Convolution semigroups on quantum groups and non-commutative Dirichlet forms

Ami Viselter

University of Haifa

Semigroups of Operators: Theory and Applications Kazimierz Dolny, October 4, 2018 Joint work with Adam Skalski (IMPAN, Warsaw) to appear in Journal de Mathématiques Pures et Appliquées

A C*-algebra is...

an involutive Banach algebra such that $||x^*x|| = ||x||^2$ for all *x*.

• Commutative case: $C_0(\Omega)$

A von Neumann algebra is...

a *-subalgebra of $B(\mathcal{H})$, containing *I* and SOT-closed.

• Commutative case: $L^{\infty}(X, \mathbb{A}, \mu)$ over $\mathcal{H} = L^{2}(X, \mathbb{A}, \mu)$

A state of a C^* -algebra \mathcal{A} is a functional on \mathcal{A} that maps positive elements into $[0, \infty)$ and has norm 1.

Example

States of $C_0(\Omega) \longleftrightarrow$ regular probability measures on Ω .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A C*-algebra is...

an involutive Banach algebra such that $||x^*x|| = ||x||^2$ for all *x*.

• Commutative case: $C_0(\Omega)$

A von Neumann algebra is...

a *-subalgebra of $B(\mathcal{H})$, containing *I* and SOT-closed.

• Commutative case: $L^{\infty}(X, \mathbb{A}, \mu)$ over $\mathcal{H} = L^{2}(X, \mathbb{A}, \mu)$

A state of a C^* -algebra \mathcal{A} is a functional on \mathcal{A} that maps positive elements into $[0, \infty)$ and has norm 1.

Example

States of $C_0(\Omega) \longleftrightarrow$ regular probability measures on Ω .

イロト イヨト イヨト イヨト

A group as a quantum group

- G locally compact group.
 - $L^{\infty}(G)$ a von Neumann algebra.
 - Oc-multiplication: the *-homomorphism

$$\Delta: L^{\infty}(G) \to L^{\infty}(G) \overline{\otimes} L^{\infty}(G) \cong L^{\infty}(G \times G)$$

defined by

$$(\Delta(f))(t,s) := f(ts) \qquad (f \in L^{\infty}(G)).$$

By associativity, we have $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$.

Solution Left and right Haar measures. View them as functions $\varphi, \psi: L^{\infty}(G)_+ \to [0, \infty]$ by $\varphi(f) := \int_G f(t) dt_\ell, \psi(f) := \int_G f(t) dt_r$.

Motivation for quantum groups

Lack of Pontryagin duality for non-abelian I.c. groups.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A group as a quantum group

- G locally compact group.
 - $L^{\infty}(G)$ a von Neumann algebra.
 - Oc-multiplication: the *-homomorphism

$$\Delta: L^{\infty}(G) \to L^{\infty}(G) \overline{\otimes} L^{\infty}(G) \cong L^{\infty}(G \times G)$$

defined by

$$(\Delta(f))(t,s) := f(ts) \qquad (f \in L^{\infty}(G)).$$

By associativity, we have $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$.

Solution Left and right Haar measures. View them as functions $\varphi, \psi: L^{\infty}(G)_+ \to [0, \infty]$ by $\varphi(f) := \int_G f(t) dt_\ell, \psi(f) := \int_G f(t) dt_r$.

Motivation for quantum groups

Lack of Pontryagin duality for non-abelian l.c. groups.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definition (Kustermans-Vaes, '00)

A locally compact quantum group is a pair $G = (M, \Delta)$ such that:

- M is a von Neumann algebra
- ② $\Delta : M \to M \overline{\otimes} M$ is a co-multiplication: a normal, faithful, unital ∗-homomorphism which is co-associative, i.e.,

 $(\Delta \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \Delta)\Delta$

- Solution There are two n.s.f. weights φ , ψ on M (the Haar weights) with:
 - $\varphi((\omega \otimes id)\Delta(x)) = \omega(1)\varphi(x)$ when $\omega \in M_*^+$, $x \in M^+$ and $\varphi(x) < \infty$
 - $\psi((\mathrm{id}\otimes\omega)\Delta(x)) = \omega(1)\psi(x)$ when $\omega \in M^+_*$, $x \in M^+$ and $\psi(x) < \infty$.

Denote $L^{\infty}(\mathbb{G}) := M$. Have it act standardly on the Hilbert space $L^{2}(\mathbb{G})$

Definition (Kustermans-Vaes, '00)

A locally compact quantum group is a pair $G = (M, \Delta)$ such that:

- M is a von Neumann algebra
- ② $\Delta : M \to M \overline{\otimes} M$ is a co-multiplication: a normal, faithful, unital *-homomorphism which is co-associative, i.e.,

 $(\Delta \otimes \mathrm{id}) \Delta = (\mathrm{id} \otimes \Delta) \Delta$

- Solution There are two n.s.f. weights φ, ψ on *M* (the Haar weights) with:
 - $\varphi((\omega \otimes \operatorname{id})\Delta(x)) = \omega(1)\varphi(x)$ when $\omega \in M_*^+$, $x \in M^+$ and $\varphi(x) < \infty$
 - $\psi((\mathrm{id}\otimes\omega)\Delta(x)) = \omega(1)\psi(x)$ when $\omega \in M^+_*$, $x \in M^+$ and $\psi(x) < \infty$.

Denote $L^{\infty}(\mathbb{G}) := M$. Have it act standardly on the Hilbert space $L^{2}(\mathbb{G})$.

Three "faces" (algebras): the von Neumann algebra $L^{\infty}(\mathbb{G})$, the "reduced" C^* -algebra $C_0(\mathbb{G})$, and the "universal" C^* -algebra $C_0^{u}(\mathbb{G})$.

The antipode: an (unbounded) operator on $L^{\infty}(\mathbb{G}) / C_0(\mathbb{G}) / C_0^{u}(\mathbb{G})$. Decomposes into:

• a "bounded part": the unitary antipode, an anti-automorphism;

• an "unbounded part": the scaling group.

Two basic examples • G = G• $G = \hat{G}$

Three "faces" (algebras): the von Neumann algebra $L^{\infty}(\mathbb{G})$, the "reduced" *C**-algebra $C_0(\mathbb{G})$, and the "universal" *C**-algebra $C_0^{u}(\mathbb{G})$.

The antipode: an (unbounded) operator on $L^{\infty}(\mathbb{G}) / C_0(\mathbb{G}) / C_0^{u}(\mathbb{G})$. Decomposes into:

• a "bounded part": the unitary antipode, an anti-automorphism;

• an "unbounded part": the scaling group.

```
Two basic examples

• G = G

• G = \hat{G}
```

Three "faces" (algebras): the von Neumann algebra $L^{\infty}(\mathbb{G})$, the "reduced" *C**-algebra $C_0(\mathbb{G})$, and the "universal" *C**-algebra $C_0^{u}(\mathbb{G})$.

The antipode: an (unbounded) operator on $L^{\infty}(\mathbb{G}) / C_0(\mathbb{G}) / C_0^{u}(\mathbb{G})$. Decomposes into:

• a "bounded part": the unitary antipode, an anti-automorphism;

• an "unbounded part": the scaling group.

```
Two basic examples

• G = G

• G = \hat{G}
```

Three "faces" (algebras): the von Neumann algebra $L^{\infty}(\mathbb{G})$, the "reduced" *C**-algebra $C_0(\mathbb{G})$, and the "universal" *C**-algebra $C_0^{u}(\mathbb{G})$.

The antipode: an (unbounded) operator on $L^{\infty}(\mathbb{G}) / C_0(\mathbb{G}) / C_0^{u}(\mathbb{G})$. Decomposes into:

- a "bounded part": the unitary antipode, an anti-automorphism;
- an "unbounded part": the scaling group.

```
Two basic examples

• G = G

• G = \hat{G}
```

Three "faces" (algebras): the von Neumann algebra $L^{\infty}(\mathbb{G})$, the "reduced" *C**-algebra $C_0(\mathbb{G})$, and the "universal" *C**-algebra $C_0^{\mathrm{u}}(\mathbb{G})$.

The antipode: an (unbounded) operator on $L^{\infty}(\mathbb{G}) / C_0(\mathbb{G}) / C_0^u(\mathbb{G})$. Decomposes into:

• a "bounded part": the unitary antipode, an anti-automorphism;

• an "unbounded part": the scaling group.

```
Two basic examples

• \mathbb{G} = G

• \mathbb{G} = \hat{G}
```

Three "faces" (algebras): the von Neumann algebra $L^{\infty}(\mathbb{G})$, the "reduced" *C**-algebra $C_0(\mathbb{G})$, and the "universal" *C**-algebra $C_0^{\mathrm{u}}(\mathbb{G})$.

The antipode: an (unbounded) operator on $L^{\infty}(\mathbb{G}) / C_0(\mathbb{G}) / C_0^{u}(\mathbb{G})$. Decomposes into:

- a "bounded part": the unitary antipode, an anti-automorphism;
- an "unbounded part": the scaling group.

```
Two basic examples

• G = G

• G = \hat{G}
```

Three "faces" (algebras): the von Neumann algebra $L^{\infty}(\mathbb{G})$, the "reduced" *C**-algebra $C_0(\mathbb{G})$, and the "universal" *C**-algebra $C_0^{\mathrm{u}}(\mathbb{G})$.

The antipode: an (unbounded) operator on $L^{\infty}(\mathbb{G}) / C_0(\mathbb{G}) / C_0^{u}(\mathbb{G})$. Decomposes into:

- a "bounded part": the unitary antipode, an anti-automorphism;
- an "unbounded part": the scaling group.

The conjugate space $C_0^u(\mathbb{G})^*$ carries a convolution \star turning it into a Banach algebra with unit ϵ (the co-unit).

Definition

A convolution semigroup of states on G is a family $(\mu_t)_{t\geq 0}$ of states of $C_0^{u}(G)$ such that

$$\mu_0 = \epsilon$$
 and $\mu_s \star \mu_t = \mu_{s+t}$ ($\forall s, t \ge 0$).

Adjectives:

- w*-continuous
- symmetric = invariant under the unitary antipode.

The conjugate space $C_0^u(\mathbb{G})^*$ carries a convolution \star turning it into a Banach algebra with unit ϵ (the co-unit).

Definition

A convolution semigroup of states on \mathbb{G} is a family $(\mu_t)_{t\geq 0}$ of states of $C_0^{\mathrm{u}}(\mathbb{G})$ such that

$$\mu_0 = \epsilon$$
 and $\mu_s \star \mu_t = \mu_{s+t}$ ($\forall s, t \ge 0$).

Adjectives:

• w*-continuous

• symmetric = invariant under the unitary antipode.

The conjugate space $C_0^u(\mathbb{G})^*$ carries a convolution \star turning it into a Banach algebra with unit ϵ (the co-unit).

Definition

A convolution semigroup of states on \mathbb{G} is a family $(\mu_t)_{t\geq 0}$ of states of $C_0^{\mathrm{u}}(\mathbb{G})$ such that

$$\mu_0 = \epsilon$$
 and $\mu_s \star \mu_t = \mu_{s+t}$ ($\forall s, t \ge 0$).

Adjectives:

w*-continuous

• symmetric = invariant under the unitary antipode.

The conjugate space $C_0^u(\mathbb{G})^*$ carries a convolution \star turning it into a Banach algebra with unit ϵ (the co-unit).

Definition

A convolution semigroup of states on \mathbb{G} is a family $(\mu_t)_{t\geq 0}$ of states of $C_0^{\mathrm{u}}(\mathbb{G})$ such that

$$\mu_0 = \epsilon$$
 and $\mu_s \star \mu_t = \mu_{s+t}$ ($\forall s, t \ge 0$).

Adjectives:

- w*-continuous
- symmetric = invariant under the unitary antipode.

イロト イポト イヨト イヨ

Examples

of w*-continuous, symmetric, convolution semigroups of states on G:

• $\mathbb{G} = G$: *w*^{*}-continuous, symmetric, convolution semigroups of probability measures on *G*;

that is:

families $(\mu_t)_{t>0}$ of probability Borel measures on G satisfying

$$\mu_0 = \delta_e$$
 and $\mu_s \star \mu_t = \mu_{s+t}$ ($\forall s, t \ge 0$)

that are *w**-continuous and invariant under "inversion of sets".

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Examples

of w*-continuous, symmetric, convolution semigroups of states on G:

2 $G = \hat{G}$: *w*^{*}-continuous, symmetric, semigroups of normalized positive-definite functions on *G*;

that is:

families $(\varphi_t)_{t\geq 0}$ of normalized positive-definite functions on G satisfying

$$\varphi_0 \equiv 1 \quad \text{and} \quad \varphi_s \cdot \varphi_t = \varphi_{s+t} \qquad (\forall s, t \ge 0)$$

that are *w**-continuous and invariant under inversion (= real).

Definition

A (non-negative) quadratic form on a Hilbert space \mathcal{H} is a semi-inner product $Q: D(Q) \times D(Q) \to \mathbb{C}$ on a subspace D(Q) of \mathcal{H} .

- Densely defined if D(Q) is dense in \mathcal{H} .
- Closedness.

More convenient to work with $Q' : \mathcal{H} \to [0, \infty]$ given by

$$\mathcal{Q}'\zeta:=egin{cases} \mathcal{Q}(\zeta,\zeta) & \zeta\in D(\mathcal{Q})\ & \& & else. \end{cases}$$

closed, densely-defined quadratic forms $||A^{1/2}.||^2$ generally unbounded, positive selfadjoint operators A C_0 -semigroups of selfadjoint contractions (c^{-tA})

 $t \ge 0$

Definition

A (non-negative) quadratic form on a Hilbert space \mathcal{H} is a semi-inner product $Q: D(Q) \times D(Q) \to \mathbb{C}$ on a subspace D(Q) of \mathcal{H} .

- Densely defined if D(Q) is dense in \mathcal{H} .
- Closedness.

More convenient to work with $Q' : \mathcal{H} \to [0, \infty]$ given by

$$egin{aligned} \mathcal{Q}'\zeta := egin{cases} \mathcal{Q}(\zeta,\zeta) & \zeta\in\mathcal{D}(\mathcal{Q}) \ \infty & ext{else.} \end{aligned}$$

closed, \longleftrightarrow densely-defined unbound unbound unbound unbound $\|A^{1/2}.\|^2$

Ami Viselter (University of Haifa)

Convolution semigroups on quantum groups

 $t \ge 0$

Definition

A (non-negative) quadratic form on a Hilbert space \mathcal{H} is a semi-inner product $Q: D(Q) \times D(Q) \to \mathbb{C}$ on a subspace D(Q) of \mathcal{H} .

- Densely defined if D(Q) is dense in \mathcal{H} .
- Closedness.

More convenient to work with $Q' : \mathcal{H} \to [0, \infty]$ given by

$$Q'\zeta := egin{cases} Q(\zeta,\zeta) & \zeta \in D(Q) \ \infty & ext{else.} \end{cases}$$

closed, () generally () C_0 -semigroups of densely-defined unbounded, positive selfadjoint quadratic forms $\|A^{1/2}.\|^2$ A () $(e^{-tA})_{t \ge 0, t \ge 0}$

Ami Viselter (University of Haifa)

Convolution semigroups on quantum groups

(X, m) – positive measure space

Definition

A map $S : L^2(X, m) \rightarrow L^2(X, m)$ is Markov if for all $f \in L^2(X, m)$,

$$0 \leq f \leq 1 \implies 0 \leq Sf \leq 1.$$

Definition (Based on Beurling–Deny, Acta Math., 1958)

A Dirichlet form on (X, m) is a closed, densely defined, quadratic form Q on $L^2(X, m)$ such that for all \mathbb{R} -valued $f \in L^2(X, m)$,

$$Q(\min(\max(f,0),1)) \le Q(f).$$

Theorem (Beurling–Deny)

Dirichlet forms

—

ymmetric Markov semigroups on L²(X,m) / L[∞](X,m)

Ami Viselter (University of Haifa) Convolution semigroups on quantum groups

(X, m) – positive measure space

Definition

A map $S : L^2(X, m) \rightarrow L^2(X, m)$ is Markov if for all $f \in L^2(X, m)$,

$$0 \leq f \leq 1 \implies 0 \leq Sf \leq 1.$$

Definition (Based on Beurling–Deny, Acta Math., 1958)

A Dirichlet form on (X, m) is a closed, densely defined, quadratic form Q on $L^2(X, m)$ such that for all \mathbb{R} -valued $f \in L^2(X, m)$,

$$Q(\min(\max(f,0),1)) \le Q(f).$$

Theorem (Beurling–Deny)

Dirichlet forms on (X, m)

 \longleftrightarrow

symmetric Markov semigroups on $L^2(X, m) / L^{\infty}(X, m)$

Ami Viselter (University of Haifa) Convolution semigroups on quantum groups

(X, m) – positive measure space

Definition

A map $S: L^2(X, m) \rightarrow L^2(X, m)$ is Markov if for all $f \in L^2(X, m)$,

$$0 \leq f \leq 1 \implies 0 \leq Sf \leq 1.$$

Definition (Based on Beurling–Deny, Acta Math., 1958)

A Dirichlet form on (X, m) is a closed, densely defined, quadratic form Q on $L^2(X, m)$ such that for all \mathbb{R} -valued $f \in L^2(X, m)$,

$$Q(\min(\max(f,0),1)) \le Q(f).$$

Theorem (Beurling–Deny)

Dirichlet forms on (X, m)

 \longleftrightarrow

symmetric Markov semigroups on $L^2(X, m) / L^{\infty}(X, m)$

Ami Viselter (University of Haifa) Convolution semigroups on quantum groups

Non-commutative Dirichlet forms and Markov semigroups

- ★ Commutative = "classical" = on a positive measure space with a reference measure (Beurling–Deny, 1958).
- * Non-commutative = on a von Neumann algebra with a reference weight.
 - We use the general definition of Goldstein–Lindsay (Math. Ann., 1999).

A (10) A (10) A (10)

- ★ Commutative = "classical" = on a positive measure space with a reference measure (Beurling–Deny, 1958).
- Non-commutative = on a von Neumann algebra with a reference weight.
 - We use the general definition of Goldstein–Lindsay (Math. Ann., 1999).

Main result

G - locally compact quantum group

(Recall: $L^{\infty}(\mathbb{G})$ – underlying von Neumann algebra, $L^{2}(\mathbb{G})$ – a standard Hilbert space; φ – left Haar weight.)

Theorem (Skalski–V)

There exist 1 – 1 correspondences between:

- w*-continuous, symmetric, convolution semigroups of states on G;
- **2** completely Dirichlet forms w.r.t. φ that are right-translation invariant;
- Sompletely Markov semigroups on L²(G) that are symmetric and contained in L[∞](Ĝ);
- completely Markov semigroups on $L^{\infty}(\mathbb{G})$ that are right-translation invariant and KMS-symmetric w.r.t. φ .

Our main theorem is definitive.

It unifies and extends the classical and the compact cases:

• G = G:

• $G = \hat{G}$:

w*-cont. semigroups of symmetric, normalized, positive-definite functions on G

 $\stackrel{\varphi_t = e^{-t\theta}}{\longleftrightarrow}$ Schönberg

conditionally negative-definite functions on *G*

Our main theorem is definitive.

It unifies and extends the classical and the compact cases:

• **G** = **G**:

• $G = \hat{G}$:

w*-cont. semigroups of symmetric, normalized, positive-definite functions on G

 $\stackrel{\varphi_t = e^{-t\theta}}{\underset{\text{Schönberg}}{\overset{}}}$

conditionally negative-definite functions on *G*

▲ 同 ▶ → 三 ▶

Our main theorem is definitive.

It unifies and extends the classical and the compact cases:

• G = G:

• $G = \hat{G}$:

w*-cont. semigroups of symmetric, normalized, positive-definite functions on G

 $\xrightarrow{\varphi_t = e^{-t\theta}}_{\text{Schönberg}}$

conditionally negative-definite functions on *G*

Definition

A continuous θ : $G \rightarrow \mathbb{R}$ is conditionally negative definite if:

•
$$\theta(e) = 0;$$

$$\ \ \, {\bf 0}(g^{-1})=\theta(g) \ \, {\rm for \ all} \ g\in G;$$

■
$$(\theta(g_i) + \theta(g_j) - \theta(g_j^{-1}g_i))_{1 \le i,j \le n}$$
 is positive definite for all *n* ∈ ℕ and $g_1, ..., g_n \in G$.

Schönberg's Theorem

A continuous $\theta : G \to \mathbb{R}$ satisfying 1 and 2 is CND $\iff e^{-t\theta}$ is positive definite for all $t \ge 0$.

< ロ > < 同 > < 回 > < 回 >

Example

For $n \in \mathbb{N}$ and $0 \le \alpha \le 2$, the function $\mathbb{R}^n \to [0, \infty)$ given by $x \mapsto ||x||^{\alpha}$ is conditionally negative definite.

Example (Haagerup, Invent. Math., 1978/79)

Let $n \in \mathbb{N}$. The function $\mathbb{F}_n \to [0, \infty)$ given by

 $s \mapsto |s|$

is conditionally negative definite.

~ Various applications.

Example

For $n \in \mathbb{N}$ and $0 \le \alpha \le 2$, the function $\mathbb{R}^n \to [0, \infty)$ given by $x \mapsto ||x||^{\alpha}$ is conditionally negative definite.

Example (Haagerup, Invent. Math., 1978/79)

Let $n \in \mathbb{N}$. The function $\mathbb{F}_n \to [0, \infty)$ given by

 $s \mapsto |s|$

is conditionally negative definite.

~ Various applications.

< □ > < □ > < □ > < □ >

Approximation properties for groups

Geometric characterizations

Theorem (Guichardet, '72 + Delorme, '77; Akemann–Walter, '81)

Assume that G is σ -compact.

- G does not have property (T) it has an unbounded conditionally negative-definite function it has a w*-cont. semigroup of symm. normalized pos.-def. functions that is not norm continuous.
- **2** G has the Haagerup property
 - ⇔ it has a proper conditionally negative-definite function

 \iff it has a w^{*}-cont. semigroup of symm. normalized

(proper = goes to ∞ at ∞).

Example

The CND function $s \mapsto |s|$ on \mathbb{F}_n , $n \in \mathbb{N}$.

Approximation properties for groups

Geometric characterizations

Theorem (Guichardet, '72 + Delorme, '77; Akemann–Walter, '81)

Assume that G is σ -compact.

G does not have property (T)
 it has an unbounded conditionally negative-definite function
 it has a w*-cont. semigroup of symm. normalized

pos.-def. functions that is not norm continuous.

- **2** G has the Haagerup property
 - ⇔ it has a proper conditionally negative-definite function

 \iff it has a w*-cont. semigroup of symm. normalized

pos.-def. functions that is C_0 in positive time.

(proper = goes to ∞ at ∞).

Example

The CND function $s \mapsto |s|$ on \mathbb{F}_n , $n \in \mathbb{N}$.

Approximation properties for groups

Geometric characterizations

Theorem (Guichardet, '72 + Delorme, '77; Akemann–Walter, '81)

Assume that G is σ -compact.

- G does not have property (T)
 it has an unbounded conditionally negative-definite functio
 it has a w*-cont. semigroup of symm. normalized
 pos.-def. functions that is not norm continuous.
- O has the Haagerup property

 \implies it has a proper conditionally negative-definite function

 \iff it has a w^{*}-cont. semigroup of symm. normalized pos.-def. functions that is C_0 in positive time.

(proper = goes to ∞ at ∞).

Example

The CND function $s \mapsto |s|$ on \mathbb{F}_n , $n \in \mathbb{N}$.

Geometric characterizations: the discrete case

 \mathbb{G} – second countable, discrete quantum group. By virtue of its special structure, one can define CND functions on \mathbb{G} .

Theorem (Kyed, JFA, 2011)

If G is unimodular, then it does not have property (T) ⇔ it has an unbounded conditionally negative-definite function.

Theorem (Daws–Fima–Skalski–White, Crelle's Journal, 2016)

G has the Haagerup property

 \implies it has a proper conditionally negative-definite function.

Again, the special structure allows for more algebraic proofs. One important component is a version of Schönberg's Theorem for finite-dimensional co-algebras due to Schürmann (1985).

Many applications, e.g. Daws–Skalski–V, Comm. Math. Phys., 2017.

Geometric characterizations: the discrete case

 \mathbb{G} – second countable, discrete quantum group. By virtue of its special structure, one can define CND functions on \mathbb{G} .

Theorem (Kyed, JFA, 2011)

If \mathbb{G} is unimodular, then it does not have property (T)

 \iff it has an unbounded conditionally negative-definite function.

Theorem (Daws–Fima–Skalski–White, Crelle's Journal, 2016)

G has the Haagerup property

 \iff it has a proper conditionally negative-definite function.

Again, the special structure allows for more algebraic proofs. One important component is a version of Schönberg's Theorem for finite-dimensional co-algebras due to Schürmann (1985).

Many applications, e.g. Daws–Skalski–V, Comm. Math. Phys., 2017.

Geometric characterizations: the discrete case

 \mathbb{G} – second countable, discrete quantum group. By virtue of its special structure, one can define CND functions on \mathbb{G} .

Theorem (Kyed, JFA, 2011)

If \mathbb{G} is unimodular, then it does not have property (T)

 \iff it has an unbounded conditionally negative-definite function.

Theorem (Daws–Fima–Skalski–White, Crelle's Journal, 2016)

G has the Haagerup property

 \iff it has a proper conditionally negative-definite function.

Again, the special structure allows for more algebraic proofs. One important component is a version of Schönberg's Theorem for finite-dimensional co-algebras due to Schürmann (1985).

Many applications, e.g. Daws–Skalski–V, Comm. Math. Phys., 2017.

Geometric characterizations: the discrete case

 \mathbb{G} – second countable, discrete quantum group. By virtue of its special structure, one can define CND functions on \mathbb{G} .

Theorem (Kyed, JFA, 2011)

If \mathbb{G} is unimodular, then it does not have property (T)

 \iff it has an unbounded conditionally negative-definite function.

Theorem (Daws–Fima–Skalski–White, Crelle's Journal, 2016)

G has the Haagerup property

 \iff it has a proper conditionally negative-definite function.

Again, the special structure allows for more algebraic proofs. One important component is a version of Schönberg's Theorem for finite-dimensional co-algebras due to Schürmann (1985).

• Many applications, e.g. Daws–Skalski–V, Comm. Math. Phys., 2017.

Geometric characterizations: the general case

 \mathbb{G} – second countable, locally compact quantum group.

Theorems (Skalski–V)

- G does not have property (T)
 - $\iff \hat{\mathbb{G}}$ has a completely Dirichlet form w.r.t. $\hat{\varphi}$ that is right-translation invariant and unbounded
 - $\iff \hat{G}$ has a *w*^{*}-continuous, symmetric, convolution semigroup of states that is not norm continuous.
- G has the Haagerup property
 - $\iff \hat{\mathbb{G}} \text{ has a completely Dirichlet form w.r.t. } \hat{\varphi} \text{ that is}$ right-translation invariant and proper
 - $\iff \hat{\mathbb{G}}$ has a *w*^{*}-continuous, symmetric, convolution semigroup of states that is *C*₀ in positive time.

イロン イヨン イヨン イヨ

A. Skalski and A. Viselter, *Convolution semigroups on locally compact quantum groups and noncommutative Dirichlet forms* Journal de Mathématiques Pures et Appliquées, to appear, 47 pp.

M. Daws, A. Skalski and A. Viselter, *Around Property (T) for quantum groups* Comm. Math. Phys. 353 (2017), no. 1, 69–118.

M. Daws, P. Fima, A. Skalski and S. White, *The Haagerup property for locally compact quantum groups* J. Reine Angew. Math. 711 (2016), 189–229.

F. Cipriani, U. Franz and A. Kula, Symmetries of Lévy processes on compact quantum groups, their Markov semigroups and potential

- J. Funct. Anal. 266 (2014), no. 5, 2789-2844.
- D. Kyed, A cohomological description of property (T) for quantum groups J. Funct. Anal. 261 (2011), no. 6, 1469–1493.

- C. A. Akemann and M. E. Walter, Unbounded negative definite functions Canad. J. Math. 33 (1981), no. 4, 862–871.
- U. Haagerup, An example of a non nuclear C*-algebra, which has the metric approximation property Invent. Math. 50 (1978/79), no. 3, 279–293.

Thank you for your attention!

Ami Viselter (University of Haifa) Co

Convolution semigroups on quantum groups