Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

University of Hagen

October 3, 2018

▲□▶ ▲□▶ ▲□▶ ▲□▶ - □ ● - ● ●

Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

A brief history of semigroup domination

Eventual positivity

Eventual domination

Applications

1/27

Let A be a 2nd order elliptic operator in divergence form with Dirichlet b.c. on $\Omega \subset \mathbb{R}^n$ (+ technical assumptions). Then for $t \in (0,1]$, $x, y \in \mathbb{R}^n$:

$$0 \le k^{\mathcal{A}}(t, x, y) \le \gamma k^{\Delta_{\mathbb{R}^n}}(t, x, y),$$

When is $\gamma \leq 1$?

Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

A brief history of semigroup domination

Eventual positivity

Eventual domination

Applications

・ロット語・ キョット きょうせい

٠

Simon 1977

Domination of a semigroup $(e^{tA})_{t\geq 0}$ acting on a Hilbert lattice H by another positive semigroup $(e^{tB})_{t\geq 0}$ means that

 $|e^{tA}f| \le e^{tB}|f|$ for all $t \ge 0$ and all $f \in H$.

Short: $e^{tA} \le e^{tB}$

Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

A brief history of semigroup domination

Eventual positivity

Eventual domination

Special case #1

Let $a \sim A$, $b \sim B$ be Dirichlet forms on $H = L^2(X, \mu; \mathbb{C})$ with D(a) = D(b). Then TFAE:

- $e^{tA} \leq e^{tB}$
- $b(u,v) \leq a(u,v)$ for all $0 \leq u, v \in D(a)$

Example

• $e^{t\Delta^R} \leq e^{t\Delta^N}$ on arbitrary open sets $\Omega \subset \mathbb{R}^d$

- ▶ If $A = (\alpha_{ij})$ and $B = (\beta_{ij})$ with $\alpha_{ii}, \beta_{ii} \in \mathbb{R}$ and $\alpha_{ij}, \beta_{ij} \ge 0$ $\forall i \neq j$, then $e^{tA} \le e^{tB} \Leftrightarrow \alpha_{ij} \le \beta_{ij} \forall i, j$
 - In particular: if G is a finite graph with adjacency matrix \mathcal{A}_{G} and Laplacian \mathcal{L}_{G} , then for all subgraphs G': $e^{t\mathcal{A}_{G'}} \leq e^{t\mathcal{A}_{G}}$ but $e^{-t\mathcal{L}_{G'}} \nleq e^{-t\mathcal{L}_{G'}}$

Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

A brief history of semigroup domination

Eventual positivity

Eventual domination

Special case #1

Let $a \sim A$, $b \sim B$ be Dirichlet forms on $H = L^2(X, \mu; \mathbb{C})$ with D(a) = D(b). Then TFAE:

- $e^{tA} \leq e^{tB}$
- $b(u,v) \le a(u,v)$ for all $0 \le u, v \in D(a)$

Example

•
$$e^{t\Delta^R} \leq e^{t\Delta^N}$$
 on arbitrary open sets $\Omega \subset \mathbb{R}^d$

- If $A = (\alpha_{ij})$ and $B = (\beta_{ij})$ with $\alpha_{ii}, \beta_{ii} \in \mathbb{R}$ and $\alpha_{ij}, \beta_{ij} \ge 0$ $\forall i \neq j$, then $e^{tA} \le e^{tB} \Leftrightarrow \alpha_{ij} \le \beta_{ij} \ \forall i, j$
 - In particular: if G is a finite graph with adjacency matrix A_G and Laplacian L_G, then for all subgraphs G': e^{tA_G} ≤ e^{tA_G} but e^{-tL_G} ≰ e^{-tL_G} ≰ e^{-tL_G}

Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

A brief history of semigroup domination

Eventual positivity

Eventual domination

Special case #2

Let $a \sim A$, $b \sim B$ be Dirichlet forms on $H = L^2(X, \mu; \mathbb{C})$ and restrictions of a Dirichlet form *s*. Then TFAE:

- $e^{tA} \leq e^{tB}$
- $0 \le v \le u$ with $v \in D(b), u \in D(a)$ implies $v \in D(a)$

Example

•
$$e^{t\Delta^D} \leq e^{t\Delta^N}$$
 on arbitrary open sets $\Omega \subset \mathbb{R}^d$

In this case: $-B \leq -A$ and $e^{tA} \leq e^{tB}$.

Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

A brief history of semigroup domination

Eventual positivity

Eventual domination

Applications

A counterexample

Spectral conditions alone can **not** characterize domination:

On (0, π)

$$\sigma(-\Delta^{per}) = \{0, 4, 4, 16, 16, \ldots\}, \quad \sigma(-\Delta^{N}) = \{0, 1, 4, 9, 16, \ldots\}$$

hence $-\Delta^N \leq -\Delta^{per}$.

But: $H_{per}^{1}(0,\pi)$ is not an ideal of $H^{1}(0,\pi)$, hence $e^{t\Delta^{per}} \notin e^{t\Delta^{N}}$.

Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

A brief history of semigroup domination

Eventual positivity

Eventual Iomination

Applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ → □ → のへで

The general case

Theorem (Ouhabaz 1996)

Let $a \sim A$, $b \sim B$ be densely defined, accretive, continuous, and closed with $e^{tB} \ge 0$. TFAE:

- $e^{tA} \leq e^{tB}$;
- (i) $b(|u|, |v|) \le \operatorname{Re} a(u, v)$ for all $u, v \in D(a)$ s.t. $u\overline{v} \ge 0$ (ii) $u \in D(a)$ implies $|u| \in D(b)$ (iii) $u \in D(a)$, $v \in D(b)$ and $|v| \le |u|$ imply $v \operatorname{sgn} u \in D(a)$

(Partial results in: Simon 1977; Hess-Schrader-Uhlenbrock 1977; Arendt 1984; Stollmann-Voigt 1996) Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

A brief history of semigroup domination

Eventual positivity

Eventual domination

Applications

◆□ → ◆□ → ◆ □ → ◆ □ → ○ ● ● ● ●

What if $e^{tA} \neq 0$?

Theorem (Ouhabaz 1996)

Let $a \sim A$, $b \sim B$ be densely defined, accretive, continuous, and closed with $e^{tB} \ge 0$. TFAE:

- $e^{tA} \leq e^{tB}$;
- (i) $b(|u|, |v|) \le \operatorname{Re} a(u, v)$ for all $u, v \in D(a)$ s.t. $u\overline{v} \ge 0$ (ii) $u \in D(a)$ implies $|u| \in D(b)$ (iii) $u \in D(a)$, $v \in D(b)$ and $|v| \le |u|$ imply $v \operatorname{sgn} u \in D(a)$

Example

- $e^{-t(\Delta^D)^2} \notin e^{t\Delta^D}$ on any open set $\Omega \subset \mathbb{R}^d$ because $D(a) = H^2 \cap H_0^1$, $D(b) = H^1$ do not satisfy (iii).
- e^{-t(Δ^D)²} ≱ e^{tΔ^D} on any open set Ω ⊂ ℝ^d
 because D(b) = H² ∩ H₀¹, D(a) = H¹ do not satisfy (ii).

Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

A brief history of semigroup domination

Eventual positivity

Eventual domination

Daners-Glück-Kennedy 2016

Let $H = L^2(X, \mu; \mathbb{C})$ be a Hilbert lattice with $\mu(X) < \infty$. $(T(t))_{t \ge 0}$ on H is

eventually positive if

 $\exists t_0 > 0 \text{ s.t. } [f \ge 0, f \ne 0 \Rightarrow T(t)f \gg 0 \quad \forall t \ge t_0].$

eventually Markovian if additionally

 $\exists t_0 > 0 \text{ s.t. } T(t) = 1 \quad \forall t \ge t_0.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ → □ → のへで

Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

A brief history of semigroup domination

Eventual positivity

Eventual domination

Applications

10 / 27

Eventually positive/eventually (sub)Markovian systems have been observed often:

- open quantum systems: Suarez–Silbey–Oppenheim 1992, Gnutzmann–Haake 1996
- biological stochastic petri nets: Hufton–Lin–Galla 2018
- polyharmonic heat equations: Gazzola–Grunau 2008, Gregorio–M. 2018

Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

A brief history of semigroup domination

Eventual positivity

Eventual Iomination

Theorem (Daners-Kennedy-Glück 2016)

Let A be a self-adjoint operator on $L^2(X,\mu;\mathbb{C})$, $\mu(X) < \infty$, s.t. e^{tA} is real and $e^{t_0A}L^2(X) \subset L^{\infty}(X)$ for some $t_0 > 0$.

Then $(e^{tA})_{t\geq 0}$ is eventually positive iff s(A) is a simple eigenvalue and the associated eigenspace contains a vector v such that $v \gg 0$.

If additionally A1 = 0, then e^{tA} is eventually Markovian.

Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

A brief history of semigroup domination

Eventual positivity

Eventual domination

Theorem (Daners-Kennedy-Glück 2016)

Let A be a self-adjoint operator on $L^2(X,\mu;\mathbb{C})$, $\mu(X) < \infty$, s.t. e^{tA} is real and $e^{t_0A}L^2(X) \subset L^{\infty}(X)$ for some $t_0 > 0$.

Then $(e^{tA})_{t\geq 0}$ is eventually positive iff s(A) is a simple eigenvalue and the associated eigenspace contains a vector v such that $v \gg 0$.

If additionally A1 = 0, then e^{tA} is eventually Markovian.

Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

A brief history of semigroup domination

Eventual positivity

Eventual domination

Applications

Theorem (Glück-M. 2018)

Let A, B be distinct self-adjoint operators on $L^2(X, \mu; \mathbb{C})$, $\mu(X) < \infty$, s.t.

(i) $e^{t_0A}L^2 \subset L^{\infty}$ and $e^{t_0B}L^2 \subset L^{\infty}$ for some $t_0 > 0$;

(ii) e^{tA} is (eventually) positive, e^{tB} is irreducible.

Then TFAE:

- For all $0 < f \in L^2$ there exists a time $t_1 \ge 0$ such that $e^{tB}f \ge e^{tA}f \ge 0$ for all $t \ge t_1$.
- There exists a time $t_1 \ge 0$ and a number $\delta > 0$ such that $e^{tB} \ge e^{tA} + \delta(1 \otimes 1) \ge e^{tA}$ for all $t \ge t_1$.
- s(B) > s(A).

Example

If $\mu(X)$ small enough, then $e^{t(-\Delta^D)^2} \le e^{t\Delta^D}$ for some $t_1 > 0$ and all $t \ge t_1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ → □ → のへで

Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

A brief history of semigroup domination

Eventual positivity

Eventual domination

 $"s(B) > s(A) \Rightarrow e^{tB} \ge e^{tA} + \delta(1 \otimes 1)"$

- e^{tA}, e^{tB} are compact for all $t \ge 0$ and Hilbert-Schmidt for all $t \ge t_0$.
- WLOG: s(B) = 0 > s(A).
- Let (λ_n, e_n)[∞]_{n=1}, (μ_n, f_n)[∞]_{n=0} sequences of eigenpairs of A, B; then |f_n| ≤ Me^{t₀μ_n}, |e_n| ≤ Me^{t₀λ_n} for some M ≥ 1.
- Let $0 \le g \in L^2$ and consider

$$e^{tB}g - e^{tA}g = \langle g, f_0 \rangle f_0 + \sum_{k=1}^{\infty} \left(e^{-t\mu_k} \langle g, f_k \rangle f_k - e^{-t\lambda_k} \langle g, e_k \rangle e_k \right)$$

• The series on the RHS is abs. convergent in L^{∞} with

$$\left\|\sum_{k=1}^{\infty} \left(e^{-t\mu_k} \langle g, f_k \rangle f_k - e^{-t\lambda_k} \langle g, e_k \rangle e_k\right)\right\|_{\infty} \leq \frac{(\text{ess inf } f_0)^2}{2} \langle g, 1$$

for some $t_1 \ge 4t_0$ and all $t \ge t_1$.

• Therefore, $e^{tB}g - e^{tA}g \ge c\langle g, 1 \rangle 1$

Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

A brief history of semigroup domination

Eventual positivity

Eventual domination

Interwoven semigroups

$$e^{t_1B} \not\geq e^{t_1A}$$
 and $e^{t_2A} \not\geq e^{t_2B}$.

for some $t_1, t_2 \ge t$.

Corollary

Let A, B be distinct self-adjoint operators on $L^{2}(X, \mu; \mathbb{C})$, $\mu(X) < \infty$, s.t. (i) $e^{t_{0}A}L^{2} \subset L^{\infty}$ and $e^{t_{0}B}L^{2} \subset L^{\infty}$ for some $t_{0} \ge 0$; (ii) e^{tA} is (eventually) positive, e^{tB} is irreducible. If s(A) = s(B), then e^{tA} , e^{tB} are interwoven. Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

A brief history of semigroup domination

Eventual positivity

Eventual domination

Remark

An extension to general Banach lattices is available.

In particular: if e^{tA} , e^{tB} are bounded, positive semigroups on $L^p(X, \mu; \mathbb{C})$, $\mu \sigma$ -finite and A, B have compact resolvent, then their spectral bounds s(A), s(B) are dominant eigenvalues.

If furthermore the associated eigenspaces are spanned by the same vector, then

$$\|e^{tA} - e^{tB}\| \le 2e^{\lambda t} \stackrel{t \to \infty}{\to} 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ → □ → のへで

where $\lambda \coloneqq \min\{s(A), s(B)\}$.

Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

A brief history of semigroup domination

Eventual positivity

Eventual domination

Comparison principles for heat equations on networks

A network (or metric graph) G is obtained by associating an interval $(0, \ell_e)$ of length ℓ_e with each edge e of G = (V, E).

 ${\mathcal G}$ is a metric measure space: consider

• $L^2(\mathcal{G})$

Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

A brief history of semigroup domination

Eventual positivity

Eventual domination

$$H^1(\mathcal{G}) \coloneqq \{ f = (f_e)_{e \in \mathsf{E}} \in C(\mathcal{G}) : f_e \in H^1(0, \ell_e) \ \forall e \in \mathsf{E} \}$$

 $\Delta_{\mathcal{G}}$ is the self-adjoint, positive semidefinite operator on $L^2(\mathcal{G})$ associated with

$$a(f) \coloneqq \sum_{e \in E} \int_0^{\ell_e} |f'|^2, \quad f \in H^1(\mathcal{G})$$

<ロト < 個 ト < 三 ト < 三 ト ・ 三 のへで</p>

Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

A brief history of semigroup domination

Eventual positivity

Eventual domination

Diffusion on graphs and networks

Laplacians on graphs and quantum graphs are associated with Dirichlet forms:

- Beurling-Deny 1959 (graphs)
- von Below 1991, Kramar Fijavž-M-Sikolya 2007 (networks)

 $\Rightarrow e^{-t\mathcal{L}_{\mathsf{G}}}, e^{t\Delta_{\mathcal{G}}}$ are positive (Markovian) semigroups.

Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

A brief history of semigroup domination

Eventual positivity

Eventual domination

Applications

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ― ヨ _ りへで

20 / 27

Modifying the connectivity of $\ensuremath{\mathcal{G}}$

If \mathcal{G}' arises by gluing two vertices of $\mathcal{G},$ then

$$H^1(\mathcal{G}') \neq H^1(\mathcal{G})$$
 but $L^2(\mathcal{G}') \approx L^2(\mathcal{G})$.

Proposition

If \mathcal{G}' is obtained from \mathcal{G} by gluing two distinct vertices, then $e^{t\Delta_{\mathcal{G}}} \nleq e^{t\Delta_{\mathcal{G}'}} \nleq e^{t\Delta_{\mathcal{G}}}$.

Proof.

Neither is $H^1(\mathcal{G})$ a generalized ideal of $H^1(\mathcal{G}')$, nor is $H^1(\mathcal{G}')$ a generalized ideal of $H^1(\mathcal{G})$.

Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

A brief history of semigroup domination

Eventual positivity

Eventual domination

Applications

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ― ヨ _ りへで

Proposition (Glück-M. 2018)

- If G, G' are any two graphs on the finite vertex set V, then e^{-tL_G}, e^{-tL_{G'}} are interwoven.
- If G, G' are two networks of same finite total length, then e^{tΔ_G}, e^{tΔ_{G'}} are interwoven (regardless of the chosen isomorphism L²(G) ≃ L²(G')).

Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

A brief history of semigroup domination

Eventual positivity

Eventual domination

Applications

Proof. $s(-\mathcal{L}_{G}) = s(-\mathcal{L}_{G'}) = 0, \ s(\Delta_{\mathcal{G}}) = s(\Delta_{\mathcal{G}'}) = 0.$

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ― ヨ _ りへで

All in all:

$$e^{-t\mathcal{L}_{\mathsf{G}}} \approx e^{-t\mathcal{L}_{\mathsf{G}}}$$

and

$$e^{t\Delta_{\mathcal{G}}}\approx e^{t\Delta_{\mathcal{G}}}$$

Convenient because semi-explicit formulae for the heat kernels of $e^{-t\mathcal{L}_{G'}}$ and $e^{t\Delta_{\mathcal{G}'}}$ are known if G', \mathcal{G}' are cycles (Chinta–Jorgensen–Karlsson 2015)

Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

A brief history of semigroup domination

Eventual positivity

Eventual domination

Applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ → □ → のへで

Spectral estimates for quantum graphs

Proposition (Nicaise 1987)

Let \mathcal{G} be a network of total length L, $V_D \neq \emptyset$. Then

$$s(\Delta_{\mathcal{G}}^{D}) \leq -\frac{\pi^2}{4L^2}$$

with equality iff \mathcal{G} is an interval.

Corollary

Let \mathcal{G} be a network of total length L, $V_D(\mathcal{G}) \neq \emptyset$, and $\mathcal{G}' = (0, L)$ with Dirichlet b.c. Then $e^{t\Delta_{\mathcal{G}'}^D}$ eventually dominates $e^{t\Delta_{\mathcal{G}}^D}$ (regardless of the chosen isomorphism $L^2(\mathcal{G}) \simeq L^2(\mathcal{G}')$). Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

A brief history of semigroup domination

Eventual positivity

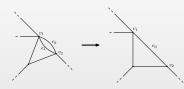
Eventual domination

Applications

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ― ヨ _ りへで

Theorem (Berkolaiko-Kennedy-Kurasov-M. 2018) Let $V_D(\mathcal{G}) \neq \emptyset$ and let \mathcal{G}' be obtained from \mathcal{G} by

replacing edges "in parallel" by edges "in series";



 replacing m different edges in parallel by m̃ ≤ m identical edges in parallel (+technical assumptions);

"transplanting" regions of G where the ground state is positive but small to regions where the ground state is larger;

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ― ヨ _ りへで

Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

A brief history of semigroup domination

Eventual positivity

Eventual domination

Theorem (continuation)

 swapping "thick regions" close to Dirichlet vertices with "thin regions" close to the maxima of ground states;

then

$$s(\Delta^D_{\mathcal{G}}) \leq s(\Delta^D_{\mathcal{G}'}).$$

Equality can be characterized in terms of \mathcal{G} and the eigenfunction associated with $s(\Delta_{\mathcal{G}}^{D})$.

Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

A brief history of semigroup domination

Eventual positivity

Eventual domination

Applications

Thank you for your attention!

Comparison principles for parabolic equations and applications to PDEs on networks

Delio Mugnolo

A brief history of semigroup domination

Eventual positivity

Eventual domination

Applications

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲≣ • のへで