Hot spots of quantum graphs

James Kennedy

Group of Mathematical Physics University of Lisbon

Ongoing joint work with Jonathan Rohleder (Stockholm)

Semigroups of Operators: Theory and Applications Kazimierz Dolny

Tuesday, 2 October, 2018

(φ μ) Grupo de Física Matemática da Universidade de Lisboa

FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

Conjecture (J. Rauch, 1974)

The hottest and coldest points within a perfectly insulated body should converge to the boundary of the body for large times.

Let $\Omega \subset \mathbb{R}^d$ be a bounded domain with smooth boundary and consider the Neumann Laplacian

$$D(\Delta_{\Omega}^{N}) = \left\{ u \in H^{1}(\Omega) : \Delta u \in L^{2}(\Omega), \ \frac{\partial u}{\partial \nu} = 0 \text{ in } L^{2}(\partial \Omega) \right\}$$
$$\Delta_{\Omega}^{N} u = \Delta u$$

For an initial condition u_0 the diffusion of heat in Ω described by

$$u(t,x) = e^{t\Delta_{\Omega}^N}u_0(x), \qquad x \in \Omega, \ t > 0.$$

The Hot Spots Conjecture

Let $0 = \mu_1 \leq \mu_2 \leq \ldots$ be the eigenvalues and ψ_1, ψ_2, \ldots the normalised eigenfunctions of $-\Delta_{\Omega}^N$, then by the spectral theorem

$$u = e^{t\Delta_{\Omega}^{N}} u_{0} = \sum_{k=1}^{\infty} \langle u_{0}, \psi_{k} \rangle_{L^{2}(\Omega)} e^{-t\mu_{k}} \psi_{k}.$$

Since ψ_1 is constant, for a "generic" initial condition u_0 the second eigenfunction(s) ψ_2 determine(s) the profile of u for $t \to \infty$. Hence the most common formulation of the conjecture is:

The Hot Spots Conjecture

Let $\Omega \subset \mathbb{R}^d$ be a bounded, smooth domain and ψ_2 any eigenfunction associated with the second Neumann eigenvalue μ_2 . Then

$$\max_{x\in\overline{\Omega}}\psi_2(x),\quad\min_{x\in\overline{\Omega}}\psi_2(x)$$

are achieved (only) on $\partial \Omega$.

- ...is true for intervals! If Ω = (0, 1) then ψ₂(x) = cos(πx) with maximum at 0 and minimum at 1. Similar story for balls, rectangles, "long thin domains", ...
- …is not true for all domains in ℝ^d. (Burdzy and Werner, Ann. of Math., 1999)
- ...is (probably) true for triangles. (Polymath project of Tao; works of Bañuelos, Burdzy, Siudeja; preprint (2018) of Judge and Mondal)
- ... is open for general *convex* domains, even in two dimensions.

Quantum Graphs

Now suppose $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is a connected, compact metric graph:

- \mathcal{V} is a finite vertex set,
- *E* is a finite edge set, and each edge can be identified with an interval of finite length,
- multiple parallel edges (i.e., more than one edge running between the same two vertices) and loops are allowed,

and consider the Laplacian $-\Delta$ on ${\cal G}$ with standard vertex conditions:

- $-\Delta = -rac{d^2}{dx^2}$ on each edge,
- Functions in the domain of $-\Delta$ are continuous on \mathcal{G} and satisfy the Kirchhoff condition at each vertex (flow in equals flow out),
- Kirchhoff equals Neumann in a vertex of degree one,
- The operator Δ generates a C_0 -semigroup which determines diffusion on a "perfectly insulated" graph,
- $\mu_1 = 0$ with eigenfunction constant,
- $\mu_2 > 0$ and its eigenfunction(s) ψ_2 change sign in \mathcal{G} .

Question

Where are the maximum and minimum of ψ_2 located, and how does this relate to the geometry of $\mathcal{G}?$

Some definitions:

- $M := \{x \in \mathcal{G} : \exists \psi_2 \text{ achieving its global maximum on } \mathcal{G} \text{ at } x\},$
- *M*_{loc} := {x ∈ G : ∃ ψ₂ achieving a (nonzero) local maximum on G at x} ⊃ M,

•
$$\partial \mathcal{G} := \{ v \in \mathcal{V} : \deg v = 1 \}.$$

Some (naïve) questions:

- Do we have a "hot spots theorem" for quantum graphs: $M \subset \partial \mathcal{G}$? If so, this would suggest that $\partial \mathcal{G}$ is an (analytically) "good" notion of boundary
- Does M realise the diameter of G, i.e., can one find x, y ∈ M
 s.t. dist (x, y) = diam G? (Or at least dist (x, y) ≅ diam G?)

Some (counter-) examples

M need not have anything to do with $\partial \mathcal{G}$:

M need not have anything to do with diam \mathcal{G} :

Suppose \mathcal{T} is a (compact) tree, i.e., \mathcal{T} has no cycles, and recall M is the set of global maxima (and minima), M_{loc} is the set of local maxima (and minima). Then:

Theorem (K.–Rohleder, 2018)

(1) $M \subset M_{loc} \subset \partial \mathcal{T};$

(2) if ψ_2 does not vanish identically on any edge, then $M_{loc} = \partial T$;

(3) #M = 2 generically

("Generically": consider all possible edge lengths for a given graph topology. A property holds *generically* if the set of edge lengths for which it holds is of the second Baire category in $\mathbb{R}^{\#\mathcal{E}}_+$.)

What can we say about M (and M_{loc}) in general?

Return to considering a general (connected, compact) graph \mathcal{G} .

• *M* = *G* is possible (loops, equilateral pumpkin graphs, equilateral complete graphs)

- Conjecture: either $M = \mathcal{G}$ or M is finite, and the same is true of M_{loc}
- Observation: *M* and *M*_{loc} are finite whenever μ_2 is simple, and μ_2 is simple generically. In particular, $M = \mathcal{G}$ is "rare"
- Observation: $\partial \mathcal{G} \subset M_{loc}$ if ψ_2 does not vanish identically on any edge (and generically it doesn't)
- Conjecture: generically, #M = 2. Thus for most graphs there are two "distinguished" points where the heat (or cold) is asymptotically most concentrated

Thank you for your attention!