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§ Optimal regularity of metrics with bounded curvature
Local analysis and possibly large curvature

Construction of a “canonical” CMC foliation
Existence of local CMC-spatially harmonic coordinates

§ Dynamics of self-gravitating massless/massive matter fields
Global analysis near Minkowski spacetime

Construction of Euclidian-Hyperboloidal foliations
Small data global-in-time existence

– Weighted Sobolev spaces: regularity of the metric, decay
conditions

– Key challenge: quantitative estimates, uniform with respect to the
relevant parameter (curvature scale, time variable)
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1. Canonical foliations of Einstein spacetimes
with bounded curvature

Joint work with Binglong Chen (Guangzhou)

1.1 Objective

Minimal regularity required to control the geometry of the spacetime

§ Solely a bound on the curvature

§ Fully geometric estimates

§ Three steps in our analysis:

§ injectivity radius of an observer
§ construction of a canonical CMC foliation
§ local canonical foliations and coordinates of an observer

§ Optimal regularity theory in W 2,p for all p ă `8
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1.2 Injectivity radius of an observer

pM, g , p,Tpq : time-oriented, pointed, Lorentzian manifold
pp,Tpq : (infinitesimal) observer
Tp future-oriented, unit time-like vector

Exponential map

§ Exponential map: expp : Bgp p0, i0q Ă TpM Ñ Bg pp, i0q Ă M

§ Defined in a neighborhood of 0 P TpM

Reference Riemannian metric

§ Positive definite inner product gTp,p at p

§ Orthonormal frame eα at p with e0 :“ Tp

§ From gp “ ´e
0
b e0

` e1
b e1

` . . .` en b en

we define
gTp ,p :“ e0

b e0
` e1

b e1
` . . .` en b en

§ Reference Riemannian metric gT , once a field of observers T is
prescribed

§ By g -parallel transporting Tp, we define a vector field Tγ along any
radial geodesic γ : r0, r s Ñ M from p.
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Norm of the curvature

§ Using gTp,p, we can compute the norm |A|gTp ,p of a tensor at p

§ Using the associated Riemannian metric gTγ , we can compute the
norm

sup
r0,rs

|Rmg |gTγ

§ Finally the Riemann curvature norm associated with the observer is

Riemr pp,Tpq :“ sup
γ

sup
r0,rs

|Rmg |gTγ

Lorentzian notion of injectivity radius

§ Injectivity radius of the observer pp,Tpq

InjpM, g , p,Tpq

supremum of all radii r such that expp is a global diffeomorphism
from BgT ,pp0, rq to its image BT pp, rq Ă M
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Classical result fo Riemannian manifolds

§ A complete Riemannian n-manifold pM, gq such that, in the unit
geodesic ball Bg pp, 1q centered at some p P M,

Riem1 :“ sup
Bg pp,1q

|Rmg | ď K0

§ Cheeger, Gromov, and Taylor: there exists a constant c0pK0, nq ą 0
such that

InjpM, gq ě c0pK0, nqVolg pBg pp, 1qq

We establish a Lorentzian version

§ Local and geometric estimate “a la Cheeger-Gromov-Taylor”

§ No a priori prescription of a foliation or coordinate chart

§ No assumption on the derivative of the curvature
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Our Lorentzian version.

Recall our definition

Riemr pM, g , p,Tpq :“ sup
γ

sup
r0,rs

|Rmg |gTγ

Theorem.
Lower bound on the Lorentzian injectivity radius (BL Chen & PLF)

There exists a universal constant cpnq ą 0 such that, if pM, g , p,Tpq is a
pointed Lorentzian pn ` 1q-manifold satisfying the curvature bound

Riemr pM, g , p,Tpq ď
1

r2

then

InjpM, g , p,Tpq

r
ě cpnq

Volg
`

BM,g pp, cpnqrq
˘

rn`1
.

Proof based on a study the geometry of the covering

expp : BgTp ,p
p0, rq Ñ BgTp

pp, rq Ă M
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1.3 Local CMC foliation of an observer

Objective
§ Given an observer pp,Tpq, define and construct a canonical CMC

(constant mean curvature) foliation by spacelike hypersurfaces

§ Defined locally in a neighborhood of p

§ Quantitative estimates involving curvature and injectivity bounds

§ Here general Lorentzian manifolds. Next: Spatially harmonic
coordinates for Einstein vacuum spacetimes

Earlier works

§ Riemannian manifolds: De Turck and Kazdan, Jost and Karcher:

§ There exists i1 “ i1pInj,K0q such that, given ε ą 0, one can cover
Bg pp, i1q by harmonic coordinates and get the optimal regularity of
the metric coefficients

e´ε gE ď g ď eε gE gE : Euclidian

}g}W 2,apBg pp,i0qq
ď Cε,a a P r1,8q

§ Lorentzian manifolds: ∇Rm bounded (or even more regularity)

§ Bartnik-Simon, Gerhardt, etc.
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Local canonical foliations

Definition

Given θ P p0, 1q (close to 1, say), a local canonical CMC foliation for the
observer pp,Tpq:

§ a foliation by n-dimensional spacelike hypersurfaces Σt of constant
mean curvature t

`

ď

tďtďt

Σt

˘

Q p

§ the range of t of order 1{r , specified by some constant s P rθ, 2θs

t :“ p1´ θq
n

sr
, t :“ p1` θq

n

sr

§ the unit normal N, the lapse function λ :“
`

´ gp∇t,∇tq
˘1{2

and
the second fundamental form h satisfy (pointwise bounds)

´gpN,T q ď θ´1, θ ď ´r´2λ ď θ´1, r |h| ď θ´1

T being defined by parallel translating Tp along radial geodesics
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Theorem. Existence of canonical foliations

There exist universal constants cpnq, θpnq ą 0 such that, if pM, g , p,Tpq

is a pointed Lorentzian manifold satisfying at some scale r ą 0

Riemr pM, g , p,Tpq ď r´2, InjpM, g , p,Tpq ě r ,

then

the Riemannian ball BT pp, cpnqrq can be covered by a local canonical
CMC foliation for the observer pp,Tpq (with θ “ θpnq).

§ Search for CMC graphs over Lorentzian geodesic spheres

§ Prescribed mean curvature problem: nonlinear elliptic problem for the
level set function

§ Barrier functions: Lorentzian and Riemannian geodesic spheres

§ Uniform control of the geometry of these graphs in terms of the curvature
and injectivity radius:

§ low regularity of the metric, loss of derivatives
§ estimates derived with Nash-Moser iterations
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1.4 Local CMC-harmonic coordinates of an observer

§ pM, g , p,Tpq: an pn ` 1q-dimensional, pointed Einstein vacuum
spacetime Rαβ “ 0

§ Satisfying the curvature and injectivity bounds at the scale r ą 0

Riemr pM, g , p,Tpq ď r´2, InjpM, g , p,Tpq ě r

Then, for some small constants 0 ă c ă c ăă 1 and r1 P rcr , cr s
there exist local coordinates

x “ px0, x1, . . . , xnq “ pt, x1, . . . , xnq

xppq “ pr1, 0, . . . , 0q

|t ´ r1| ă c2r
`

px1q2 ` . . .` pxnq2
˘1{2

ă c2r

so that the following properties hold:
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Theorem. Existence of CMC-harmonic coordinates

§ Σt (constant t) spacelike hypersurfaces with constant CMC
equal to c´1r´2t

§ px1, . . . , xnq spatially harmonic coordinates for the metric
induced on the leaves Σt

§ The Lorentzian metric, decomposed as

g “ ´λpxq2 pdtq2 ` gijpxq
`

dx i ` ξi pxq dt
˘`

dx j ` ξjpxq dt
˘

,

remains uniformly close to the Minkowski metric

e´C ď λ ď eC , e´Cδij ď gij ď eCδij , |ξ|2g :“ gijξ
iξj ď eC

§ Optimal regularity property: for all q P r1,`8q and a constant
C pn, qq ą 0

r´n`q

ż

Σt

|Bg |q dvΣt ` r´n`2q

ż

Σt

|B2g |qdvΣt ď C pn, qq

low regularity: only up to 2 derivatives of the metric



Theorem. Existence of CMC-harmonic coordinates

§ Σt (constant t) spacelike hypersurfaces with constant CMC
equal to c´1r´2t

§ px1, . . . , xnq spatially harmonic coordinates for the metric
induced on the leaves Σt

§ The Lorentzian metric, decomposed as

g “ ´λpxq2 pdtq2 ` gijpxq
`

dx i ` ξi pxq dt
˘`

dx j ` ξjpxq dt
˘

,

remains uniformly close to the Minkowski metric

e´C ď λ ď eC , e´Cδij ď gij ď eCδij , |ξ|2g :“ gijξ
iξj ď eC

§ Optimal regularity property: for all q P r1,`8q and a constant
C pn, qq ą 0

r´n`q

ż

Σt

|Bg |q dvΣt ` r´n`2q

ż

Σt

|B2g |qdvΣt ď C pn, qq

low regularity: only up to 2 derivatives of the metric



Theorem. Existence of CMC-harmonic coordinates

§ Σt (constant t) spacelike hypersurfaces with constant CMC
equal to c´1r´2t

§ px1, . . . , xnq spatially harmonic coordinates for the metric
induced on the leaves Σt

§ The Lorentzian metric, decomposed as

g “ ´λpxq2 pdtq2 ` gijpxq
`

dx i ` ξi pxq dt
˘`

dx j ` ξjpxq dt
˘

,

remains uniformly close to the Minkowski metric

e´C ď λ ď eC , e´Cδij ď gij ď eCδij , |ξ|2g :“ gijξ
iξj ď eC

§ Optimal regularity property: for all q P r1,`8q and a constant
C pn, qq ą 0

r´n`q

ż

Σt

|Bg |q dvΣt ` r´n`2q

ż

Σt

|B2g |qdvΣt ď C pn, qq

low regularity: only up to 2 derivatives of the metric



Theorem. Existence of CMC-harmonic coordinates

§ Σt (constant t) spacelike hypersurfaces with constant CMC
equal to c´1r´2t

§ px1, . . . , xnq spatially harmonic coordinates for the metric
induced on the leaves Σt

§ The Lorentzian metric, decomposed as

g “ ´λpxq2 pdtq2 ` gijpxq
`

dx i ` ξi pxq dt
˘`

dx j ` ξjpxq dt
˘

,

remains uniformly close to the Minkowski metric

e´C ď λ ď eC , e´Cδij ď gij ď eCδij , |ξ|2g :“ gijξ
iξj ď eC

§ Optimal regularity property: for all q P r1,`8q and a constant
C pn, qq ą 0

r´n`q

ż

Σt

|Bg |q dvΣt ` r´n`2q

ż

Σt

|B2g |qdvΣt ď C pn, qq

low regularity: only up to 2 derivatives of the metric



ADM formulation of the Einstein equations Rαβ “ 0.
§ Since x1, . . . , xn are harmonic coordinates on Σt , we have the

elliptic equations gkl B
2gij

BxkBx l ` QijpBg , Bgq “ ´2Rij , where
QijpBg , Bgq is quadratic in Bg .

§ Denote by g the Lorentzian metric. The second fundamental form
kij “

@

∇ B

Bxi

B
Bx j ,N

D

satisfies Einstein constraint equations

RΣ
ijkl ` kikkjl ´ kilkkj “ Rijkl

∇lkij ´∇iklj “ RliNj

§ The induced metric gij and the second fundamental form kij satisfy
Einstein evolution equations

Bgij
Bx0

“ ´2λkij ` Lξgij
Bkij
Bx0

“ ´∇i∇jλ` Lξkij ´ λ gpqkipkqj ` λRiNjN

§ We deduce an elliptic equation for the shift vector ξ

differentiating the spatially harmonic condition ∆xk
“ 0 with respect

to x0 and using the CMC condition:
∆ξk “ ´g kiRijξ

j
´ ptrkqg kl ∇lλ` 2g klg ijkli∇jλ´ 2λ g klRlN .

§ And an elliptic equation for the lapse function λ
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elliptic equations gkl B
2gij

BxkBx l ` QijpBg , Bgq “ ´2Rij , where
QijpBg , Bgq is quadratic in Bg .

§ Denote by g the Lorentzian metric. The second fundamental form
kij “

@

∇ B

Bxi

B
Bx j ,N

D

satisfies Einstein constraint equations

RΣ
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1.5 Construction of the local canonical foliation
The remaining of this section is focused on the foliation.

1. Lorentzian geodesic foliation of the observer pp,Tpq.
§ γ : r0, cr s Ñ M: future-oriented, timelike geodesic with γpcrq “ p

and 9γppq “ Tp Set q “ γp0q

§
Ť

τ Hτ : a neighborhood of p foliated by Lorentzian geodesic spheres
centered at q in the past of p

§ y “ pyαq “ pτ, y jq: normal coordinates associated with radial
geodesics from the point q

Three families of hypersurfaces:

§ Lorentzian geodesic spheres

§ Riemannian geodesic spheres

§ CMC hypersurfaces
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2. Distance Hessian comparison.

§ on the orthogonal hyperplane E :“
`

∇τ
˘K

kpτ, rq gij ď p´∇2τq|E ,ij ď kpτ, rq gij

in which kpτ, rq :“ r´1C

tan
`

τ r´1C
˘ and kpτ, rq :“ r´1C

tanh
`

τ r´1C
˘

§ constant C depending on the sup-norm of the curvature, only

§ In particular, for the mean curvature we obtain the uniform control
n kpτ, rq ď HHτ ď n kpτ, rq solely in terms of our curvature norm.

3. Riemannian geodesic foliation of the observer.

§ Take p1 “ γpτq with τ P rcr , cr s

§ For each a P rcr , cr s, consider the Riemannian slice

App1, aq :“ SgT pp
1, aq X J`pqq

determined by the reference metric gT associated with T (parallel
transport from Tp)

§ For the mean curvature we obtain the uniform control
n kpa, rq ď HApp1,aq ď n kpa, rq solely in terms of our curvature norm.
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4. Equations for the CMC foliation
Ť

t Σt .

§ The unknown hypersurfaces Σt “
 

putpyq, yq
(

(with second
fundamental form hij) are sought for

§ as graphs over a given geodesic slice Hτ (with second fundamental
form Aij) for a given τ

§ Mean curvature equation

Mu :“ hijg
ij “

1
a

1` |∇Σu|2

´

∆Σu ` Aj
j
¯

in which Aij :“ p∇2
Mτqij

§ Nonlinear elliptic Partial Differential Equation

§ Barriers provided by the Lorentzian and Riemannian slices

§ Existence by the method of continuation, provided Σ remains
spacelike
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Expression of the mean curvature operator

§ Setting uj :“ Bu{By j , the induced metric and its inverse read

gij “ gij ´ uiuj , g ij “ gij `
gikgjlukul
1´ |∇u|2

.

§ The hypersurface Σt is spacelike iff

|∇u|2 “ gijpu, ¨quiuj ă 1.

§ ∇: covariant derivative associated with the induced metric gij :

|∇u|2 “ g ijuiuj :“
|∇u|2

1´ |∇u|2

§ Future-oriented unit normal

N “ ´
a

1` |∇u|2 p1,∇uq



§ Second fundamental form of the slice Σ

hij “
1

a

1` |∇u|2

´

∇i∇ju ` Aij

¯

§ Mean curvature

Mu :“ hijg
ij “

1
a

1` |∇u|2

´

∆Σu ` Aj
j
¯

§ In local coordinates

Mu “
1

a

gpu, ¨q

B

By i

ˆ

a

gpu, ¨q νp∇uq gijpu, ¨q
Bu

By j

˙

`

´

νp∇uq´1gijpu, ¨q ` νp∇uq gikpu, ¨qgjlpu, ¨qukul

¯1

2

Bgij

Bτ
pu, ¨q

with νp∇uq :“ 1?
1´|∇u|2

“
a

1` |∇u|2 “ νp∇uq



5. Localization of the CMC slices and existence of the foliation

“Quantitative estimate”: we must make sure that our parameters depend
only on the assumed curvature bound.



§ Fix s P rc , 2cs (small parameter) and consider the following two
points in the future of p

psr :“ γpsrq, p1sr :“ γps 1rq s 1 “ s ` s2

§ Consider the subset Ωsr Ă Hτ“sr of the geodesic slice, bounded by
its intersection with a Riemannian 3-sphere, defined as follows:

BΩsr :“ A
`

p1s , s
1sr

˘

XHτ“sr s 1s “ s2 ` s3

§ Our CMC hypersurface Σt : graph of the function u given by the
Dirichlet problem

Mu “ t in Ωsr u “ sr in BΩsr

for any chosen mean curvature value t P rn kpsr , rq, n kp2s2r , rqs

§ Finally, for each s, we specifically choose the slice corresponding to
t :“ 2kpsr , rq P rkpsr , rq, kp2s2r , rqs.
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1.6 Further ingredients for the proof

§ Rely on the geometric structure of the problem / properties of the
prescribed curvature problem

§ Simons identity : second fundamental form hij controled in terms of
the ambiant curvature of the Lorentzian space

∆Σhij “ ∆Σhij ´ ptr hqij

“ |h|2 hij ´ ptr hqhikhljg
kl
´ Ripjqhklg

pkgql
` Rjplqhikg

pqg kl

`∇ppRqjNi qg
pq
´∇jpRiNq

§ Weizenbock identity : Global gradient estimate ensuring that the
prescribed mean curvature equation is uniformly elliptic (cf. more
details below)

§ Quantitative estimates involving the curvature Rmg , only /
Nash-Moser type technique



Spacelike nature of the CMC hypersurfaces

Lemma

Weitzenböck’s identity and the prescribed CMC equation imply the fol-
lowing inequality satisfied by the Laplacian of |∇u|2 on the hypersurface
Σt

∆|∇u|2 ´ 2|∇2u|2 Á
@

∇u,∇∆u
D

´
`

1` |∇u|2
˘3

with, moreover,
|∆u| À 1` |∇u|2 “: νp∇uq2

§ At this stage, the operator ∆ on Σt has possibly unbounded
coefficients, since we do not control |∇u| yet.



Proposition

The CMC hypersurfaces are spacelike:

}∇u}L8 “ sup
Ωsr

|∇u| À 1

Step 1. Estimate }∇u}L8 in term of }∇u}Lp0 for some finite p0

§ We set
v “ pν2 ´ kq` :“ p1` |∇u|2 ´ kq`

with k so large that v “ 0 on BΣ

§ Choosing such a k is possible, since the desired gradient estimate
near the boundary follows from the maximum principle



§ Given q ě 1, we multiply by vq our Weitzenböck’s inequality

∆|∇u|2 ´ 2|∇2u|2 Á
@

∇u,∇∆u
D

´
`

1` |∇u|2
˘3

and then we integrate over the hypersurface Σ

§ Using also that |∆u| À 1` |∇u|2, we obtain

ż

Σ

´

q vq´1|∇v |2 ` vq |∇2u|2
¯

dvΣ

À

ż

Σ

´

q vq´1
@

∇v ,∇u
D

` vq`3 ` vq
¯

dvΣ



§ Setting q “: 2m ´ 1 we obtain (for all m ě 1)

}∇vm}2
L2pΣq À m2 }v2m`2 ` v2m´2}L1pΣq

§ Rewritting this in the coordinates y j in the geodesic slice and
applying the Sobolev inequality (in a fixed compact domain)

}w}2
L2n{pn´1qpΩsr q

À }g ijBiwBjw ` w2}L1pΩsr q

with the function w :“ vp{2 with now p :“ 2m ´ 1{2, we deduce

}v}Lpn{pn´1qpΩsr q
À p2{p}vp`2 ` vp´2}

1{p
L1pΩsr q

, p ą 2

§ Control the Lpn{pn´1q norm of v in terms of its Lp norm



§ Since pn{pn´ 1q ă p, an iteration procedure allows us to control the
sup norm of v

§ Namely, without loss of generality, assume that }v}L8pΩsr q ě 1 (for
otherwise the result is immediate) so our main estimate reads

max
`

1, }v}Lpn{pn´1qpΩrsq

˘

À p2{p}v}
2{p
L8pΩrsq

max
`

1, }v}LppΩrsq

˘

and after iteration

}v}L8pΩrsq À}v}
α
L8pΩrsq

}v}Lp0 pΩrsq

α :“
2

p0

8
ÿ

k“0

p1´ 1{nqk “
2n

p0

§ It suffices to take p0 ą 2n



Step 2. Uniform gradient estimate in a fixed Lp0 norm

§ From |∆u| À |νp∇uq|2 and for all λ ą 0, we find

∆peλuq “ λ2eλu|∇u|2 ` λeλu∆u

Á λ2eλu|∇u|2 ´ λ eλ u|νp∇uq|2

§ From this and our Weitzenböck’s inequality, we deduce

∆
`

vp0eλu
˘

Á ´ vp0´1 eλu
`

ν2pν4 ` λvq ´ λ2pν ´ 1q
˘

` λp0v
p0´1eλu

@

∇u,∇v
D

` p0v
p0´1eλu

@

∇u,∇p∆uq
D

` p0pp0 ´ 1qvp0´2eλu|∇v |2

§ ν2pν4 ` λvq ´ λ2pν ´ 1q À v3, provided k ą 1 is fixed and λ is
arbitrarily large

§ Integrate over Σ and proceed as in Step 1 (with large λ)
ż

Σ

|∇u|p0 dvΣ À Cp0



2. Euclidian-Hyperboloidal Foliations
of Matter Spacetimes

With Yue Ma (Xi’an Jiaotong)

2.1 Field equations: Einstein and f(R)-modified gravity
Massive matter

§ Einstein-Klein-Gordon equations

§ main challenge: no invariance under scaling

§ energy-momentum tensor

Tαβ :“ ∇αφ∇βφ´
´

1
2
gα

1β1∇α1φ∇β1φ` Upφq
¯

gαβ

Einstein-Klein-Gordon system: typically Upφq “ c2φ2
{2

Rαβ ´ 8π
´

∇αφ∇βφ` Upφq gαβ
¯

“ 0

lgφ´ U 1pφq “ 0

§ nonlinear system of coupled wave and Klein-Gordon equations

in wave (harmonic, De Donder) gauge

Generalized Hilbert-Einstein functional
ż

M

´

f pRq ` 16πLrφ, g s
¯

dVg f pRq “ R `
κ

2
R2
` κ2OpR3

q

“mass parameter” 1{κ ą 0
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The well-posed formulation of the f(R)-gravity theory
ArXiv gr-qc: 1412.8151

The mathematical validity of the f(R) theory of modified gravity,

PLF &, Y. Ma, Mémoires Société Math. France

Field equations of modified gravity Mαβ “ 8πTαβ

Mαβ “f
1pRqGαβ ´

1

2

´

f pRq ´ Rf 1pRq
¯

gαβ `
´

gαβ lg ´∇α∇β

¯

`

f 1pRq
˘

§ fourth-order field equations, well-posed Cauchy formulation

§ vacuum Einstein solutions are vacuum f(R)-solutions

Conformal transformation g :αβ “ eκρgαβ with ρ “ 1
κ lnpf 1pRqq

§ fourth-order in the physical metric g
§ third-order in the (unphysical) conformal metric g :

§ scaling with κÑ 0 so that ρÑ R
ρ “ ρpRq still referred to as the scalar curvature field

Evolution of ρ trace of the field equations

Klein-Gordon equation for the spacetime scalar curvature

3κlg:ρ´ ρ “ 8πe´κρg :
αβ

Tαβ ` f2pρq |f2pρq| À κρ2
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Field equations in the conformal metric

R:αβ ´ 6κ2 ∇:αρ∇:βρ´
1

2
e´2κρf1pρq g

:

αβ

“ 8πe´2κρ
´

Tαβ ´
1

2
g :αβ

`

g :
α1β1

Tα1β1
˘

¯

|f1pρq| À κρ2

§ no fourth-order derivatives in the conformal metric g:

§ only Ricci curvature, first-order derivatives of ρ

We regard ρ as an independent unknown.

Klein-Gordon equation for the curvature field

3κlg:ρ´ ρ “ 8πe´κρg :
αβ

Tαβ ` f2pρq

Defining relations
g :αβ “ eκρgαβ ρ “ 1

κ lnpf 1pRqq
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2.2 The Euclidian-Hyperboloidal Foliation Method

2015 ArXiv gr-qc: 1507.01143 The global nonlinear stability of Minkowski space for
self-gravitating massive fields. The wave-Klein-Gordon model,
Communications in Math. Phys. 346 (2016)

2015 ArXiv gr-qc: 1511.03324 Monograph, World Scientific Press, 2018.

2017 ArXiv gr-qc: 1712.10045, Monograph (non-compact matter, f(R)-gravity)

Our foliation in conformal wave gauge lg:x
α “ 0

§ asympt. hyperbol. surfaces in the interior of the light cone (boost fields)

§ asympt. flat hypersurfaces in the exterior (translation fields)

§ a transition region connecting them near the light cone
[Sobolev inequalities, hyperboloidal-euclidian energy functional, etc.]

Some earlier related work for massless matter.

§ hyperboloidal foliations for wave equations
Friedrich 1981, Klainerman 1986, Hormander 1997

§ wave gauge lgx
α
“ 0 Lindblad & Rodnianski (2010)

Einstein-massless fields
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Some earlier related work for massless matter.

§ hyperboloidal foliations for wave equations
Friedrich 1981, Klainerman 1986, Hormander 1997

§ wave gauge lgx
α
“ 0 Lindblad & Rodnianski (2010)

Einstein-massless fields



f(R)-gravity for a self-gravitating massive field

rlg:g
:

αβ “Fαβpg
:, Bg :q ` 8π

´

´ 2e´κρBαφBβφ` c2φ2e´2κρ g :αβ

¯

´ 3κ2BαρBβρ` κOpρ2qg :αβ

rlg:φ´ c2φ “ c2
`

e´κρ ´ 1
˘

φ` κg :
αβ
BαφBβρ

3κ rlg:ρ´ ρ “κOpρ2q ´ 8πe´κρ
´

g :
αβ
BαφBβφ` 2c2 e´κρφ2

¯

§ wave gauge conditions g:
αβ

Γ:
λ
αβ “ 0

§ curvature compatibility eκρ “ f 1pRe´κρg:q

§ Hamiltonian and momentum constraints of modified gravity
(propagate from any given Cauchy hypersurface)

Taking the limit κÑ 0

Einstein system for a self-gravitating massive field

rlggαβ “Fαβpg , Bgq ` 8π
`

´ 2BαφBβφ` c2φ2 gαβ
˘

rlgφ´ c2φ “ 0

g : Ñ g ρÑ 8π
`

gαβ∇αφ∇βφ` 2c2φ2
˘
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Constructing the interior/exterior spacetime foliation

Global coordinate chart pt, xaq s2 “ t2 ´ r2 and r2 :“
ř

pxaq2

Asymptotically Killing fields

§ translations Bα (tangent fields in the exterior)

§ boosts La “ xaBt ` tBa (tangent fields in the interior)

§ rotation fields Ωab “ xaBb ´ xbBa (tangent fields exterior/interior)

but not on the scaling field S “ tBt ` rBr

We combine two foliations together:

§ Interior: (asymptotically) hyperboloidal slices
 

t2 ´ r2 “ s2
(

Ă R3`1 with hyperbolic radius s ě s0 ą 0 wave cone

propagation

§ Exterior: (asymptotically) Euclidian slices
 

t “ c
(

Ă R3`1 of
constant time t

asymptotic flatness
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Asymptotically Euclidian-Hyperboloidal hypersurfaces Ms “
 

t “ T ps, rq
(

§ Transition function ξps, rq “ 1´ χpr ` 1´ s2
{2q P r0, 1s

§ based on a cut-off function χ
§ χpyq “ 0 for y ď 0 while χpyq “ 1 for y ě 1.
§ “transition” around 2r » s2

“ t2
´ r 2

§ Foliation parameter s defined by BrT ps, rq :“ ξps,rq r?
s2`r2

with T ps, 0q “ s

§ in the interior T 2
“ s2

` r 2

§ in the exterior T “ T psq » s2
independent of r , slow time

Properties (tangent vector, deformation, etc.)

§ tangent vectors boosts in the interior

§ interpolation in the intermediate region

§ translations in the exterior
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2.3 Further ingredients in the method

The Euclidian-hyperboloidal energy

Weight function ωγ “ χpr ´ tqpr ´ tqγ for some γ ě 0

Weighted wave/Klein-Gordon energy for lv ´ c2v with c ě 0

Eγc ps, vq :“

ż

Fs

p1` ωγq

˜

´

1´ ξ2 r
2

t2

¯

`

Btv
˘2
`
ÿ

a

ˆ

ξ

t
xa
Btv ` Bav

˙2

` c2v 2

¸

dx

Energy balance law

Eγc ps, vq
1{2
À Eγc ps0, vq

1{2
`

ż s

s0

}lv ´ c2v}L2pHs1 q
ds 1

`

ż s

s0

}
`

1` sp1´ ξ2
q
˘1{2`

lv ´ c2v
˘

}L2pTs1 q
ds 1

`

ż s

s0

s 1 }p1` ωγq
`

lv ´ c2v
˘

}L2pEs1 q
ds 1

Notation Ms :“ Hs YMs Y Es
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Hs :“
 

t2 “ s2 ` r2, r ď ´1` s2{2
(

hyperboloidal interior region

Ts :“
 

´ 1` s2{2 ď r ď s2{2, t “ T ps, rq
(

transition region

Es :“
 

t “ T psq, r ě s2{2
(

Euclidian exterior region

Controled norms s2 “ t2 ´ r2 and ξ “ ξps, rq P r0, 1s

}
s

t
Btu}L2pHsq ` }

1

t
Lau}L2pHsq ` c}u}L2pHsq

›

›

a

t2 ´ ξ2r2
1

t
Btu

›

›

L2pTsq
` }Bau}L2pTsq ` c}u}L2pTsq

›

›p1` ωγqBtu
›

›

L2pEsq
` }p1` ωγqBau}L2pEsq ` c}p1` ωγqu}L2pEsq

Higher-order energies:

§ based on the Killing fields of Minkowski

§ we establish “good” commutator properties for our foliation



Hs :“
 

t2 “ s2 ` r2, r ď ´1` s2{2
(

hyperboloidal interior region

Ts :“
 

´ 1` s2{2 ď r ď s2{2, t “ T ps, rq
(

transition region

Es :“
 

t “ T psq, r ě s2{2
(

Euclidian exterior region

Controled norms s2 “ t2 ´ r2 and ξ “ ξps, rq P r0, 1s

}
s

t
Btu}L2pHsq ` }

1

t
Lau}L2pHsq ` c}u}L2pHsq

›

›

a

t2 ´ ξ2r2
1

t
Btu

›

›

L2pTsq
` }Bau}L2pTsq ` c}u}L2pTsq

›

›p1` ωγqBtu
›

›

L2pEsq
` }p1` ωγqBau}L2pEsq ` c}p1` ωγqu}L2pEsq

Higher-order energies:

§ based on the Killing fields of Minkowski

§ we establish “good” commutator properties for our foliation



Functional inequalities
Define the Euclidian-hyperboloidal frame to be:

Bs “ BsTBt , Ba “
ξps, rq

t
xa
Bt ` Ba

Translations Bα in the exterior / boosts La “ xa
Bt ` tBa in the interior

Proposition. Sobolev inequalities without scaling field

For arbitrary functions u defined on the Euclidian-Hyperboloidal foliation one
has

|upxq| À t´3{2
ÿ

|I |`|J|ď2

}B
ILJu}L2pHs q

hyperboloidal interior region

|upxq| À p1` r ` tq´1
ÿ

|I |`|J|ď2

}B
I
ΩJu}L2pTs q

transition region

|upxq| À p1` rq´1
ÿ

|I |`|J|ď2

}B
IΩJu}L2pEs q

Euclidian exterior region

Many more ingredients

§ Quasi-null structure of the Einstein equations in wave gauge

§ Huyghens-Kirchhoff formula, etc.

§ Hierarchy of energy bounds, bootstrap argument
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2.4 Stability statements in wave gauge

Theorem. Stability of Minkowski space for massive fields (PLF-YM 2015–2017)

Consider the Einstein-massive field system in wave coordinates and initial data
with Schwarzschild-like decay gab » δab ` Op1{rq and kab “ Op1{r 2

q satisfying
Einstein’s Hamiltonian and momentum constraints.

Then, there exist constants ε, η ą 0 (small) and C0 ą 0 (large) such that for
any data satisfying

for γ P p0, ηq and N “ Npγq hαβ “ gαβ ´ gMαβ and
P “ |I | ` |J| ` |K |

Eγps0, B
ILJΩKhαβq

1{2
ď ε P ď N ` 2

Eγ`1{2
c ps0, B

ILJΩKφq1{2 ď ε, P ď N ` 2

a global solution pg , φq exists with a Euclidian-hyperb. foliation
Ť

sěs0
Ms

Eγps, BILJΩKhαβq
1{2
ď C0εs

δ, P ď N

Eγ`1{2
c ps, BILJΩKφq1{2 ď C0εs

δ`1{2, P ď N

Eγ`1{2
c ps, BILJΩKφq1{2 ď C0εs

δ, P ď N ´ 4



2.4 Stability statements in wave gauge

Theorem. Stability of Minkowski space for massive fields (PLF-YM 2015–2017)

Consider the Einstein-massive field system in wave coordinates and initial data
with Schwarzschild-like decay gab » δab ` Op1{rq and kab “ Op1{r 2

q satisfying
Einstein’s Hamiltonian and momentum constraints.

Then, there exist constants ε, η ą 0 (small) and C0 ą 0 (large) such that for
any data satisfying for γ P p0, ηq and N “ Npγq hαβ “ gαβ ´ gMαβ and
P “ |I | ` |J| ` |K |

Eγps0, B
ILJΩKhαβq

1{2
ď ε P ď N ` 2

Eγ`1{2
c ps0, B

ILJΩKφq1{2 ď ε, P ď N ` 2

a global solution pg , φq exists with a Euclidian-hyperb. foliation
Ť

sěs0
Ms

Eγps, BILJΩKhαβq
1{2
ď C0εs

δ, P ď N

Eγ`1{2
c ps, BILJΩKφq1{2 ď C0εs

δ`1{2, P ď N

Eγ`1{2
c ps, BILJΩKφq1{2 ď C0εs

δ, P ď N ´ 4



2.4 Stability statements in wave gauge

Theorem. Stability of Minkowski space for massive fields (PLF-YM 2015–2017)

Consider the Einstein-massive field system in wave coordinates and initial data
with Schwarzschild-like decay gab » δab ` Op1{rq and kab “ Op1{r 2

q satisfying
Einstein’s Hamiltonian and momentum constraints.

Then, there exist constants ε, η ą 0 (small) and C0 ą 0 (large) such that for
any data satisfying for γ P p0, ηq and N “ Npγq hαβ “ gαβ ´ gMαβ and
P “ |I | ` |J| ` |K |

Eγps0, B
ILJΩKhαβq

1{2
ď ε P ď N ` 2

Eγ`1{2
c ps0, B

ILJΩKφq1{2 ď ε, P ď N ` 2

a global solution pg , φq exists with a Euclidian-hyperb. foliation
Ť

sěs0
Ms

Eγps, BILJΩKhαβq
1{2
ď C0εs

δ, P ď N

Eγ`1{2
c ps, BILJΩKφq1{2 ď C0εs

δ`1{2, P ď N

Eγ`1{2
c ps, BILJΩKφq1{2 ď C0εs

δ, P ď N ´ 4



In summary

1. CMC foliations and spatially harmonic coordinates

§ Local behavior, quantitative bounds

§ Notion of CMC–harmonic radius of an observer

§ Main result established with this method :

“Bounded curvature” implies “controled Lorentzian geometry”

2. Euclidian-hyperboloidal foliations and wave coordinates

§ Global construction, weighted Sobolev norms

§ Control the decay of solutions at time-like and space-like infinity

§ Main result established with this method :

global nonlinear stability of massive fields
(under smallness conditions)
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