Isometry Lie algebras of indefinite homogeneous spaces of finite volume

Wolfgang Globke

(joint works with Oliver Baues and Abdelghani Zeghib)

IX International Meeting on Lorentzian Geometry
IMPAN, June 2018

I Geometric background

The objects of interest

$(M, \mathrm{~g})$ is a connected pseudo-Riemannian homogeneous manifold of finite volume.

- The metric tensor g is non-degenerate but can be indefinite.
- A proper subspace $U \subset T_{p} M$ can be totally isotropic, that is, $\left.\mathrm{g}_{p}\right|_{U}=0$.
- The index s of $(M, \mathrm{~g})$ is the maximal dimension of a totally isotropic subspace $U \subset T_{p} M$.
- Riemannian $s=0$ (positive definite).
- Lorentzian $s=1$ ("lightlike lines").

Groups of isometries

($M, \mathrm{~g}$) is a connected pseudo-Riemannian homogeneous manifold of finite volume;

- $M=G / H$ for a connected Lie group G and a closed subgroup H,
- G acts transitively and by isometries (in particular volume-preserving),
- G acts almost effectively (H has no connected normal subgroups).

Question:

- Which Lie groups G can be isometry groups of such M ?
- Which subgroups $H \subset G$ can be stabilizers of such actions?
- How is geometry of G and M related?

Previous work

- Zimmer's and Gromov's work in the 1980s on rigid geometric structures.
- Adams \& Stuck (1997), Zeghib (1998): Classification of isometry groups of compact Lorentzian manifolds. (Higher indices are much more difficult.)
- Zeghib (1998):

Classification of compact homogeneous Lorentzian manifolds.

Induced scalar product

Assumptions:

- G acts transitively and by isometries on $M=G / H$,
- G acts almost effectively (H has no connected normal subgroups).

The metric g on M induces a symmetric bilinear form $\langle\cdot, \cdot\rangle$ on \mathfrak{g}. Then:

- $\langle\cdot, \cdot\rangle$ is $\operatorname{Ad}_{\mathfrak{g}}(H)$-invariant (and $^{\operatorname{ad}}{ }_{\mathfrak{g}}(\mathfrak{h})$-invariant),

$$
\begin{gathered}
\left\langle\operatorname{Ad}_{\mathfrak{g}}(h) x, \operatorname{Ad}_{\mathfrak{g}}(h) y\right\rangle=\langle x, y\rangle \quad \text { for all } h \in H, \\
\left\langle\operatorname{ad}_{\mathfrak{g}}\left(h^{\prime}\right) x, y\right\rangle=-\left\langle x, \operatorname{ad}_{\mathfrak{g}}\left(h^{\prime}\right) y\right\rangle \quad \text { for all } h^{\prime} \in \mathfrak{h} .
\end{gathered}
$$

- The kernel of $\langle\cdot, \cdot\rangle$ is

$$
\mathfrak{g}^{\perp}=\{x \in \mathfrak{g} \mid\langle x, \cdot\rangle=0\}=\mathfrak{h} .
$$

Recall: Zariski closure

$\mathrm{G} \leq \mathrm{GL}_{n}(\mathbb{C})$ is a linear algebraic group (given by polynomial equations). For a subgroup of $H \leq \mathrm{G}$, let \bar{H}^{z} denote the Zariski closure of H in G ;

- \bar{H}^{2} is the smallest algebraic subgroup of G that contains H.
- H is Zariski-dense in G if $\bar{H}^{\mathrm{z}}=\mathrm{G}$.

Examples

\mathbb{Z} is Zariski-dense in \mathbb{C} (or \mathbb{R}),
$\mathrm{SL}_{n}(\mathbb{Z})$ is Zariski-dense in $\mathrm{SL}_{n}(\mathbb{C})\left(\right.$ or $\left.\mathrm{SL}_{n}(\mathbb{R})\right), \ldots$

Invariance under unipotent operators

Let ($M, \mathrm{~g}$) be a pseudo-Riemannian manifold of finite volume and $G \subseteq \operatorname{Iso}(M, \mathrm{~g})$. The adjoint representation of G on \mathfrak{g} induces a representation $\varrho(G)$ on $\operatorname{Sym}^{2} \mathfrak{g}^{*}$.

Invariance Theorem

For any $p \in M$, the symmetric bilinear form s_{p} on \mathfrak{g} given by

$$
s_{p}(x, y)=\mathrm{g}_{p}\left(X_{p}, Y_{p}\right)
$$

is invariant by all unipotent elements in the Zariski closure $\overline{\varrho(G)}^{\mathrm{Z}}$ in GL(Sym $\left.{ }^{2} \mathfrak{g}^{*}\right)$. (Here X, Y denote the Killing fields on M corresponding to $x, y \in \mathfrak{g}$.)

Proof

- Set $V=\operatorname{Sym}^{2} \mathfrak{g}^{*}$ and $\pi: V \rightarrow \mathbb{P}(V)$ projectivization.
- Finite G-invariant measure on M induces finite G-invariant measure μ on $\mathbb{P}(V)$.
- Furstenberg Lemma: supp μ is finite union of projective subspaces $\pi\left(W_{j}\right)$, and $\operatorname{PGL}(V)_{\mu}$ restricted to $\pi\left(W_{j}\right)$ has compact closure.
- Pick j such that $s_{p} \in W_{j}$.
- $\operatorname{PGL}(V)_{\mu}$ is real algebraic, so contains $\pi_{*}\left(\overline{\varrho(G)}^{2}\right)$.
- If $u \in \overline{\varrho(G)}^{z}$ unipotent, then $\left.\pi_{*}(u)\right|_{\pi\left(W_{j}\right)}$ is unipotent and contained in a compact group, hence trivial.

Nil-invariance

Recall:

- G acts transitively and by isometries on $M=G / H$,
- G acts almost effectively on M.

Apply Invariance Theorem to homogeneous M and $\langle\cdot, \cdot\rangle$:

- $\langle\cdot, \cdot\rangle$ is invariant by all unipotent elements in $\overline{\operatorname{Ad}} \mathfrak{g}(G)^{\mathrm{Z}}$.
- In particular, all nilpotent elements in of $\mathfrak{L i e}\left({\overline{\operatorname{Ad}} \mathfrak{g}^{(G)}}^{\mathrm{Z}}\right)$ are skew-symmetric with respect to $\langle\cdot, \cdot\rangle$.
- We call $\langle\cdot, \cdot\rangle$ nil-invariant.

Let $K S$ be a Levi subgroup of G, where

- K is compact semisimple and
- S is semisimple without compact factors.

Let R denote the solvable radical of G, so that $G=K S R$, and let N denote the nilradical of R.

Corollary
$\langle\cdot, \cdot\rangle$ is invariant by $\operatorname{Ad}_{\mathfrak{g}}(S)$ and $\operatorname{Ad}_{\mathfrak{g}}(N)$.

II Compact indefinite solvmanifolds

Solvmanifolds

For now, assume that G is a connected solvable Lie group, so that ($M, \mathrm{~g}$) is a compact pseudo-Riemannian solvmanifold.

- To understand G, study solvable Lie algebras \mathfrak{g} with nil-invariant $\langle\cdot, \cdot\rangle$.
- Recall: $\mathfrak{g}^{\perp}=\mathfrak{h}$.
- If G acts almost effectively, then \mathfrak{g}^{\perp} contains no ideal $\neq \mathbf{0}$ in \mathfrak{g}.

Example: Oscillator algebra

A solvable Lie algebra with Lorentzian (nil-)invariant product is the oscillator algebra

$$
\mathfrak{g}=\mathfrak{o s c}(\alpha)=\mathbb{R} \ltimes \mathfrak{h e i}_{2 n+1}
$$

where the Heisenberg algebra is

$$
\mathfrak{h e i}_{2 n+1}=\mathbb{R}^{2 n} \times \mathbb{R},
$$

two-step nilpotent with one-dimensional center \mathbb{R}, and \mathbb{R} acts on $\mathbb{R}^{2 n}$ by rotations with weights $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.

Define Lorentzian $\langle\cdot, \cdot\rangle$ on $\mathfrak{o s c}(\alpha)$ by a definite scalar product on $\mathbb{R}^{2 n}$ and a dual pairing of totally isotropic subspaces \mathbb{R} and \mathbb{R}.

- Medina (1985) and Hilgert \& Hofmann (1985) showed that this is the only solvable non-abelian Lie algebra with invariant Lorentzian product.
- For index ≥ 2, Kath and Olbrich (2004) gave a classification scheme for Lie algebras with invariant scalar product, and a classification for index 2.
- For index ≥ 3 classification becomes extremely complicated.

Discrete stabilizer for solvable G

Proposition
Let $\langle\cdot, \cdot\rangle$ be a symmetric nil-invariant bilinear form on a solvable Lie algebra \mathfrak{g}.

- Then \mathfrak{g}^{\perp} is an ideal in \mathfrak{g}.
- If \mathfrak{g}^{\perp} contains no non-trivial ideals of \mathfrak{g}, then $\mathfrak{g}^{\perp}=\mathbf{0}$.

Theorem A
Assume G is solvable.
Then G acts almost freely on M.

Meaning:

- The stabiliser $\Gamma=G_{x}$ is discrete.
- The metric g on M pulls back to a left-invariant pseudo-Riemannian metric g_{G} on G.
- g_{G} is invariant under conjugation by Γ.
\mathfrak{g} is solvable with nil-invariant scalar product $\langle\cdot, \cdot\rangle$.

Proposition

$\langle\cdot, \cdot\rangle$ is invariant on \mathfrak{g}.

Proof

- Let \mathfrak{j} be a totally isotropic central ideal in \mathfrak{g}. Define the reduction $\overline{\mathfrak{g}}=\mathfrak{j} \perp / \mathfrak{j}$.
- $\langle\cdot, \cdot\rangle$ induces a nil-invariant scalar product $\langle\cdot, \cdot\rangle_{\overline{\mathfrak{g}}}$ on $\overline{\mathfrak{g}}$.
- Assume that $\langle\cdot, \cdot\rangle_{\overline{\mathfrak{g}}}$ is invariant on $\overline{\mathfrak{g}}$.
- Verify that $\langle\cdot, \cdot\rangle$ on \mathfrak{g} is invariant if $\langle\cdot, \cdot\rangle_{\overline{\mathfrak{g}}}$ is.
- Iterated reduction to the abelian case and induction yield the result.

Theorem B
Assume G is solvable.
Then g pulls back to a bi-invariant pseudo-Riemannian metric g_{G} on G.

Corollary A+B
The universal cover \widetilde{M} of M is a pseudo-Riemannian symmetric space.
In particular, M is locally symmetric.

No larger isometry groups

Theorem C
Assume G is solvable and effective.
Then $G=\operatorname{Iso}(M)^{\circ}$.

Implications:

- Johnson (1972) showed that any solvmanifold has presentations by connected solvable groups of arbitrary dimension.
- Theorem A shows that most of them cannot act isometrically.
- Theorem C shows that no larger non-solvable group can act isometrically.

III Compact indefinite homogeneous spaces for arbitrary Lie groups

Lie groups of general type

Now let $G=K S R$ be an arbitrary connected Lie group, and as before,

- K compact semisimple,
- S semisimple without compact factors,
- R the solvable radical of G.

We study Lie algebras

$$
\mathfrak{g}=(\mathfrak{k} \times \mathfrak{s}) \ltimes \mathfrak{r}
$$

with nil-invariant symmetric bilinear form $\langle\cdot, \cdot\rangle$.

- $\langle\cdot, \cdot\rangle$ is a priori invariant under $\operatorname{ad}_{\mathfrak{g}}(\mathfrak{s})$ and $\operatorname{ad}_{\mathfrak{g}}(\mathfrak{n})$ (nilradical).
- From the solvable case it follows that the restriction $\langle\cdot, \cdot\rangle_{\mathfrak{s} \ltimes \mathfrak{r}}$ is invariant under $\operatorname{ad}_{\mathfrak{g}}(\mathfrak{s} \ltimes \mathfrak{r})$.

If the index of $\langle\cdot, \cdot\rangle$ is 1 , then $\mathfrak{g}=\mathfrak{k} \times \mathfrak{s} \times \mathfrak{r}$, with either $\mathfrak{s}=\mathbf{0}$ or $\mathfrak{s}=\mathfrak{s l}_{2}(\mathbb{R})$.

Zeghib's Theorem (1998)
Let M be a homogeneous Lorentzian manifold of finite volume.
Then, up to "Riemannian type factors", M is one of the following:
(1) Iso (M, g) contains a cover of $\mathrm{PSL}_{2}(\mathbb{R})$.
$\widetilde{M}=\widetilde{\mathrm{SL}}_{2}(\mathbb{R}) \times L$, where L is a compact Riemannian homogeneous space.
(2) Iso $(M, \mathrm{~g})$ contains an oscillator group $\operatorname{Osc}(\alpha)$.
$\widetilde{M}=\operatorname{Osc}(\alpha) \times_{\mathbf{S}^{1}} L$, and $M=\widetilde{M} / \Gamma$, where Γ is isomorphic to a lattice in $\operatorname{Osc}(\alpha)$.

Strong invariance property

Suppose the index of $\langle\cdot, \cdot\rangle$ is ≥ 1.

Theorem D

(1) $\langle\cdot, \cdot\rangle$ is $\operatorname{ad}_{\mathfrak{g}}(\mathfrak{s} \ltimes \mathfrak{r})$-invariant.
(c) $\langle\cdot, \cdot\rangle_{\mathfrak{s} \propto \mathfrak{r}}$ is $\operatorname{ad}_{\mathfrak{g}}(\mathfrak{g})$-invariant.

Proof

- Decompose $\mathfrak{g}=(\mathfrak{s} \ltimes \mathfrak{r})+\mathfrak{g}^{\mathfrak{s}}$, where $\left[\mathfrak{s}, \mathfrak{g}^{\mathfrak{s}}\right]=\mathbf{0}$.
- Apply result for solvable case to subalgebra $\mathbb{R} x+\mathfrak{r}$ for $x \in \mathfrak{g}^{\mathfrak{s}}$. This shows part 1 .
- We know $\langle\cdot, \cdot\rangle$ is $\operatorname{ad}(\mathfrak{s} \ltimes \mathfrak{n})$-invariant. Nil-invariance relations show that it only remains to show that $\operatorname{ad}(x)$ is skew-symmetric in case $[x, \mathfrak{k}]=\mathbf{0}$.
- Then $\langle[x, \mathfrak{k}], \mathfrak{g}\rangle=0=-\langle\mathfrak{k},[x, \mathfrak{g}]\rangle$, since $x \perp \mathfrak{k}$ (follows from semisimplicity of \mathfrak{k}). This shows part 2.

Note: We do not assume \mathfrak{g}^{\perp} contains no non-zero ideals.

Structure and classification for index ≤ 2

Theorem E

If the index of $\langle\cdot, \cdot\rangle$ is ≤ 2 and \mathfrak{g}^{\perp} does not contain a non-trivial ideal of \mathfrak{g}, then:
(1) \mathfrak{g} is a direct sum of ideals $\mathfrak{g}=\mathfrak{k} \times \mathfrak{s} \times \mathfrak{r}$.
(-) $\mathfrak{g}^{\perp} \subset \mathfrak{z}(\mathfrak{r}) \times \mathfrak{k}$ and $\mathfrak{g}^{\perp} \cap(\mathfrak{s} \times \mathfrak{r})=\mathbf{0}$.

Theorem F

Let \mathfrak{g} be a Lie algebra with nil-invariant symmetric bilinear form $\langle\cdot, \cdot\rangle$ of index 2 , and assume that \mathfrak{g}^{\perp} does not contain a non-trivial ideal of \mathfrak{g}.
Then one of the following cases occurs:
(I) $\mathfrak{g}=\mathfrak{r} \times \mathfrak{k}$, where \mathfrak{r} is one of the following:
(a) \mathfrak{r} is abelian.
(b) \mathfrak{r} is Lorentzian of oscillator type.
(c) \mathfrak{r} is solvable but non-abelian with invariant scalar product of index 2.
(II) $\mathfrak{g}=\mathfrak{a} \times \mathfrak{k} \times \mathfrak{s}$. Here, \mathfrak{a} is abelian, $\mathfrak{s}=\mathfrak{s l}_{2}(\mathbb{R}) \times \mathfrak{s l}_{2}(\mathbb{R})$ with a non-degenerate invariant scalar product of index 2 . Moreover, \mathfrak{a} is definite and $(\mathfrak{a} \times \mathfrak{k}) \perp \mathfrak{s}$.
(III) $\mathfrak{g}=\mathfrak{r} \times \mathfrak{k} \times \mathfrak{s l}_{2}(\mathbb{R})$, where $\mathfrak{s l}_{2}(\mathbb{R})$ is Lorentzian, $(\mathfrak{r} \times \mathfrak{k}) \perp \mathfrak{s l}_{2}(\mathbb{R})$, and \mathfrak{r} is one of the following:
(a) \mathfrak{r} is abelian and either semidefinite or Lorentzian.
(b) \mathfrak{r} is Lorentzian of oscillator type.

What about index ≥ 3 ?

Example

- Let $\mathfrak{k}=\mathfrak{s o}_{3}$, and let $\mathfrak{r}=\mathfrak{s o}_{3}^{\mathrm{I}} \oplus \mathfrak{s o}_{3}^{\mathrm{II}}$, considered as a vector space.
- Let $\mathfrak{s o}_{3}^{\triangle}$ be the diagonal embedding of $\mathfrak{s o}_{3}$ in \mathfrak{r}.
- Let $k \in \mathfrak{k}$ act on $x=x_{1}^{\mathrm{I}}+x_{2}^{\mathrm{II}} \in \mathfrak{r}$ by

$$
\operatorname{ad}(k) x=\left[k, x_{1}\right]^{\mathrm{I}} .
$$

This makes $\mathfrak{g}=\mathfrak{k} \ltimes \mathfrak{r}$ into a Lie algebra with solvable radical \mathfrak{r}.

- Let κ denote the Killing form on $\mathfrak{s o}_{3}$. We define $\langle\cdot, \cdot\rangle$ on \mathfrak{g} by

$$
\left\langle k, x_{1}^{\mathrm{I}}+x_{2}^{\mathrm{II}}\right\rangle=\kappa\left(k, x_{1}\right)-\kappa\left(k, x_{2}\right), \quad \mathfrak{k} \perp \mathfrak{k}, \quad \mathfrak{r} \perp \mathfrak{r}
$$

for all $k \in \mathfrak{k}, x_{1}^{\mathrm{I}}+x_{2}^{\mathrm{II}} \in \mathfrak{s o}_{3}$.

- We can verify that $\langle\cdot, \cdot\rangle$ is ad(\mathfrak{r})-invariant, so $\langle\cdot, \cdot\rangle$ is a nil-invariant form on \mathfrak{g}.
- Since $\mathfrak{r}^{\perp}=\mathfrak{r}$,

$$
\mathfrak{g}^{\perp}=\mathfrak{k}^{\perp} \cap \mathfrak{r}=\mathfrak{s o}_{3}^{\triangle} \subset \mathfrak{r} \quad \text { and } \quad \mathfrak{r}^{\perp} \cap \mathfrak{r}=\mathfrak{r}=\mathfrak{s o}_{3}^{\mathrm{I}} \oplus \mathfrak{s o}_{3}^{\mathrm{II}}
$$

In particular, the index on $\mathfrak{g} / \mathfrak{g}^{\perp}$ is 3 .

References

- S. Adams, G. Stuck,

The isometry group of a compact Lorentz manifold I, Inventiones Mathematicae 129, 1997

- O. Baues, W. Globke, Rigidity of compact pseudo-Riemannian homogeneous spaces for solvable Lie groups, International Mathematics Research Notices 2018 (10) (arXiv:1507.02575)
- O. Baues, W. Globke, A. Zeghib, Isometry Lie algebras of indefinite homogeneous spaces of finite volume, preprint (arXiv:1803.10436)
- W. Globke, Y. Nikolayevsky,

Compact pseudo-Riemannian homogeneous Einstein manifolds of low dimension, Differential Geometry and Applications 54B, 2017 (arXiv:1611.08662)

- A. Zeghib,

Sur les espaces-temps homogènes, Geometry and Topology Monographs 1: The Epstein Birthday Schrift, 1998

