Bi-Laplacians on graphs and networks

Federica Gregorio

Università degli Studi di Salerno

2nd October 2018

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

joint work with Delio Mugnolo

Motivation

Our aim is to study

$$u_t(t,x) = -\Delta^2 u(t,x)$$
 on some graph.

Modelling aspects:

- behaviour of flexible structures;
- non linear elasticity;
- the solution of $u_t = -\Delta^2 u$ is the expected value of random solutions (normally distributed in time) of $u_t = i\Delta u$ (Griego-Hersch 1969).

Motivation

Our aim is to study

$$u_t(t,x) = -\Delta^2 u(t,x)$$
 on some graph.

Interesting mathematical features:

no maximum principles;

• no positivity preserving properties:

$$e^{-t\Delta^m} \ngeq 0$$
 for any $m > 1$; for $m = 2$ the heat kerne
 $p(t,x) = t^{-\frac{1}{4}}p(1,t^{-\frac{1}{4}}x)$ with
 $p(1,\cdot) =$

(Davies 1995)

No relation between Sobolev inequality and L^{∞} -contractivity.

3

History

Davies in 1995 studied

$$egin{cases} u_t(t,x) &= -\Delta^2 u(t,x) \quad t \geq 0, x \in \mathbb{R} \ u(0,\cdot) &= f(\cdot) \in L^2(\mathbb{R}). \end{cases}$$

ightarrow bounded semigroup $T(\cdot)$ on $L^p(\mathbb{R})$ for all $1 \leq p \leq \infty$ given by

$$T(t)f(x) = \int_{-\infty}^{\infty} K(t, x, y)f(y) \, dy, \quad f \in L^p(\mathbb{R}).$$

and for all t > 0, $x, y \in \mathbb{R}$ and some $c_1, c_2, k > 0$

$$|K(t,x,y)| \leq c_1 t^{-1/4} e^{-c_2 \frac{|x-y|^{4/3}}{t^{1/3}}+kt}.$$

 \rightarrow T(t) is L^1 -uniformly bounded \rightarrow C_0 -semigroup $T(\cdot)$ on $L^p(\mathbb{R})$ for all $1 \le p < \infty$.

History

Theorem 1 (Gazzola-Grunau 2008) lf • $f > 0, f \neq 0,$ f is continuous and compactly supported, then the solution to $\begin{cases} u_t(t,x) = -\Delta^2 u(t,x) & in \ [0,\infty) \times \mathbb{R}, \\ u(0,x) = f(x) & in \ \mathbb{R}, \end{cases}$ is eventually positive, i.e., for any $I \subset \mathbb{R}$ there exists a $T_I = T_I(f) > 0$ such

that u(t,x) > 0 for all $t \ge T_I$ and $x \in I$; and there esists $\tau = \tau(f) > 0$ such that for all $t > \tau$ there exists a $x_t \in \mathbb{R}$ such that $u(t, x_t) < 0$.

Setting

DISCRETE GRAPH

Consider a (finite or infinite but *uniformly locally finite*) graph G = (V, E),

with V vertices and E edges (i.e., V = |V| and E = |E|). Assume G to have neither loops nor multiple edges.

METRIC GRAPH

Assume G finite and connected and $0 < deg(v) < \infty$, $\forall v \in V$. Identify each edge $e \equiv (v, w)$ with $[0, \ell_e]$ and its endpoints v, w with 0 and ℓ_e .

Denote by \mathcal{G} the resulting metric measure space.

Semigroups in short

 $\mathcal{T} : [0, \infty) \to \mathcal{L}(X), X$ Banach space. Operator family $(\mathcal{T}(t))_{t \ge 0}$ is called a strongly continuous semigroup if

- T(0) = I and T(t+s) = T(t)T(s) for all $t, s \ge 0$;
- $t \mapsto T(t)x \in X$ is continuous for every $x \in X$.

Semigroups in short

The generator of a strongly continuous semigroup A is defined as

$$egin{aligned} D(A) &:= \{x \in X: t \mapsto T(t)x ext{ is differentiable on } [0,\infty) \} \ Ax &:= rac{d}{dt} T(t) x_{|t=0} = \lim_{t \downarrow 0} rac{1}{t} (T(t)x - x). \ T(t) &\leadsto e^{tA} \end{aligned}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

F. Gregorio

Semigroup approach to initial-boundary value problems

Given X Banach space, $A : D(A) \subset X \to X$ with boundary conditions in D(A)

$$(ACP_{1})\begin{cases} \dot{x}(t) = Ax(t) \\ x(0) = x_{0} \end{cases} \text{ and } (ACP_{2})\begin{cases} \ddot{x}(t) = Ax(t) \\ x(0) = x_{0} \\ \dot{x}(0) = x_{1} \end{cases}$$

- (A, D(A)) generates a C_0 -semigroup $(T(t))_{t\geq 0}$ on $X \Leftrightarrow (ACP_1)$ well posed with solution $x(t) = T(t)x_0$.
- Study qualitative properties: positivity, stability, regularity, ...
- (ACP_2) well posed $\Leftrightarrow (A, D(A))$ generates a cosine family on X.

Let G be a finite graph or infinite but uniformly locally finite graph.

 $-\mathcal{L} \rightarrow$ generates a semigroup on the Hilbert space $\ell^2(V)$. In particular, \mathcal{L} is a (bounded), positive semidefinite self-adjoint operator, hence

 \mathcal{L}^2 is a (bounded), positive semidefinite self-adjoint operator on $\ell^2(V)$. $\Rightarrow -\mathcal{L}^2$ generates a cosine operator function and an analytic semigroup of angle $\frac{\pi}{2}$ on $\ell^2(V)$.

Proposition 1

Let G be a connected graph. Then the following assertions are equivalent.

- G is complete.
- $(e^{-t\mathcal{L}^2})_{t\geq 0}$ is positive.
- $(e^{-t\mathcal{L}^2})_{t\geq 0}$ is ℓ^{∞} -contractive.

Weaker contractivity properties for all graphs.

Proposition 2 The semigroup $(e^{-t\mathcal{L}^2})_{t\geq 0}$ is ℓ^p -contractive for some $p\in (2,\infty)$.

Bi-Laplacians on graphs and netwo

F. Gregorio

bi-Laplacian on network

We identify functions on \mathcal{G} as vectors $(u_e)_{e \in E}$, where each u_e is defined on the edge $e \simeq (0, \ell_e)$ and introduce

$$\begin{split} L^2(\mathcal{G}) &= \bigoplus_{\mathsf{e} \in \mathsf{E}} L^2(\mathsf{0}, \ell_\mathsf{e}) \\ &= \left\{ (u_\mathsf{e})_{\mathsf{e} \in \mathsf{E}} \text{ s.t. } u_\mathsf{e} : (\mathsf{0}, \ell_\mathsf{e}) \to \mathbb{C} \text{ is meas. and } \sum_{\mathsf{e} \in \mathsf{E}} \int_0^{\ell_\mathsf{e}} |u_\mathsf{e}(x)|^2 \, dx < \infty \right\}, \end{split}$$

and, we will denote for every $k \in \mathbb{N}$ by

$$\widetilde{H}^k(\mathcal{G}) = \bigoplus_{\mathsf{e}\in\mathsf{E}} H^k(\mathsf{0},\ell_\mathsf{e})$$

the space of H^k functions on the (open) edges where we will specify later the vertex conditions.

イロト (四) (日) (日) (日) (日)

F. Gregorio Bi-Laplacians on graphs and network

The operator

We want to study on \mathcal{G} the differential operator

$$A = \Delta^2 = \frac{d^4}{dx^4}$$

with domain

 $D(A) = \big\{ u \ : \ u_e \in H^4(0,\ell_e) \, \text{for each} \, e \in \mathsf{E} \, + \,$

vertex conditions involving the function and its derivatives at nodes which make the operator self-adjoint $\}$.

(Gazzola-Grunau-Sweers)

- CLAMPED u(0) = u'(0) = 0
- HINGED u(1) = u''(1) = 0
- FREE u''(1) = u'''(1) = 0
- FREE VERTICAL SLIDING but with fixed derivative u'(1) = u'''(1) = 0

F. Gregorio

Recall: If A_0 is a symmetric, positive semi-definite operator \Rightarrow it has self-adjoint extentions.

They can be parametrized (Friedrichs theory) and ordered wrt:

$$A_1 \leq A_2 \Leftrightarrow D(a_2) \subset D(a_1) \text{ and } a_1(x) \leq a_2(x) \ \forall \ x \in D(a_2).$$

- NOT a total order;
- BUT ∃ one largest extension (Friedrichs), and one smallest extension (Krein-von Neumann).

Integrating by parts

$$(Au, v)_{L^{2}(\mathcal{G})} = \sum_{e \in E} \int_{0}^{\ell_{e}} u_{e}^{'''}(x) \overline{v_{e}(x)} dx$$
$$= \sum_{e \in E} \left[u_{e}^{'''} \overline{v_{e}} \right]_{0}^{\ell_{e}} - \sum_{e \in E} \left[u_{e}^{''} \overline{v_{e}'} \right]_{0}^{\ell_{e}} + \sum_{e \in E} \left[u_{e}^{'} \overline{v_{e}''} \right]_{0}^{\ell_{e}}$$
$$- \sum_{e \in E} \left[u_{e} \overline{v_{e}^{'''}} \right]_{0}^{\ell_{e}} + \sum_{e \in E} \int_{0}^{\ell_{e}} u_{e}(x) \overline{v_{e}^{''''}(x)} dx.$$

F. Gregorio

Integrating by parts

$$(Au, v)_{L^{2}(\mathcal{G})} = \sum_{e \in \mathsf{E}} \int_{0}^{\ell_{e}} u_{e}^{'''}(x) \overline{v_{e}(x)} dx$$
$$= \sum_{e \in \mathsf{E}} \left[u_{e}^{'''} \overline{v_{e}} \right]_{0}^{\ell_{e}} - \sum_{e \in \mathsf{E}} \left[u_{e}^{''} \overline{v_{e}'} \right]_{0}^{\ell_{e}} + \sum_{e \in \mathsf{E}} \left[u_{e}' \overline{v_{e}''} \right]_{0}^{\ell_{e}}$$
$$- \sum_{e \in \mathsf{E}} \left[u_{e} \overline{v_{e}^{'''}} \right]_{0}^{\ell_{e}} + \sum_{e \in \mathsf{E}} \int_{0}^{\ell_{e}} u_{e}(x) \overline{v_{e}^{''''}(x)} dx.$$

F. Gregorio

Denoting as $u(0) := (u_e(0))_{e \in E}$ and $u(\ell) := (u_e(\ell_e))_{e \in E}$, the boundary equality means that

$$\left(\begin{pmatrix}u(0)\\u(\ell)\\-u'(0)\\u'(\ell)\end{pmatrix},\begin{pmatrix}-v'''(0)\\-v''(\ell)\\-v''(\ell)\end{pmatrix}\right)_{\mathbb{C}^{4E}} = \left(\begin{pmatrix}-u'''(0)\\u'''(\ell)\\-u''(0)\\-u''(\ell)\end{pmatrix},\begin{pmatrix}v(0)\\v(\ell)\\-v'(0)\\v'(\ell)\end{pmatrix}\right)_{\mathbb{C}^{4E}}$$

for all $u, v \in D(A)$.

Let Y be a subspace of \mathbb{C}^{4E} , then this condition reads as

$$\begin{pmatrix} u(0)\\ u(\ell)\\ -u'(0)\\ u'(\ell) \end{pmatrix}, \begin{pmatrix} v(0)\\ v(\ell)\\ -v'(0)\\ v'(\ell) \end{pmatrix} \in Y \text{ and } \begin{pmatrix} -u'''(0)\\ u'''(\ell)\\ -u''(0)\\ -u''(\ell) \end{pmatrix}, \begin{pmatrix} -v'''(0)\\ v'''(\ell)\\ -v''(0)\\ -v''(\ell) \end{pmatrix} \in Y^{\perp} .$$

However, this boundary condition can be generalised considering $R \in \mathcal{L}(Y)$ and imposing

$$\begin{pmatrix} u(0)\\ u(\ell)\\ -u'(0)\\ u'(\ell) \end{pmatrix} \in Y, \qquad \begin{pmatrix} -u'''(0)\\ u'''(\ell)\\ -u''(0)\\ -u''(\ell) \end{pmatrix} + R \begin{pmatrix} u(0)\\ u(\ell)\\ -u'(0)\\ u'(\ell) \end{pmatrix} \in Y^{\perp}$$

on all u in the domain of A.

Theorem 2

Let $A = \frac{d^4}{dx^4}$ acting on each edge of \mathcal{G} . Let $D(A) = \{u : u_e \in H^4(0, \ell_e) \, \forall \, e + vertex \ cond.\}$. Then, TFAE: (i) A is self-adjoint;

(ii) the vertex conditions can be written as

$$\begin{pmatrix} u(0) \\ u(\ell) \\ -u'(0) \\ u'(\ell) \end{pmatrix} \in Y, \qquad \begin{pmatrix} -u''(0) \\ u'''(\ell) \\ -u''(0) \\ -u''(\ell) \end{pmatrix} + R \begin{pmatrix} u(0) \\ u(\ell) \\ -u'(0) \\ u'(\ell) \end{pmatrix} \in Y^{\perp}$$

where Y is a subspace of \mathbb{C}^{4E} and $R \in \mathcal{L}(Y)$ is self-adjoint; (iii) the vertex conditions can be written as

$$C\begin{pmatrix} u(0)\\ u(\ell)\\ -u'(0)\\ u'(\ell) \end{pmatrix} + B\begin{pmatrix} -u''(0)\\ u'''(\ell)\\ -u''(0)\\ -u''(\ell) \end{pmatrix} = 0$$

for suitable $C, B \in M^{4E}(\mathbb{C})$ s. t. (CB) has max rank and CB^{*} is self-adj.

F. Gregorio

Some conditions in literature

Dekoninck and Nicaise

B. Dekoninck, S. Nicaise, Control of networks of Euler-Bernouilli beams, ESAIM Control oprim. Calc. Var. 4 (1999), 57-81.

study the exact controllability problem of hyperbolic systems of networks of beams with the following conditions (adapted to our notations)

$$\begin{cases} u_{e}(v) = u_{f}(v) & \text{if } e \cap f = v, \\ \sum_{e \in E_{v}} \frac{\partial u_{e}}{\partial \nu}(v) = 0 & \forall v \in V, \\ u_{e}''(v) = u_{f}''(v) & \text{if } e \cap f = v, \\ \sum_{e \in E_{v}} \frac{\partial^{3} u_{e}}{\partial \nu^{3}}(v) = 0 & \forall v \in V, \end{cases}$$
(1)

where $(\partial u_e)/(\partial \nu)(v)$ is the exterior normal derivative of u_e at v.

The same authors

B. Dekoninck, S. Nicaise, *The eigenvalue problem for networks on beams*, Linear Algebra Appl. **314** (2000), 165-189.

study the characteristic equation for the spectrum of the operator with the following two sets of conditions

$$\begin{cases} u_{e}(v) = u_{f}(v) & \text{if } e \cap f = v, \\ \frac{\partial u_{e}}{\partial \nu}(v) = \frac{\partial u_{f}}{\partial \nu}(v) & \text{if } e \cap f = v, \\ \sum_{e \in E_{v}} u_{e}^{\prime\prime}(v) = 0 & \forall v \in V, \\ \sum_{e \in E_{v}} \frac{\partial^{3} u_{e}}{\partial \nu^{3}}(v) = 0 & \forall v \in V. \end{cases}$$

$$(2)$$

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - わんぐ

and

$$\begin{cases} u_{e}(v) = u_{f}(v) & \text{if } e \cap f = v, \\ u''(v) = 0 & \forall v \in V, \\ \sum_{e \in E_{v}} \frac{\partial^{3} u_{e}}{\partial \nu^{3}}(v) = 0 & \forall v \in V. \end{cases}$$
(3)

F. Gregorio

Consider the restriction of A to the space

$$D_{cont}(A) := \{f \in C(\mathcal{G}) : f' \in \bigoplus C_c^{\infty}(0, \ell_e)\}.$$

■ FRIEDRICHS EXTENSION A_F

$$\begin{cases} u_{e}(v) = u_{f}(v) & \text{if } e \cap f = v, \\ \frac{\partial u_{e}}{\partial \nu}(v) = 0 & \forall v \in V, \\ \sum_{e \in E_{v}} \frac{\partial^{3} u_{e}}{\partial \nu^{3}}(v) = 0 & \forall v \in V. \end{cases}$$
(4)

■ KREIN-von NEUMANN EXTENSION A_K

$$\begin{cases} u_{e}(v) = u_{f}(v) & \text{if } e \cap f = v, \\ u_{e}''(0) = u_{e}''(\ell_{e}) = \frac{u_{e}'(\ell_{e}) - u_{e}'(0)}{\ell_{e}} & \\ \sum_{e \in E_{v}} \frac{\partial^{3} u_{e}}{\partial \nu^{3}}(v) = 0 & \forall v \in V. \end{cases}$$
(5)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

The semigroup

The operator

$$\begin{aligned} Au &= \frac{d^4 u}{dx^4}, \\ D(A) &= \left\{ u \in \widetilde{H}^4(\mathcal{G}) : \begin{pmatrix} u(0) \\ u(\ell) \\ -u'(0) \\ u'(\ell) \end{pmatrix} \in Y \text{ and } \begin{pmatrix} -u'''(0) \\ u'''(\ell) \\ -u''(0) \\ -u''(\ell) \end{pmatrix} + R \begin{pmatrix} u(0) \\ u(\ell) \\ -u'(0) \\ u'(\ell) \end{pmatrix} \in Y^{\perp} \right\} \end{aligned}$$

with Y subspace of \mathbb{C}^{4E} and R self-adjoint operator on Y, is self-adjoint.

The quadratic form associated with A is given by

$$\mathfrak{a}(u) = \sum_{e \in E} \int_0^{\ell_e} |u_e''(x)|^2 \, dx - \left(R \begin{pmatrix} u(0) \\ u(\ell) \\ -u'(0) \\ u'(\ell) \end{pmatrix}, \begin{pmatrix} u(0) \\ u(\ell) \\ -u'(0) \\ u'(\ell) \end{pmatrix} \right)$$

with domain

$$D(\mathfrak{a}):=\widetilde{H}^2_Y(\mathcal{G}):=igg\{u\in\widetilde{H}^2(\mathcal{G}):igg(egin{array}{c}u(0)\u(\ell)\-u'(0)\u'(\ell)\end{pmatrix}\in Yigg\}.$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

F. Gregorio

Let Y be a subspace of \mathbb{C}^{4E} and $R \in \mathcal{L}(Y)$.

PROPERTIES OF THE FORM

 \mathfrak{a} is densely defined, continuous, $L^2(\mathcal{G})$ -elliptic and of Lions type:

THEN

-A generates a C_0 -semigroup $(e^{-tA})_{t\geq 0}$ in $L^2(\mathcal{G})$ that is analytic of angle $\frac{\pi}{2}$.

- e^{-tA} is of trace class (and in particular compact) for all t > 0.
- e^{-tA} is self-adjoint if and only if R is self-adjoint;
- e^{-tA} is contractive if R is dissipative.

Proposition 3

Let Y and R be as above and R dissipative. Then the semigroup $(e^{-tA})_{t\geq 0}$ is ultracontractive; in particular, it has an integral kernel of class $L^{\infty}(\mathcal{G} \times \mathcal{G})$ and the estimate

$$\|e^{-tA}\|_{1\to\infty} \le ct^{-\frac{1}{4}}e^{\frac{t}{2}}$$
 for all $t > 0$ (6)

holds.

CONSEQUENCE

 $(e^{-tA})_{t\geq 0}$ on $L^2(\mathcal{G})$ extrapolates to a consistent family of semigroups on $L^p(\mathcal{G})$ for every $1\leq p\leq \infty$.

Eventual positivity

Definition 3

Let $(e^{-tL})_{t\geq 0}$ be a real C_0 -semigroup on a Banach space X.

• The semigroup $(e^{-tL})_{t\geq 0}$ is called *uniformly eventually (strongly)* positive if there exists $t_0 \geq 0$ such that $e^{-tL} \geq 0 \; (\gg 0)$ for all $t \geq t_0$.

- D. Daners, J. Glück, and J.B. Kennedy, Eventually positive semigroups of linear operators. J. Math. Anal. Appl., 433:1561-1593, 2016.
- J. Glück, Invariant sets and long time behaviour of operator semigroups, Ph.D. Thesis, University of Ulm, 2016.

Characterization to prove eventual positivity of the semigroup through the spectrum of the operator.

Proposition 4

Let X be a σ -finite measure space and $(T(t))_{t\geq 0}$ be a real, strongly continuous semigroup on the complex Hilbert lattice $L^2(X)$ with self-adjoint generator -A. Let u > 0 a.e. and assume that $\bigcap_{k=1}^{\infty} D(A^k) \subset H_u$. Then $(T(t))_{t\geq 0}$ is uniformly eventually strongly positive with respect to u if and only if the spectral bound s(-A) is a simple eigenvalue and the associated eigenspace contains a vector v such that $v \gg_u 0$. The operator A is

- positive
- self-adjoint
- with compact resolvent

Then A has positive, real, pure point spectrum $\Rightarrow s(-A) = 0$ as long as $\mathbf{1} \in D(A)$. And in this case if R = 0

$$u_{e}(x) = a_{e}x + b_{e} \qquad \forall e \in E.$$

If $R \neq 0$ $u_e(x) = a_e x^3 + b_e x^2 + c_e x + d_e \qquad \forall e \in E.$

<ロ> <昂> < 臣> < 臣> < 臣> 三 のへの

F. Gregorio

Examples

Proposition 5

The semigroup generated by the Friedrichs extension $-A_F$ of the bi-Laplacian $(A, D_{cont}(A))$ is eventually positive. The semigroup generated by the Krein–von Neumann extension $-A_K$ of the bi-Laplacian $(A, D_{cont}(A))$ is not eventually positive.

$$\begin{cases} u_e(v) = u_f(v) & \text{ if } e \cap f = v, \\ \frac{\partial u_e}{\partial \nu}(v) = 0 & \forall \ v \in V, \\ \sum_{e \in E_v} \frac{\partial^3 u_e}{\partial \nu^3}(v) = 0 & \forall \ v \in V. \end{cases} \begin{cases} u_e(v) = u_f(v) & \text{ if } e \cap f = v, \\ u''_e(0) = u''_e(\ell_e) = \frac{u'_e(\ell_e) - u'_e(0)}{\ell_e} \\ \sum_{e \in E_v} \frac{\partial^3 u_e}{\partial \nu^3}(v) = 0 & \forall \ v \in V. \end{cases}$$

▲ロト ▲御 ▶ ▲臣 ▶ ▲臣 ▶ ● 臣 ● ���

Proposition 6

Let \mathcal{G} be a tree. Then the semigroup generated by the operator -A with conditions (1) in all transmission vertices (i.e., on all vertices of degree ≥ 2) is uniformly eventually positive if and only if Neumann boundary conditions are imposed on all leaves (i.e., on all vertices of degree 1), up to at most one exception.

$$\begin{cases} u_{e}(v) = u_{f}(v) & \text{if } e \cap f = v, \\ \sum_{e \in E_{v}} \frac{\partial u_{e}}{\partial \nu}(v) = 0 & \forall v \in V, \\ u_{e}''(v) = u_{f}''(v) & \text{if } e \cap f = v, \\ \sum_{e \in E_{v}} \frac{\partial^{3} u_{e}}{\partial \nu^{3}}(v) = 0 & \forall v \in V, \end{cases}$$

Proposition 7

Let \mathcal{G} be a graph containing at least one *odd* cycle. Then the semigroup generated by the operator -A with conditions (2) in all transmission vertices is uniformly eventually positive if Dirichlet boundary conditions are not imposed on any vertex of degree 1 (if such vertices exist at all).

$$\begin{cases} u_{e}(v) = u_{f}(v) & \text{if } e \cap f = v, \\ \frac{\partial u_{e}}{\partial \nu}(v) = \frac{\partial u_{f}}{\partial \nu}(v) & \text{if } e \cap f = v, \\ \sum_{e \in \mathsf{E}_{v}} u_{e}''(v) = 0 & \forall v \in \mathsf{V}, \\ \sum_{e \in \mathsf{E}_{v}} \frac{\partial^{3} u_{e}}{\partial \nu^{3}}(v) = 0 & \forall v \in \mathsf{V}. \end{cases}$$

Let A be endowed with conditions

$$\begin{cases} u_{e}(v) = u_{f}(v) & \text{ if } e \cap f = v, \\ u''(v) = 0 & \forall v \in V, \\ \sum_{e \in E_{v}} \frac{\partial^{3} u_{e}}{\partial \nu^{3}}(v) = 0 & \forall v \in V. \end{cases}$$

We do not obtain eventually positivity because only continuity on the trace but no conditions on the first derivative is imposed in the vertices, then it is clear that *all* polynomials of degree 1 (with suitable coefficients of degree 0 realizing the continuity condition) lie in the null space.

Eventual L^{∞} -contractivity

Proposition 8

Let (Ω, μ) be a finite measure space and -A a self-adjoint operator with compact resolvent on $L^2(\Omega)$. Let 0 be the spectral bound of -A and let the associated eigenspace E_0 be a one-dimensional space spanned by **1**. Also assume that $\bigcap_{k \in \mathbb{N}} D(A^k) \hookrightarrow L^{\infty}(\Omega)$ and e^{-tA} be real. Then the semigroup generated by -A is eventually Markovian, i.e., eventually positive and eventually L^{∞} -contractive.

Proposition 9

The semigroup generated by the bilaplacian operator endowed with conditions $% \left({{{\boldsymbol{x}}_{i}}} \right)$

$$\begin{cases} u_{e}(v) = u_{f}(v) & \text{if } e \cap f = v, \\ \frac{\partial u_{e}}{\partial \nu}(v) = 0 & \forall v \in V, \\ \sum_{e \in E_{v}} \frac{\partial^{3} u_{e}}{\partial \nu^{3}}(v) = 0 & \forall v \in V. \end{cases} \text{ or } \begin{cases} u_{e}(v) = u_{f}(v) & \text{if } e \cap f = v, \\ \sum_{e \in E_{v}} \frac{\partial u_{e}}{\partial \nu}(v) = 0 & \forall v \in V, \\ u_{e}''(v) = u_{f}''(v) & \text{if } e \cap f = v, \\ \sum_{e \in E_{v}} \frac{\partial^{3} u_{e}}{\partial \nu^{3}}(v) = 0 & \forall v \in V, \end{cases}$$

is eventually Markovian.

▲ロト ▲御 ▶ ▲臣 ▶ ▲臣 ▶ ● 臣 ● ���

Proposition 10

Let G be finite. Then the semigroup $(e^{-t\mathcal{L}^2})_{t\geq 0}$ is uniformly eventually positive and eventually ℓ^{∞} -contractive, hence eventually Markovian.

Thank you for your attention!

・ロト ・雪 ト ・ヨト ・ヨー うへの

F. Gregorio