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Operator algebras

A C ∗-algebra is...

an involutive Banach algebra such that ‖x∗x‖ = ‖x‖2 for all x.
Commutative case: C0(Ω)

A von Neumann algebra is...
a ∗-subalgebra of B(H), containing I and SOT-closed.

Commutative case: L∞(X ,A, µ) over H = L2(X ,A, µ)

A state of a C∗-algebra A is a functional on A that maps positive
elements into [0,∞) and has norm 1.

Example
States of C0(Ω)←→ regular probability measures on Ω.
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A group as a quantum group

G – locally compact group.
1 L∞(G) – a von Neumann algebra.
2 Co-multiplication: the ∗-homomorphism

∆ : L∞(G)→ L∞(G) ⊗ L∞(G) � L∞(G ×G)

defined by
(∆(f))(t , s) := f(ts) (f ∈ L∞(G)).

By associativity, we have (∆ ⊗ id)∆ = (id ⊗∆)∆.

3 Left and right Haar measures. View them as functions
ϕ,ψ : L∞(G)+ → [0,∞] by ϕ(f) :=

∫
G f(t) dt`, ψ(f) :=

∫
G f(t) dtr .

Motivation for quantum groups
Lack of Pontryagin duality for non-abelian l.c. groups.
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Locally compact quantum groups

Definition (Kustermans–Vaes, ’00)
A locally compact quantum group is a pair G = (M,∆) such that:

1 M is a von Neumann algebra
2 ∆ : M → M ⊗M is a co-multiplication: a normal, faithful, unital
∗-homomorphism which is co-associative, i.e.,

(∆ ⊗ id)∆ = (id ⊗∆)∆

3 There are two n.s.f. weights ϕ,ψ on M (the Haar weights) with:
I ϕ((ω ⊗ id)∆(x)) = ω(1)ϕ(x) when ω ∈ M+

∗ , x ∈ M+ and ϕ(x) < ∞
I ψ((id ⊗ ω)∆(x)) = ω(1)ψ(x) when ω ∈ M+

∗ , x ∈ M+ and ψ(x) < ∞.

Denote L∞(G) := M.
Have it act standardly on the Hilbert space L2(G).
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Locally compact quantum groups
Features

Duality G 7→ Ĝ within the category satisfying ˆ̂
G = G.

Three “faces” (algebras): the von Neumann algebra L∞(G), the
“reduced” C∗-algebra C0(G), and the “universal” C∗-algebra Cu

0 (G).

The antipode: an (unbounded) operator on L∞(G) / C0(G) / Cu
0 (G).

Decomposes into:
a “bounded part”: the unitary antipode, an anti-automorphism;
an “unbounded part”: the scaling group.

Two basic examples
G = G
G = Ĝ
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Ami Viselter (University of Haifa) Convolution semigroups on quantum groups SOTA 2018 6 / 20



Convolution semigroups

G – locally compact quantum group.

The conjugate space Cu
0 (G)∗ carries a convolution ? turning it into a

Banach algebra with unit ε (the co-unit).

Definition
A convolution semigroup of states on G is a family (µt )t≥0 of states of
Cu

0 (G) such that

µ0 = ε and µs ? µt = µs+t (∀s, t ≥ 0).

Adjectives:
w∗-continuous
symmetric = invariant under the unitary antipode.
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Convolution semigroups

Examples
of w∗-continuous, symmetric, convolution semigroups of states on G:

1 G = G: w∗-continuous, symmetric, convolution semigroups of
probability measures on G;

that is:

families (µt )t≥0 of probability Borel measures on G satisfying

µ0 = δe and µs ? µt = µs+t (∀s, t ≥ 0)

that are w∗-continuous and invariant under “inversion of sets”.
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Convolution semigroups

Examples
of w∗-continuous, symmetric, convolution semigroups of states on G:

2 G = Ĝ: w∗-continuous, symmetric, semigroups of normalized
positive-definite functions on G;

that is:

families (ϕt )t≥0 of normalized positive-definite functions on G
satisfying

ϕ0 ≡ 1 and ϕs · ϕt = ϕs+t (∀s, t ≥ 0)

that are w∗-continuous and invariant under inversion (= real).
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Dirichlet forms and Markov semigroups

Definition
A (non-negative) quadratic form on a Hilbert space H is a semi-inner
product Q : D(Q) × D(Q)→ C on a subspace D(Q) of H.

Densely defined if D(Q) is dense in H.
Closedness.

More convenient to work with Q ′ : H→ [0,∞] given by

Q ′ζ :=

Q(ζ, ζ) ζ ∈ D(Q)

∞ else.

closed,
densely-defined
quadratic forms∥∥∥A1/2

·

∥∥∥2

←→
generally

unbounded, positive
selfadjoint operators

A

←→
C0-semigroups of

selfadjoint
contractions(

e−tA
)
t≥0
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Dirichlet forms and Markov semigroups

(X ,m) – positive measure space

Definition
A map S : L2(X ,m)→ L2(X ,m) is Markov if for all f ∈ L2(X ,m),

0 ≤ f ≤ 1 =⇒ 0 ≤ Sf ≤ 1.

Definition (Based on Beurling–Deny, Acta Math., 1958)
A Dirichlet form on (X ,m) is a closed, densely defined, quadratic form
Q on L2(X ,m) such that for all R-valued f ∈ L2(X ,m),

Q
(
min (max(f ,0),1)

)
≤ Q(f).

Theorem (Beurling–Deny)
Dirichlet forms

on (X ,m) ←→
symmetric Markov semigroups

on L2(X ,m) / L∞(X ,m)
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Non-commutative Dirichlet forms and Markov
semigroups

? Commutative = “classical” = on a positive measure space with a
reference measure (Beurling–Deny, 1958).

? Non-commutative = on a von Neumann algebra with a reference
weight.
I We use the general definition of Goldstein–Lindsay (Math. Ann.,

1999).
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Main result

G – locally compact quantum group
(Recall: L∞(G) – underlying von Neumann algebra, L2(G) – a standard
Hilbert space; ϕ – left Haar weight.)

Theorem (Skalski–V)
There exist 1 − 1 correspondences between:

1 w∗-continuous, symmetric, convolution semigroups of states on G;
2 completely Dirichlet forms w.r.t. ϕ that are right-translation

invariant;
3 completely Markov semigroups on L2(G) that are symmetric and

contained in L∞(Ĝ);
4 completely Markov semigroups on L∞(G) that are right-translation

invariant and KMS-symmetric w.r.t. ϕ.
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Earlier results

Our main theorem is definitive.
It unifies and extends the classical and the compact cases:

G = G:

w∗-cont.
convolution
semigroups
of symmetric

prob. measures on G

convolution
←−−−−−−→

operators

right-translation
invariant

symmetric
Markov

semigroups
on L2(G) /

L∞(G)

←→

right-translation
invariant

Dirichlet forms
on L2(G)

G = Ĝ:

w∗-cont. semigroups of
symmetric, normalized,

positive-definite functions on G

ϕt=e−tθ

←−−−−−−→
Schönberg

conditionally
negative-definite
functions on G

Ami Viselter (University of Haifa) Convolution semigroups on quantum groups SOTA 2018 13 / 20



Earlier results

Our main theorem is definitive.
It unifies and extends the classical and the compact cases:

G = G:

w∗-cont.
convolution
semigroups
of symmetric

prob. measures on G

convolution
←−−−−−−→

operators

right-translation
invariant

symmetric
Markov

semigroups
on L2(G) /

L∞(G)

←→

right-translation
invariant

Dirichlet forms
on L2(G)

G = Ĝ:
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Earlier results

G – compact quantum group: Cipriani–Franz–Kula (JFA, 2014).

Such G has a canonical Hopf ∗-algebra that is contained in the
domain of all Dirichlet forms the problem becomes algebraic.

Ami Viselter (University of Haifa) Convolution semigroups on quantum groups SOTA 2018 14 / 20



Detour: conditionally negative-definite functions

Definition
A continuous θ : G → R is conditionally negative definite if:

1 θ(e) = 0;
2 θ(g−1) = θ(g) for all g ∈ G;
3

(
θ(gi) + θ(gj) − θ(g−1

j gi)
)
1≤i,j≤n

is positive definite for all n ∈N and

g1, . . . ,gn ∈ G.

Schönberg’s Theorem
A continuous θ : G → R satisfying 1 and 2

is CND ⇐⇒ e−tθ is positive definite for all t ≥ 0.
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Detour: conditionally negative-definite functions

Example
For n ∈N and 0 ≤ α ≤ 2, the function Rn

→ [0,∞) given by x 7→ ‖x‖α

is conditionally negative definite.

Example (Haagerup, Invent. Math., 1978/79)
Let n ∈N. The function Fn → [0,∞) given by

s 7→ |s|

is conditionally negative definite.

 Various applications.
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Approximation properties for groups
Geometric characterizations

Theorem (Guichardet, ’72 + Delorme, ’77; Akemann–Walter, ’81)
Assume that G is σ-compact.

1 G does not have property (T)
⇐⇒ it has an unbounded conditionally negative-definite function
⇐⇒ it has a w∗-cont. semigroup of symm. normalized
pos.-def. functions that is not norm continuous.

2 G has the Haagerup property
⇐⇒ it has a proper conditionally negative-definite function
⇐⇒ it has a w∗-cont. semigroup of symm. normalized
pos.-def. functions that is C0 in positive time.

(proper = goes to ∞ at ∞).

Example
The CND function s 7→ |s| on Fn, n ∈N.
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Approximation properties for quantum groups
Geometric characterizations: the discrete case

G – second countable, discrete quantum group.
By virtue of its special structure, one can define CND functions on G.

Theorem (Kyed, JFA, 2011)
If G is unimodular, then it does not have property (T)

⇐⇒ it has an unbounded conditionally negative-definite function.

Theorem (Daws–Fima–Skalski–White, Crelle’s Journal, 2016)
G has the Haagerup property

⇐⇒ it has a proper conditionally negative-definite function.

Again, the special structure allows for more algebraic proofs. One
important component is a version of Schönberg’s Theorem for
finite-dimensional co-algebras due to Schürmann (1985).

Many applications, e.g. Daws–Skalski–V, Comm. Math. Phys., 2017.
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Approximation properties for quantum groups
Geometric characterizations: the general case

G – second countable, locally compact quantum group.

Theorems (Skalski–V)
1 G does not have property (T)
⇐⇒ Ĝ has a completely Dirichlet form w.r.t. ϕ̂ that is

right-translation invariant and unbounded
⇐⇒ Ĝ has a w∗-continuous, symmetric, convolution semigroup of

states that is not norm continuous.
2 G has the Haagerup property
⇐⇒ Ĝ has a completely Dirichlet form w.r.t. ϕ̂ that is

right-translation invariant and proper
⇐⇒ Ĝ has a w∗-continuous, symmetric, convolution semigroup of

states that is C0 in positive time.
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