Sharp growth rates for semigroups using resolvent bounds

Jan Rozendaal

Institute of Mathematics of the Polish Academy of Sciences/ Australian National University

Semigroups of Operators: Theory and Applications

Joint work with Mark Veraar (Delft University of Technology)

J. Rozendaal, M. Veraar. *Sharp growth rates for semigroups using resolvent bounds*. J. Evol. Equ. (2018).

2 Fourier multiplier characterization

$$\begin{cases} u_{tt} = u_{xx} + u_{yy} + e^{-iy}u_x & \text{on } \mathbb{T}^2 \times [0,\infty), \\ (u,\partial_t u) \upharpoonright_{t=0} = (f,g) & \text{on } \mathbb{T}^2. \end{cases}$$

$$\begin{cases} u_{tt} = u_{xx} + u_{yy} + e^{-iy}u_x & \text{on } \mathbb{T}^2 \times [0,\infty), \\ (u, \partial_t u) \upharpoonright_{t=0} = (f,g) & \text{on } \mathbb{T}^2. \end{cases}$$

It can be formulated as an ACP on $X = H^1(\mathbb{T}^2) \times L^2(\mathbb{T}^2)$:

$$\frac{d}{dt}\begin{pmatrix}u\\v\end{pmatrix}+A\begin{pmatrix}u\\v\end{pmatrix}=0,$$

where

$$A=\left(egin{array}{cc} 0 & -1\ -\Delta & 0 \end{array}
ight)+\left(egin{array}{cc} 0 & 0\ -e^{iy}rac{\partial}{\partial_x} & 0 \end{array}
ight).$$

$$\begin{cases} u_{tt} = u_{xx} + u_{yy} + e^{-iy}u_x & \text{on } \mathbb{T}^2 \times [0,\infty), \\ (u, \partial_t u) \upharpoonright_{t=0} = (f,g) & \text{on } \mathbb{T}^2. \end{cases}$$

It can be formulated as an ACP on $X = H^1(\mathbb{T}^2) \times L^2(\mathbb{T}^2)$:

$$\frac{d}{dt}\begin{pmatrix}u\\v\end{pmatrix}+A\begin{pmatrix}u\\v\end{pmatrix}=0,$$

where

$${oldsymbol A}=\left(egin{array}{cc} 0 & -1\ -\Delta & 0 \end{array}
ight)+\left(egin{array}{cc} 0 & 0\ -e^{iy}rac{\partial}{\partial_x} & 0 \end{array}
ight).$$

Then -A generates a C_0 -group $(T(t))_{t\in\mathbb{R}}$ on X.

$$\begin{cases} u_{tt} = u_{xx} + u_{yy} + e^{-iy}u_x & \text{on } \mathbb{T}^2 \times [0,\infty), \\ (u, \partial_t u) \upharpoonright_{t=0} = (f,g) & \text{on } \mathbb{T}^2. \end{cases}$$

It can be formulated as an ACP on $X = H^1(\mathbb{T}^2) \times L^2(\mathbb{T}^2)$:

$$\frac{d}{dt}\begin{pmatrix}u\\v\end{pmatrix}+A\begin{pmatrix}u\\v\end{pmatrix}=0,$$

where

$$A=\left(egin{array}{cc} 0 & -1\ -\Delta & 0 \end{array}
ight)+\left(egin{array}{cc} 0 & 0\ -e^{iy}rac{\partial}{\partial_x} & 0 \end{array}
ight).$$

Then -A generates a C_0 -group $(T(t))_{t \in \mathbb{R}}$ on X. Renardy (1994): $\sigma(A) \subseteq i\mathbb{R}$ and $\omega_0(T) \ge \frac{1}{2}$.

Goal

Analyze the growth behavior of $(T(t))_{t\in\mathbb{R}}$ in detail (not just exponential behavior).

Goal

Analyze the growth behavior of $(T(t))_{t\in\mathbb{R}}$ in detail (not just exponential behavior).

More generally:

Goal

Relate delicate growth behavior of a semigroup to the resolvent growth of its generator.

Fix a Banach space X, and $p, q \in [1, \infty]$.

$$T_m(f) := \mathcal{F}^{-1}(m \cdot \mathcal{F}(f))$$

for $f : \mathbb{R} \to X$ a Schwartz function.

$$T_m(f) := \mathcal{F}^{-1}(m \cdot \mathcal{F}(f))$$

for $f : \mathbb{R} \to X$ a Schwartz function. Let

$$\mathcal{M}_{p,q}(X) := \{m \mid T_m : L^p(\mathbb{R}; X) \to L^q(\mathbb{R}; X) \text{ bounded}\}$$

and

$$\|m\|_{\mathcal{M}_{p,q}(X)} := \|T_m\|_{\mathcal{L}(L^p(\mathbb{R};X),L^q(\mathbb{R};X))}.$$

$$T_m(f) := \mathcal{F}^{-1}(m \cdot \mathcal{F}(f))$$

for $f : \mathbb{R} \to X$ a Schwartz function. Let

$$\mathcal{M}_{p,q}(X) := \{ m \mid T_m : L^p(\mathbb{R}; X) \to L^q(\mathbb{R}; X) \text{ bounded} \}$$

and

$$\|m\|_{\mathcal{M}_{p,q}(X)} := \|T_m\|_{\mathcal{L}(L^p(\mathbb{R};X),L^q(\mathbb{R};X))}.$$

Let -A be the generator of a C_0 -semigroup $(T(t))_{t\geq 0}$ on X.

$$T_m(f) := \mathcal{F}^{-1}(m \cdot \mathcal{F}(f))$$

for $f : \mathbb{R} \to X$ a Schwartz function. Let

$$\mathcal{M}_{p,q}(X) := \{m \mid T_m : L^p(\mathbb{R}; X) \to L^q(\mathbb{R}; X) \text{ bounded}\}$$

and

$$\|m\|_{\mathcal{M}_{p,q}(X)} := \|T_m\|_{\mathcal{L}(L^p(\mathbb{R};X),L^q(\mathbb{R};X))}.$$

Let -A be the generator of a C_0 -semigroup $(T(t))_{t\geq 0}$ on X. By rescaling, we may assume throughout that $\mathbb{C}_{-} \subseteq \rho(A)$ (not necessarily $i\mathbb{R} \subseteq \rho(A)$).

Theorem

Let $\alpha \geq 0$. Then the following are equivalent:

$$\ \, \| \, {\mathcal T}(t) \|_{{\mathcal L}({\mathcal X})} = O(t^\alpha) \, \, \text{as} \, t \to \infty;$$

There exist p, q ∈ [1,∞] such that (a + i · +A)⁻¹ ∈ M_{p,q}(X) for all a > 0, and

$$\|(\mathbf{a}+\mathbf{i}\cdot+\mathbf{A})^{-1}\|_{\mathcal{M}_{p,q}(X)}=O(\mathbf{a}^{-\alpha})$$

as $a \downarrow 0$.

Theorem

Let $\alpha \geq 0$. Then the following are equivalent:

$$\ \, \| {\it T}(t) \|_{{\cal L}(X)} = {\it O}(t^{\alpha}) \ \, {\it as} \ t \to \infty;$$

Control There exist p, q ∈ [1,∞] such that (a + i · +A)⁻¹ ∈ M_{p,q}(X) for all a > 0, and

$$\|(\mathbf{a}+\mathrm{i}\cdot+A)^{-1}\|_{\mathcal{M}_{p,q}(X)}=O(\mathbf{a}^{-\alpha})$$

as $a \downarrow 0$.

There is also a version for general semigroup growth, and for fractional domains.

The following are equivalent:

- **1** $\sup_{t\geq 0} \|T(t)\|_{\mathcal{L}(X)} < \infty;$
- There exist p, q ∈ [1,∞] such that (a + i · +A)⁻¹ ∈ M_{p,q}(X) for all a > 0, and

$$\sup_{a>0} \|(a+\mathrm{i}\cdot +A)^{-1}\|_{\mathcal{M}_{p,q}(X)} < \infty.$$

The following are equivalent:

1
$$\sup_{t\geq 0} \|T(t)\|_{\mathcal{L}(X)} < \infty;$$

2 There exist p, q ∈ [1,∞] such that (a + i · +A)⁻¹ ∈ M_{p,q}(X) for all a > 0, and

$$\sup_{a>0} \|(a+\mathrm{i}\cdot +A)^{-1}\|_{\mathcal{M}_{\rho,q}(X)} < \infty.$$

Implies known characterizations of exponential stability.

The following are equivalent:

1
$$\sup_{t\geq 0} \|T(t)\|_{\mathcal{L}(X)} < \infty;$$

2 There exist p, q ∈ [1,∞] such that (a + i · +A)⁻¹ ∈ M_{p,q}(X) for all a > 0, and

$$\sup_{a>0} \|(a+\mathrm{i}\cdot +A)^{-1}\|_{\mathcal{M}_{p,q}(X)} < \infty.$$

Implies known characterizations of exponential stability. The theory of (L^{p}, L^{p}) multipliers does not suffice (these are bounded).

Theorem

Let $\alpha \geq 0$. Then the following are equivalent:

$$\ \, \| \, {\mathcal T}(t) \|_{{\mathcal L}(X)} = O(t^{\alpha}) \, \, \text{as} \, t \to \infty;$$

There exist p, q ∈ [1,∞] such that (a + i · +A)⁻¹ ∈ M_{p,q}(X) for all a > 0, and

$$\|(\mathbf{a} + \mathbf{i} \cdot + \mathbf{A})^{-1}\|_{\mathcal{M}_{p,q}(\mathbf{X})} = O(\mathbf{a}^{-\alpha})$$

as $a \downarrow 0$.

Problem

What are sufficient conditions on m such that $m \in \mathcal{M}_{p,q}(X)$?

Problem

What are sufficient conditions on m such that $m \in \mathcal{M}_{p,q}(X)$?

If X is a Hilbert space: p = q = 2 and $\sup_{\xi \in \mathbb{R}} \|m(\xi)\|_{\mathcal{L}(X)} < \infty$.

Let X be a Hilbert space, and let $\alpha \geq 0$. Suppose that

$$\|(\lambda + A)^{-1}\|_{\mathcal{L}(X)} = O(\mathsf{Re}(\lambda)^{-lpha})$$

as $\operatorname{Re}(\lambda) \downarrow 0$. Then

$$\|T(t)\|_{\mathcal{L}(X)}=O(t^{\alpha})$$

as $t \to \infty$.

Let X be a Hilbert space, and let $\alpha \geq 0$. Suppose that

$$\|(\lambda + A)^{-1}\|_{\mathcal{L}(X)} = O(\operatorname{\mathsf{Re}}(\lambda)^{-lpha})$$

as $\operatorname{Re}(\lambda) \downarrow 0$. Then

$$\|T(t)\|_{\mathcal{L}(X)}=O(t^{\alpha})$$

as $t \to \infty$.

For $\alpha \in \mathbb{Z}_+$: optimal up to possible arbitrarily small polynomial loss.

Let X be a Hilbert space, and let $\alpha \geq 0$. Suppose that

$$\|(\lambda + A)^{-1}\|_{\mathcal{L}(X)} = O(\operatorname{\mathsf{Re}}(\lambda)^{-lpha})$$

as $\operatorname{Re}(\lambda) \downarrow 0$. Then

$$\|T(t)\|_{\mathcal{L}(X)}=O(t^{\alpha})$$

as $t \to \infty$.

For $\alpha \in \mathbb{Z}_+$: optimal up to possible arbitrarily small polynomial loss. For $\alpha = 0$: the Gearhart–Prüss Theorem.

Let X be a Hilbert space, and let $\alpha \geq 0$. Suppose that

$$\|(\lambda + A)^{-1}\|_{\mathcal{L}(X)} = O(\operatorname{\mathsf{Re}}(\lambda)^{-lpha})$$

as $\operatorname{Re}(\lambda) \downarrow 0$. Then

$$\|T(t)\|_{\mathcal{L}(X)}=O(t^{\alpha})$$

as $t \to \infty$.

For $\alpha \in \mathbb{Z}_+$: optimal up to possible arbitrarily small polynomial loss. For $\alpha = 0$: the Gearhart–Prüss Theorem. For $\alpha = 1$: Eisner–Zwart (2007).

Let X be a Hilbert space, and let $\alpha \geq 0$. Suppose that

$$\|(\lambda + A)^{-1}\|_{\mathcal{L}(X)} = O(\operatorname{\mathsf{Re}}(\lambda)^{-lpha})$$

as $\operatorname{Re}(\lambda) \downarrow 0$. Then

$$\|T(t)\|_{\mathcal{L}(X)}=O(t^{\alpha})$$

as $t \to \infty$.

For $\alpha \in \mathbb{Z}_+$: optimal up to possible arbitrarily small polynomial loss. For $\alpha = 0$: the Gearhart–Prüss Theorem. For $\alpha = 1$: Eisner–Zwart (2007). A partial converse holds.

Problem

What are sufficient conditions on m such that $m \in \mathcal{M}_{p,q}(X)$?

Jan Rozendaal (IMPAN/ANU)

Theorem (R., Veraar (J. Fourier Anal. Appl. 2017))

Let $X = L^{p}(\Omega)$ for $1 \le p < \infty$ and Ω a measure space. Let $m, K : \mathbb{R} \to \mathcal{L}(X)$ be such that:

- K(t) is positive for all $t \in \mathbb{R}$;
- **2** $K(\cdot)x \in L^1(\mathbb{R}; X)$ for all $x \in X$;
- $\mathcal{F}(K(\cdot)x)(\xi) = m(\xi)x$ for all $x \in X$ and $\xi \in \mathbb{R}$. Then $m \in \mathcal{M}_{p,p}(X)$ and

$$||m||_{\mathcal{M}_p(X)} = ||m(0)||_{\mathcal{L}(X)}.$$

Theorem (R., Veraar (J. Fourier Anal. Appl. 2017))

Let $X = L^p(\Omega)$ for $1 \le p < \infty$ and Ω a measure space. Let $m, K : \mathbb{R} \to \mathcal{L}(X)$ be such that:

- K(t) is positive for all $t \in \mathbb{R}$;
- **2** $K(\cdot)x \in L^1(\mathbb{R}; X)$ for all $x \in X$;
- $\mathcal{F}(K(\cdot)x)(\xi) = m(\xi)x$ for all $x \in X$ and $\xi \in \mathbb{R}$. Then $m \in \mathcal{M}_{p,p}(X)$ and

$$||m||_{\mathcal{M}_{p}(X)} = ||m(0)||_{\mathcal{L}(X)}.$$

Condition (2) can usually be dealt with using approximation arguments.

Theorem (R., Veraar (J. Fourier Anal. Appl. 2017))

Let $X = L^p(\Omega)$ for $1 \le p < \infty$ and Ω a measure space. Let $m, K : \mathbb{R} \to \mathcal{L}(X)$ be such that:

- K(t) is positive for all $t \in \mathbb{R}$;
- **2** $K(\cdot)x \in L^1(\mathbb{R}; X)$ for all $x \in X$;
- $\mathcal{F}(K(\cdot)x)(\xi) = m(\xi)x$ for all $x \in X$ and $\xi \in \mathbb{R}$. Then $m \in \mathcal{M}_{p,p}(X)$ and

$$||m||_{\mathcal{M}_{p}(X)} = ||m(0)||_{\mathcal{L}(X)}.$$

Condition (2) can usually be dealt with using approximation arguments. Also holds for $p = \infty$ if X is e.g. a suitable space of continuous functions.

Let $X = L^{p}(\Omega)$ for $1 \le p < \infty$ and Ω a measure space, and let $\alpha \ge 0$. Suppose that T(t) is positive for all $t \ge 0$, and that

$$\|(a+A)^{-1}\|_{\mathcal{L}(X)} = O(a^{-\alpha})$$

as $a \downarrow 0$. Then

$$\|T(t)\|_{\mathcal{L}(X)}=O(t^{\alpha})$$

as $t \to \infty$.

Let $X = L^{p}(\Omega)$ for $1 \le p < \infty$ and Ω a measure space, and let $\alpha \ge 0$. Suppose that T(t) is positive for all $t \ge 0$, and that

$$\|(a+A)^{-1}\|_{\mathcal{L}(X)} = O(a^{-\alpha})$$

as $a \downarrow 0$. Then

$$\|T(t)\|_{\mathcal{L}(X)}=O(t^{\alpha})$$

as $t o \infty$.

Also holds if X is a suitable space of continuous functions.

Let $X = L^{p}(\Omega)$ for $1 \le p < \infty$ and Ω a measure space, and let $\alpha \ge 0$. Suppose that T(t) is positive for all $t \ge 0$, and that

$$\|(a+A)^{-1}\|_{\mathcal{L}(X)} = O(a^{-\alpha})$$

as $a \downarrow 0$. Then

$$\|T(t)\|_{\mathcal{L}(X)}=O(t^{\alpha})$$

as $t o \infty$.

Also holds if X is a suitable space of continuous functions. For $\alpha = 0$: exponential stability result by Weis (1995).

Problem

What are sufficient conditions on A such that $(a + i + A)^{-1} \in \mathcal{M}_{p,q}(X)$ for a > 0?

Problem

What are sufficient conditions on A such that $(a + i + A)^{-1} \in \mathcal{M}_{p,q}(X)$ for a > 0?

Let $\mathcal{H}(\mathcal{L}(X))$ be the set of all $S : (0, \infty) \to \mathcal{L}(X)$ that extend to holomorphic, exponentially bounded functions on a sector around $(0, \infty)$. Set

$$\zeta(T) := \inf \{ \omega_0(T-S) \mid S \in \mathcal{H}(\mathcal{L}(X)) \}.$$

If $\zeta(T) < 0$ then $(T(t))_{t \ge 0}$ is asymptotically analytic.

What are sufficient conditions on A such that $(a + i + A)^{-1} \in \mathcal{M}_{p,q}(X)$ for a > 0?

Let $\mathcal{H}(\mathcal{L}(X))$ be the set of all $S : (0, \infty) \to \mathcal{L}(X)$ that extend to holomorphic, exponentially bounded functions on a sector around $(0, \infty)$. Set

$$\zeta(T) := \inf \{ \omega_0(T-S) \mid S \in \mathcal{H}(\mathcal{L}(X)) \}.$$

If $\zeta(T) < 0$ then $(T(t))_{t \ge 0}$ is asymptotically analytic. Eventually differentiable (in particular analytic) semigroups are asymptotically analytic.

Theorem (Batty, Srivastava (J. Differential Equations 2003))

Let $\alpha \geq 0$. Suppose that $(T(t))_{t\geq 0}$ is asymptotically analytic, and that

$$\|(\lambda + A)^{-1}\|_{\mathcal{L}(X)} = O(\operatorname{Re}(\lambda)^{-\alpha})$$

as $\operatorname{Re}(\lambda) \downarrow 0$. Then $(a + i \cdot + A)^{-1} \in \mathcal{M}_{1,\infty}(X)$ for all a > 0, and

$$\|(\mathbf{a}+\mathrm{i}\cdot+\mathbf{A})^{-1}\|_{\mathcal{M}_{1,\infty}(\mathbf{X})}=O(\mathbf{a}^{-lpha})$$

as $a \downarrow 0$.

Theorem (Batty, Srivastava (J. Differential Equations 2003))

Let $\alpha \geq 0$. Suppose that $(T(t))_{t\geq 0}$ is asymptotically analytic, and that

$$\|(\lambda + A)^{-1}\|_{\mathcal{L}(X)} = O(\operatorname{Re}(\lambda)^{-\alpha})$$

as $\operatorname{Re}(\lambda) \downarrow 0$. Then $(a + i \cdot + A)^{-1} \in \mathcal{M}_{1,\infty}(X)$ for all a > 0, and

$$\|(\mathbf{a}+\mathrm{i}\cdot+\mathbf{A})^{-1}\|_{\mathcal{M}_{1,\infty}(\mathbf{X})}=O(\mathbf{a}^{-lpha})$$

as $a \downarrow 0$.

Proof also uses that $L^1(\mathbb{R}; \mathcal{L}(X)) \subseteq \mathcal{M}_{1,\infty}(X)$.

Theorem (Batty, Srivastava (J. Differential Equations 2003))

Let $\alpha \geq 0$. Suppose that $(T(t))_{t\geq 0}$ is asymptotically analytic, and that

$$\|(\lambda + A)^{-1}\|_{\mathcal{L}(X)} = O(\operatorname{Re}(\lambda)^{-\alpha})$$

as $\operatorname{\mathsf{Re}}(\lambda)\downarrow 0$. Then $(a+\mathrm{i}\cdot +A)^{-1}\in \mathcal{M}_{1,\infty}(X)$ for all a>0, and

$$\|(\mathbf{a}+\mathrm{i}\cdot+\mathbf{A})^{-1}\|_{\mathcal{M}_{1,\infty}(\mathbf{X})}=O(\mathbf{a}^{-\alpha})$$

as $a \downarrow 0$.

Proof also uses that $L^1(\mathbb{R}; \mathcal{L}(X)) \subseteq \mathcal{M}_{1,\infty}(X)$. Here we need to consider $\mathcal{M}_{p,q}(X)$ for $p \neq q$.

Growth for asymptotically analytic semigroups and multipliers

Corollary

Let $\alpha \geq 0$. Suppose that $(T(t))_{t\geq 0}$ is asymptotically analytic, and that

$$\|(\lambda + A)^{-1}\|_{\mathcal{L}(X)} = O(\mathsf{Re}(\lambda)^{-lpha})$$

as $\operatorname{Re}(\lambda) \downarrow 0$. Then

$$\|T(t)\|_{\mathcal{L}(X)}=O(t^{\alpha})$$

as $t \to \infty$.

Growth for asymptotically analytic semigroups and multipliers

Corollary

Let $\alpha \geq 0$. Suppose that $(T(t))_{t\geq 0}$ is asymptotically analytic, and that

$$\|(\lambda + A)^{-1}\|_{\mathcal{L}(X)} = O(\operatorname{Re}(\lambda)^{-\alpha})$$

as $\operatorname{Re}(\lambda) \downarrow 0$. Then

$$\|T(t)\|_{\mathcal{L}(X)}=O(t^{\alpha})$$

as $t \to \infty$.

Applies in particular to eventually differentiable (and analytic) semigroups.

Growth for asymptotically analytic semigroups and multipliers

Corollary

Let $\alpha \geq 0$. Suppose that $(T(t))_{t\geq 0}$ is asymptotically analytic, and that

$$\|(\lambda + A)^{-1}\|_{\mathcal{L}(X)} = O(\operatorname{Re}(\lambda)^{-\alpha})$$

as $\operatorname{Re}(\lambda) \downarrow 0$. Then

$$\|T(t)\|_{\mathcal{L}(X)}=O(t^{\alpha})$$

as $t
ightarrow \infty$.

Applies in particular to eventually differentiable (and analytic) semigroups. For $\alpha = 1$: extends results by Eisner and Zwart (2007).

What are sufficient conditions on m such that $m \in \mathcal{M}_{p,q}(X)$?

What are sufficient conditions on m such that $m \in \mathcal{M}_{p,q}(X)$?

X is UMD, $p = q \in (1,\infty)$, $m \in C^1(\mathbb{R}; \mathcal{L}(X))$, and

 $\{m(\xi) \mid \xi \in \mathbb{R}\}$ and $\{\xi m'(\xi) \mid \xi \in \mathbb{R}\}$

are *R*-bounded in $\mathcal{L}(X)$.

What are sufficient conditions on m such that $m \in \mathcal{M}_{p,q}(X)$?

X is UMD, $p = q \in (1,\infty)$, $m \in C^1(\mathbb{R};\mathcal{L}(X))$, and

$$\{m(\xi) \mid \xi \in \mathbb{R}\}$$
 and $\{\xi m'(\xi) \mid \xi \in \mathbb{R}\}$

are *R*-bounded in $\mathcal{L}(X)$. So far not useful. Requires (too) fast decay of m'.

What are sufficient conditions on m such that $m \in \mathcal{M}_{p,q}(X)$?

X is UMD, $p = q \in (1,\infty)$, $m \in C^1(\mathbb{R};\mathcal{L}(X))$, and

$$\{m(\xi) \mid \xi \in \mathbb{R}\}$$
 and $\{\xi m'(\xi) \mid \xi \in \mathbb{R}\}$

are *R*-bounded in $\mathcal{L}(X)$. So far not useful. Requires (too) fast decay of m'. However, there are useful (L^p, L^q) Fourier multiplier theorems for $p \neq q$ which use *R*-boundedness.

What are sufficient conditions on m such that $m \in \mathcal{M}_{p,q}(X)$?

What are sufficient conditions on m such that $m \in \mathcal{M}_{p,q}(X)$?

X has Fourier type $p \in [1,2]$ if $\mathcal{F} : L^p(\mathbb{R}; X) \to L^{p'}(\mathbb{R}; X)$ is bounded. There is also an $(L^p, L^{p'})$ Fourier multiplier theorem using Fourier type.

Stability using Fourier type

Let $X_{\gamma} := D((\omega + A)^{\gamma})$ for $\gamma \ge 0$ and ω large.

Let
$$X_{\gamma} := D((\omega + A)^{\gamma})$$
 for $\gamma \ge 0$ and ω large.

Corollary

Let X have Fourier type $p \in [1, 2]$, and let $\alpha \ge 0$. Suppose that

$$\|(\lambda + A)^{-1}\|_{\mathcal{L}(X)} = O(\operatorname{Re}(\lambda)^{-lpha})$$

as $\operatorname{Re}(\lambda) \downarrow 0$. Then, for each $\gamma > \frac{1}{p} - \frac{1}{p'}$,

$$\|T(t)\|_{\mathcal{L}(X_{\gamma},X)}=O(t^{\alpha})$$

as $t o \infty$.

Let
$$X_{\gamma} := D((\omega + A)^{\gamma})$$
 for $\gamma \ge 0$ and ω large.

Corollary

Let X have Fourier type $p \in [1, 2]$, and let $\alpha \ge 0$. Suppose that

$$\|(\lambda + A)^{-1}\|_{\mathcal{L}(X)} = O(\operatorname{Re}(\lambda)^{-lpha})$$

as $\operatorname{Re}(\lambda) \downarrow 0$. Then, for each $\gamma > \frac{1}{p} - \frac{1}{p'}$,

$$\|T(t)\|_{\mathcal{L}(X_{\gamma},X)}=O(t^{\alpha})$$

as $t \to \infty$.

For p = 1: general Banach spaces.

Let
$$X_{\gamma} := D((\omega + A)^{\gamma})$$
 for $\gamma \ge 0$ and ω large.

Corollary

Let X have Fourier type $p \in [1, 2]$, and let $\alpha \ge 0$. Suppose that

$$\|(\lambda + A)^{-1}\|_{\mathcal{L}(X)} = O(\operatorname{Re}(\lambda)^{-lpha})$$

as $\operatorname{Re}(\lambda) \downarrow 0$. Then, for each $\gamma > \frac{1}{p} - \frac{1}{p'}$,

$$\|T(t)\|_{\mathcal{L}(X_{\gamma},X)}=O(t^{\alpha})$$

as $t \to \infty$.

For p = 1: general Banach spaces. Eisner–Zwart (2006): need to consider $\gamma > 0$ for p = 1.

Theorem

Consider the perturbed wave equation

$$u_{tt} = u_{xx} + u_{yy} + e^{-iy}u_x$$

on \mathbb{T}^2 , formulated as an ACP on $X = H^1(\mathbb{T}^2) \times L^2(\mathbb{T}^2)$. Let $(T(t))_{t \ge 0}$ be the associated group. Then

$$||T(t)||_{\mathcal{L}(X)} = O(|t|e^{|t|/2}) \text{ as } |t| \to \infty.$$

Theorem

Consider the perturbed wave equation

$$u_{tt} = u_{xx} + u_{yy} + e^{-iy}u_x$$

on \mathbb{T}^2 , formulated as an ACP on $X = H^1(\mathbb{T}^2) \times L^2(\mathbb{T}^2)$. Let $(T(t))_{t \ge 0}$ be the associated group. Then

$$\|T(t)\|_{\mathcal{L}(X)} = O(|t|e^{|t|/2}) \text{ as } |t| \to \infty.$$

Sharp up to possible polynomial loss.

- Various types of (asymptotic) behavior of semigroups can be characterized using (L^p, L^q) Fourier multiplier properties of the resolvent (consider also p ≠ q).
- ② Then (L^p, L^q) Fourier multiplier theorems yield semigroup results (consider also p ≠ q).

- J. Rozendaal, M. Veraar. *Sharp growth rates for semigroups using resolvent bounds*. J. Evol. Equ. (2018).
- J. Rozendaal, M. Veraar. *Stability theory for semigroups using (L^p, L^q) Fourier multipliers.* J. Funct. Anal. (2018).
- J. Rozendaal, M. Veraar. *Fourier multiplier theorems involving type and cotype*. J. Fourier. Anal. Appl. (2017).
- J. Rozendaal, M. Veraar. *Fourier multiplier theorems on Besov spaces under type and cotype conditions*. Banach J. Math. Anal. (2017).

- J. Rozendaal, M. Veraar. *Sharp growth rates for semigroups using resolvent bounds*. J. Evol. Equ. (2018).
- J. Rozendaal, M. Veraar. *Stability theory for semigroups using (L^p, L^q) Fourier multipliers.* J. Funct. Anal. (2018).
- J. Rozendaal, M. Veraar. *Fourier multiplier theorems involving type and cotype*. J. Fourier. Anal. Appl. (2017).
- J. Rozendaal, M. Veraar. *Fourier multiplier theorems on Besov spaces under type and cotype conditions*. Banach J. Math. Anal. (2017).

Thank you for your attention