-space and to an Lq-space and thus
finite-dimensional.
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Theorem
Let 0 ≤ T : Lp → Lp be contractive and hyper-bounded. Then re(T ) < 1.

Proof (Step 2):

We have just seen: ker(1− TU ) is finite dimensional. Now we use:

Proposition (Groh, 1984 [Gro84])

Let S be a linear contraction on a Banach space. If 0 6= ker(1− SU ) is
finite dimensional, then 1 is a pole of the resolvent R(·, S).

Hence, 1 is a first order pole of R(·,T ) with finite dimensional spectral
projection.

⇒ Theorem of Niiro–Sawashima: re(T ) < 1.
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Theorem
Let 0 ≤ T : Lp → Lp be contractive and hyper-bounded. Then re(T ) < 1.

Remarks:

In fact, re(T ) can be bounded above by a number c ∈ (0, 1) which
depends only on p, q, µ(Ω) and ‖T‖Lp→Lq .
Positivity of T can be replaced with the assumption ‖T‖Lq→Lq ≤ 1.
One can also prove a version of the theorem over non-finite measure
spaces.
For p = 1 a more general result is true: if T : L1 → L1 is a
hyper-bounded operator, then T 2 is compact (this follows from
Dunford–Pettis theory).
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Theorem
Let 0 ≤ T : Lp → Lp be contractive and hyper-bounded. Then re(T ) < 1.

Open Problem
1 Can we replace the assumption ‖T‖ ≤ 1 with r(T ) ≤ 1?

2 If not, can we replace it at least with supn∈N0‖T
n‖ <∞?
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