Hot spots of quantum graphs

James Kennedy
Group of Mathematical Physics
University of Lisbon

Ongoing joint work with Jonathan Rohleder (Stockholm)

Semigroups of Operators: Theory and Applications Kazimierz Dolny

Tuesday, 2 October, 2018

The Hot Spots Conjecture

Conjecture (J. Rauch, 1974)

The hottest and coldest points within a perfectly insulated body should converge to the boundary of the body for large times.

Let $\Omega \subset \mathbb{R}^{d}$ be a bounded domain with smooth boundary and consider the Neumann Laplacian

$$
\begin{aligned}
D\left(\Delta_{\Omega}^{N}\right) & =\left\{u \in H^{1}(\Omega): \Delta u \in L^{2}(\Omega), \frac{\partial u}{\partial \nu}=0 \text { in } L^{2}(\partial \Omega)\right\} \\
\Delta_{\Omega}^{N} u & =\Delta u
\end{aligned}
$$

For an initial condition u_{0} the diffusion of heat in Ω described by

$$
u(t, x)=e^{t \Delta_{\Omega}^{N}} u_{0}(x), \quad x \in \Omega, t>0 .
$$

The Hot Spots Conjecture

Let $0=\mu_{1} \leq \mu_{2} \leq \ldots$ be the eigenvalues and $\psi_{1}, \psi_{2}, \ldots$ the normalised eigenfunctions of $-\Delta_{\Omega}^{N}$, then by the spectral theorem

$$
u=e^{t \Delta_{\Omega}^{N}} u_{0}=\sum_{k=1}^{\infty}\left\langle u_{0}, \psi_{k}\right\rangle_{L^{2}(\Omega)} e^{-t \mu_{k}} \psi_{k} .
$$

Since ψ_{1} is constant, for a "generic" initial condition u_{0} the second eigenfunction(s) ψ_{2} determine(s) the profile of u for $t \rightarrow \infty$. Hence the most common formulation of the conjecture is:

The Hot Spots Conjecture

Let $\Omega \subset \mathbb{R}^{d}$ be a bounded, smooth domain and ψ_{2} any eigenfunction associated with the second Neumann eigenvalue μ_{2}. Then

$$
\max _{x \in \bar{\Omega}} \psi_{2}(x), \quad \min _{x \in \bar{\Omega}} \psi_{2}(x)
$$

are achieved (only) on $\partial \Omega$.

The Hot Spots Conjecture

- ...is true for intervals! If $\Omega=(0,1)$ then $\psi_{2}(x)=\cos (\pi x)$ with maximum at 0 and minimum at 1 . Similar story for balls, rectangles, "long thin domains", ...
- ...is not true for all domains in \mathbb{R}^{d}. (Burdzy and Werner, Ann. of Math., 1999)
- ...is (probably) true for triangles. (Polymath project of Tao; works of Bañuelos, Burdzy, Siudeja; preprint (2018) of Judge and Mondal)
- ...is open for general convex domains, even in two dimensions.

Quantum Graphs

Now suppose $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ is a connected, compact metric graph:

- \mathcal{V} is a finite vertex set,
- \mathcal{E} is a finite edge set, and each edge can be identified with an interval of finite length,
- multiple parallel edges (i.e., more than one edge running between the same two vertices) and loops are allowed, and consider the Laplacian $-\Delta$ on \mathcal{G} with standard vertex conditions:
- $-\Delta=-\frac{d^{2}}{d x^{2}}$ on each edge,
- Functions in the domain of $-\Delta$ are continuous on \mathcal{G} and satisfy the Kirchhoff condition at each vertex (flow in equals flow out),
- Kirchhoff equals Neumann in a vertex of degree one,
- The operator Δ generates a C_{0}-semigroup which determines diffusion on a "perfectly insulated" graph,
- $\mu_{1}=0$ with eigenfunction constant,
- $\mu_{2}>0$ and its eigenfunction(s) ψ_{2} change sign in \mathcal{G}.

Hot Spots of Quantum Graphs

Question

Where are the maximum and minimum of ψ_{2} located, and how does this relate to the geometry of \mathcal{G} ?

Some definitions:

- $M:=\left\{x \in \mathcal{G}: \exists \psi_{2}\right.$ achieving its global maximum on \mathcal{G} at $\left.x\right\}$,
- $M_{\text {loc }}:=\left\{x \in \mathcal{G}: \exists \psi_{2}\right.$ achieving a (nonzero) local maximum on \mathcal{G} at $x\} \supset M$,
- $\partial \mathcal{G}:=\{v \in \mathcal{V}: \operatorname{deg} v=1\}$.

Some (naïve) questions:

- Do we have a "hot spots theorem" for quantum graphs: $M \subset \partial \mathcal{G}$? If so, this would suggest that $\partial \mathcal{G}$ is an (analytically) "good" notion of boundary
- Does M realise the diameter of \mathcal{G}, i.e., can one find $x, y \in M$ s.t. $\operatorname{dist}(x, y)=\operatorname{diam} \mathcal{G}$? (Or at least $\operatorname{dist}(x, y) \cong \operatorname{diam} \mathcal{G}$?)

Some (counter-) examples

M need not have anything to do with $\partial \mathcal{G}$:

M need not have anything to do with $\operatorname{diam} \mathcal{G}$:

Hot Spots of Tree Graphs

Suppose \mathcal{T} is a (compact) tree, i.e., \mathcal{T} has no cycles, and recall M is the set of global maxima (and minima), $M_{\text {loc }}$ is the set of local maxima (and minima). Then:

Theorem (K.-Rohleder, 2018)

(1) $M \subset M_{\text {loc }} \subset \partial \mathcal{T}$;
(2) if ψ_{2} does not vanish identically on any edge, then $M_{\text {loc }}=\partial \mathcal{T}$;
(3) $\# M=2$ generically
("Generically": consider all possible edge lengths for a given graph topology. A property holds generically if the set of edge lengths for which it holds is of the second Baire category in $\mathbb{R}_{+}^{\# \mathcal{E}}$.)

What can we say about M (and $M_{\text {loc }}$) in general?

Return to considering a general (connected, compact) graph \mathcal{G}.

- $M=\mathcal{G}$ is possible (loops, equilateral pumpkin graphs, equilateral complete graphs)

- Conjecture: either $M=\mathcal{G}$ or M is finite, and the same is true of $M_{\text {loc }}$
- Observation: M and $M_{l o c}$ are finite whenever μ_{2} is simple, and μ_{2} is simple generically. In particular, $M=\mathcal{G}$ is "rare"
- Observation: $\partial \mathcal{G} \subset M_{\text {loc }}$ if ψ_{2} does not vanish identically on any edge (and generically it doesn't)
- Conjecture: generically, $\# M=2$. Thus for most graphs there are two "distinguished" points where the heat (or cold) is asymptotically most concentrated

Thank you for your attention!

