Optimal transportation in Lorentzian geometry

Stefan Suhr (Ruhr-Universität Bochum)

June 21, 2018

Transport Problem: Given two probability measures

 μ, ν

on a manifold M.

What is the **optimal** fashion of **transferring** μ to ν ?

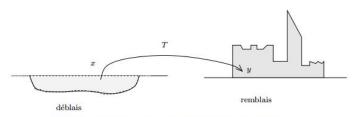


Fig. 3.1. Monge's problem of déblais and remblais

(Source: C. Villani. Optimal Transport, Old and New. Springer (2009))

Introduction by Monge (1781) and (in a relaxed form) by Kantorovich (1942)

Transfer according to Kantorovich: By means of a p-measure π on $M \times M$ such that

$$\pi(A imes M) = \mu(A)$$
 and $\pi(M imes B) = \nu(B)$

for all $A, B \subset M$. π is called a **coupling of** μ and ν . μ and ν are the **martingales** of π .

Optimality according to Kantorovich: Transferring mass is subject to a cost function

$$c\colon M\times M\to\mathbb{R}\cup\{\infty\},$$

usually related to the distance with respect to a Riemannian metric. One minimizes the \underline{cost}

$$\pi\mapsto\int c\,\,d\pi$$

of the coupling π with martingales μ and $\nu.~$ If a coupling realizes the infimum, then it is **optimal**.

 \rightsquigarrow Resembles a variational problem with fixed boundary values.

Transfer according to Monge: By means of a Borel map $\overline{F: M \to M}$ such that

 $\nu = F_{\sharp}(\mu),$

where $F_{\sharp}(\mu)(A) := \mu(F^{-1}(A))$ is the **push forward of** μ **under** F.

Optimality according to Monge: For the cost function

 $c: M \times M \to \mathbb{R} \cup \{\infty\}$

one minimizes the cost

$$F\mapsto \int c(x,F(x)) \ d\mu(x)$$

among the maps F which push μ forward to $\nu = F_{\sharp}(\mu)$. A map realizing the infimum is **optimal**. Again this resembles a variational problem with fixed boundary values.

If F pushes µ forward to ν then π := (id, F)_µµ is a coupling of µ and ν, i.e.

$$\inf\left\{\int c \ d\pi\right\} \leq \inf\left\{\int c(x,F(x)) \ d\mu(x)\right\}$$

A map F: M → M with F_β(μ) = ν does not exist in general, e.g.

$$\mu = \delta_x, \ \nu = \frac{1}{2}(\delta_y + \delta_z).$$

 \rightsquigarrow Transport has to "split" mass.

- Existence of optimal couplings/maps for real valued cost functions by
 - Kantorovich '42 (Kantorovich optimality) and
 - Brenier '89 (Monge optimality) for $\mu \ll \mathcal{L}$ with equality of both infima.

A "logistics problem" at heart. E.g. μ describes a distribution of mines and ν describes a distribution of factories. The cost function c(x, y) measures the transport cost from x to y. BUT in the case of

 $c = \operatorname{dist}^p$ with $p \ge 1$

the convexity properties of certain functionals defined via optimal transportation are equivalent to bounds on the Ricci curvature. Compare

Myer's Theorem

(M,g) complete with $\operatorname{Ric}_g \geq (\operatorname{dim} M - 1)\varepsilon \Rightarrow \operatorname{diam}(M,g) \leq \pi/\sqrt{\varepsilon}.$

Optimal transport is more flexible than (smooth) Riemannian geometry. \rightsquigarrow "synthetic Ricci curvature" for "metric measure spaces". MMS with Ricci curvature bounded from below have good compactness properties with respect to measured GH-convergence.

distant goal or beacon: a similar theory in Lorentzian geometry.

Lorentzian Formulation: Let (M, g) be globally hyperbolic. Define

$$egin{aligned} & \mathcal{C}_g \colon M imes M o \mathbb{R} \cup \{\infty\} \ & (x,y) \mapsto egin{cases} -d_g(x,y), & (x,y) \in J^+ \ \infty, & ext{else.} \end{aligned}$$

Recall that

 $d_g(x, y) := \sup\{L^g(\gamma) | \gamma \text{ future pointing from } x \text{ to } y\}.$

Attention: Changed sign convention! c_g is "convex" in this formulation.

Lorentzian Transport Problem: Given two probability measures μ and ν on M. Does there exist a coupling π of μ and ν minimizing the **Lorentzian cost**

$$\sigma\mapsto \int c_{g} \,\, d\sigma$$

among all p-measures σ on $M \times M$ with martingales μ and ν ?

Work so far on Lorentzian transportation:

- ► Brenier '92: R₁ⁿ⁺¹ and the cost as above with µ concentrated on {0} × ℝⁿ and ν concentrated on {t} × ℝⁿ. Studied by Bertrand/Puel, Bertrand/Pratelli/Puel, Louet/Pratelli/Zeisler among others. Considered costs are relativistic costs functions.
- Frisch et al. '02, Brenier et al. '03:

early universe reconstruction problem

Question: What is the genesis of the mass distribution in the universe from the Big-Bang to what we see today? Modeled on a FLRW-spacetime ($\mathbb{R} \times \Sigma, g$). On large scales (galaxy cluster) and with a "semi-Newtonian limit" the problem is described by optimal transportation.

Eckstein/Miller '17, Miller '17/'18:

Causal evolution of measures

Kunzinger/Sämann '18:

Lorentzian length spaces

Existence of optimal couplings:

Theorem (Bernard/-'18)

Let (M,g) be globally hyperbolic and h a Riemannian metric. Then there exists a smooth function $\tau: M \to \mathbb{R}$ with

 $d\tau(v) \geq \|v\|_h$

for all future pointing $v \in TM$. Especially τ is temporal.

Remark

Interesting when h is complete with $h(v, v) \ge |g(v, v)|$ for all future pointing $v \in TM$. \rightsquigarrow steep Lyapunov functions Related results by Müller/Sanchez '11 and Minguzzi '16.

Proposition (Lorentzian Kantorovich Problem)

Let μ, ν be p-measures on M such that $\tau \in L^1(\mu) \cap L^1(\nu)$. Then there exists a optimal coupling π of μ and ν with

$$\int c_g \ d\pi \in \mathbb{R} \cup \{\infty\}.$$

Sketch of proof:

Lemma

The set of couplings of μ and ν is compact with respect to the weak topology on measures.

The proof of the lemma uses Prokhorov's Theorem.

$$d\tau(v) \ge \sqrt{|g(v,v)|} \text{ for all } v \in TM \text{ future pointing}$$

$$\Rightarrow c_g(x,y) \ge \tau(y) - \tau(x)$$

$$\Rightarrow \int c_g \ d\pi \ge \int [\tau(y) - \tau(x)] \ d\pi(x,y) = \int \tau \ d\nu - \int \tau \ d\mu > -\infty$$

With this lower bound one proves the **lower semicontinuity** of the cost:

Lemma

Assume that $\tau \in L^1(\mu) \cap L^1(\nu)$. If a sequence $\{\pi_k\}_{k \in \mathbb{N}}$ of couplings of μ and ν converges weakly to π , then

$$\int c_g \ d\pi \leq \liminf_{k\to\infty} \int c_g \ d\pi_k.$$

When is the costs of a coupling finite? <u>Observation:</u>

(1) $\int c_g \ d\pi \in \mathbb{R} \Rightarrow \text{supp } \pi \subset J^+$

(2) If supp $\pi \subset J^+$, then

$$egin{aligned} \mu(A) &= \pi(A imes M) = \pi(J^+ \cap (A imes M)) \ &\leq \pi(A imes J^+(A)) \ &\leq \pi(M imes J^+(A)) =
u(J^+(A)) \end{aligned}$$

for all $A \subset M$ Borel and analogously

$$u(B) \leq \mu(J^-(B))$$

for all $B \subset M$ Borel.

Question: If $\mu(A) \leq \nu(J^+(B))$ and $\nu(B) \leq \mu(J^-(B))$ for all $A, B \subset M$ Borel, does there exist a coupling π with supp $\pi \subset J^+$?

<u>Abstract formulation</u>: Let $(\mathcal{X}, d_{\mathcal{X}})$ and $(\mathcal{Y}, d_{\mathcal{Y}})$ be Polish spaces (complete and separable). Given $\mathcal{J} \subset \mathcal{X} \times \mathcal{Y}$ define for $A \subset \mathcal{X}$ and $B \subset \mathcal{Y}$

$$\mathcal{J}^+(A) := p_{\mathcal{Y}}((A \times \mathcal{Y}) \cap \mathcal{J}) \subset \mathcal{Y}$$

and

$$\mathcal{J}^{-}(B) := p_{\mathcal{X}}((\mathcal{X} \times B) \cap \mathcal{J}) \subset \mathcal{X}$$

for the canonical projections $p_{\mathcal{X},\mathcal{Y}} \colon \mathcal{X} \times \mathcal{Y} \to \mathcal{X}, \mathcal{Y}$. Note that \mathcal{J} is completely general, especially not necessarily a causal structure. Definition

Two p-measures μ,ν on \mathcal{X} and \mathcal{Y} , respectively, are \mathcal{J} -related if there exists a coupling π with supp $\pi \subset \mathcal{J}$.

Theorem (-'18)

Let $\mathcal{J} \subset \mathcal{X} \times \mathcal{Y}$ be closed. Then two p-measure μ and ν are \mathcal{J} -related if and only if $\nu(\mathcal{J}^+(A)) \ge \mu(A)$ and $\mu(\mathcal{J}^-(B)) \ge \nu(B)$ for all $A \subset \mathcal{X}$, $B \subset \mathcal{Y}$ Borel.

Remark

Similar results by Eckstein/Miller'17 for spacetimes.

Idea of the proof: Approximate both measures by finite measures

$$\mu_{app} = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}, \ \nu_{app} = \frac{1}{n} \sum_{j=1}^{n} \delta_{y_j}$$

with $x_i \in \mathcal{X}$ and $y_i \in \mathcal{Y}$.

Lemma

There exists a permutation $\sigma \in S(n)$ with $(x_i, y_{\sigma(i)}) \in \mathcal{J}$ for all $i \in \{1, ..., n\}$ if and only if

$$\sharp\{j \mid (x_i, y_j) \in \mathcal{J} \text{ for an } i \in A\} \geq \sharp A$$

and

$$\sharp\{i| (x_i, y_j) \in \mathcal{J} \text{ for an } j \in B\} \ge \sharp B$$

for all $A, B \subset \{1, \ldots, n\}$

Proof of the Lemma is by induction over *n*. σ induces a coupling of μ_{app} and ν_{app} . The closedness of \mathcal{J} ensures that one can pass to the limit in the approximation and obtain a coupling π with supp $\pi \subset \mathcal{J}$.

Lorentzian Monge problem: Under what conditions is mass not split up during the transport? More precisely:

- (1) Under what assumptions does there exists an optimal Borel map $F: M \to M$ in the Lorentzian transport problem à la Monge?
- (2) Under what assumptions is

$$\pi := (\mathsf{id}, F)_{\sharp} \mu$$

an optimal coupling? [Recall $F_{\sharp}\mu(A) := \mu(F^{-1}(A))$]

Definition

A pair of p-measures (μ, ν) belongs to $\mathcal{P}^+_{\tau}(M)$ if μ and ν are J^+ -related and $\tau \in L^1(\mu) \cap L^1(\nu)$.

Remark

For a pair $(\mu,
u) \in \mathcal{P}^+_{ au}(M)$ one has

$$\inf\left\{\int c_g \ d\pi \right| \ \pi \ \text{is a coupling of } \mu \ \text{and} \ \nu\right\} \in \mathbb{R}.$$

Theorem A (Kell/-'18, solution to the Monge problem) Let $(\mu, \nu) \in \mathcal{P}^+_{\tau}(M)$ with $\mu \ll \mathcal{L}$. Then there exists a Borel map $F: M \to M$ such that

$$\pi := (\mathit{id}, F)_{\sharp} \mu$$

is an optimal coupling of μ and ν .

Theorem B (-'18, unique solution to the Monge problem) Let $(\mu, \nu) \in \mathcal{P}^+_{\tau}(M)$ with $\mu \ll \mathcal{L}$ or $\mu \ll \mathcal{L}_A$ for a spacelike hyper surface $A \subset M$ and ν concentrated on an achronal set. Then there exists an **unique** optimal coupling π of μ and ν and a Borel map $F: M \to M$ such that

$$\pi := (\mathit{id}, \mathsf{F})_{\sharp} \mu.$$

Remark

Theorem B generalizes the early universe reconstruction problem for FLRW-spacetimes.

Problem of the proof of Theorem B: Let π be an optimal coupling. Show that

 $\{x \in M | \exists y \neq z \in M \text{ with } (x, y), (x, z) \in \operatorname{supp}(\pi)\}$

is \mathcal{L} -negligible (if $\mu \ll \mathcal{L}$) or \mathcal{L}_A -negligible (if $\mu \ll \mathcal{L}_A$). <u>**Observation:**</u> If $(x, y), (x, z) \in \text{supp}(\pi)$, then x, y, z lie on a common maximal geodesic.

Proposition

Let $A \subset M$ be a spacelike hyper surface and $B \subset M$ achronal. Further let Γ_B be the set of maximal causal geodesics γ that intersect B more than once. Then

$$\mathcal{L}_{\mathcal{A}}(\{x \in \mathcal{A} | x \in \gamma \in \Gamma_{\mathcal{B}}\}) = 0.$$

Since an achronal set is the graph of a locally Lipschitz function over a part of a Cauchy hyper surface, it has a well-defined tangent space almost everywhere.

 \rightsquigarrow **Question:** Does the previous proposition holds also for maximal geodesics tangent to *B*?

The dynamical picture: A dynamical coupling is a Borel p-measure Π on $C^0([0,1], M)$. Let

$$\operatorname{ev}_t \colon C^0([0,1],M) \to M, \ \eta \mapsto \eta(t)$$

be the evaluation map at $t \in [0, 1]$. Then $\pi := (ev_0, ev_1)_{\sharp} \Pi$ is a coupling of $\mu := (ev_0)_{\sharp} \Pi$ and $\nu := (ev_1)_{\sharp} \Pi$. Consider:

$$\begin{split} \Gamma &:= \{\gamma \colon [0,1] \to M | \ \gamma \text{ maximizes } L^g \text{ between its endpoints} \\ & \text{ and } d\tau(\dot{\gamma}) = \text{const} \} \end{split}$$

 $\Rightarrow \gamma \in \mathsf{F}$ is a pregeodesic and

$$\Gamma_{x \to y} := \{ \gamma \in \Gamma | \ \gamma(0) = x, \ \gamma(1) = y \}$$

is compact (independent of the C^k -topology on Γ).

Definition

A p-measure Π on Γ is a **dynamical optimal coupling** if $(ev_0, ev_1)_{\sharp}\Pi$ is an optimal coupling of $(ev_0)_{\sharp}\Pi$ and $(ev_1)_{\sharp}\Pi$.

Proposition

For every pair $(\mu, \nu) \in \mathcal{P}^+_{\tau}(M)$ there exists a dynamical optimal coupling Π of μ and ν .

Sketch of proof: $\Gamma_{x \to y}$ is compact and nonempty for all $(x, y) \in J^+$.

Proposition

There exists a Borel map $S \colon J^+ \to \Gamma$ with $S(x, y) \in \Gamma_{x \to y}$.

Remark

S is called a selection, i.e. a right-inverse of (ev_0, ev_1): $\Gamma \to J^+$, i.e.

$$(ev_0, ev_1) \circ S = id_{J^+}.$$

Let π be an optimal coupling of μ and ν . $\Rightarrow \Pi := S_{\sharp}\pi$ is the desired dynamical optimal coupling since

 $(p_1 \circ (ev_0, ev_1))_{\sharp} \Pi = \mu$ and $(p_2 \circ (ev_0, ev_1))_{\sharp} \Pi = \nu$

for the canonical projections $p_{1,2} \colon M \times M \to M$, $(x, y) \mapsto x$ and y, respectively.

 $[\partial_t \mathsf{ev}] \colon \mathsf{\Gamma} \times [0,1] \to \mathsf{PTM}, \ (\gamma,t) \mapsto [\dot{\gamma}(t)] \in \mathsf{PTM}_{\gamma(t)}$

where *PTM* denotes the projective tangent bundle.

Theorem (-'18)

Let $(\mu, \nu) \in \mathcal{P}^+_{\tau}(M)$ with $supp(\mu) \cap supp(\nu) = \emptyset$. Then every dynamical optimal coupling Π of μ and ν has the following property: The canonical projection $P \colon PTM \to M$ restricted to the image of $T := [\partial_t ev](supp\Pi \times]0, 1[)$ is injective. Further the inverse $(P|_T)^{-1}$ is locally Hölder continuous with exponent 1/2.

Remark

- The result is optimal as formulated.
- ► For $T \subset \{\text{timelike vectors}\}$, the map $(P|_T)^{-1}$ is locally Lipschitz.
- The theorem implies that measures are transported along a Hölder continuous geodesic vector field.

"You name it, we've got it!"

- ▶ "Lorentzian" Wasserstein spaces (tentative definition, $p \in (0, 1]$)

$${\mathcal P}^{\mathcal P}_L(M):=\left\{\mu \left| \ \int_M |c_{\mathcal G}(x,\{ au=0\})|^{\mathcal P}d\mu<\infty
ight.
ight\}$$

 \rightsquigarrow Correct frame for the variational analysis; basic to the advancement of the theory; Which exponent p is best?

- Displacement convexity, Boltzman's H-functional and its relation with Ricci curvature
- Lorentzian measure spaces, synthetic Ricci curvature, measured Gromov-Hausdorff convergence

References:

- Bernard, P., Suhr, S., Lyapounov Functions of closed Cone Fields: from Conley Theory to Time Functions, Comm. Math. Phys. 359 (2018), 467–498.
- Suhr, S., Theory of Optimal Transport for Lorentzian Cost Functions, to appear in Münster J. Math.
- Kell, M., Suhr, S. On the Existence of Dual Solutions for Lorentzian Cost Functions, preprint (2018).