Isometry Lie algebras of indefinite homogeneous spaces of finite volume

WOLFGANG GLOBKE (joint works with Oliver Baues and Abdelghani Zeghib)

IX International Meeting on Lorentzian Geometry IMPAN, June 2018 I Geometric background

The objects of interest

(M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume.

- The metric tensor g is non-degenerate but can be indefinite.
- A proper subspace $U \subset T_p M$ can be totally isotropic, that is, $g_p|_U = 0$.
- The index s of (M, g) is the maximal dimension of a totally isotropic subspace U ⊂ T_pM.
 - Riemannian s = 0 (positive definite).
 - Lorentzian s = 1 ("lightlike lines").

Groups of isometries

(M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume;

- M = G/H for a connected Lie group G and a closed subgroup H,
- G acts transitively and by isometries (in particular volume-preserving),
- G acts almost effectively (H has no connected normal subgroups).

Question:

- Which Lie groups G can be isometry groups of such M?
- Which subgroups $H \subset G$ can be stabilizers of such actions?
- How is geometry of G and M related?

Previous work

- Zimmer's and Gromov's work in the 1980s on rigid geometric structures.
- Adams & Stuck (1997), Zeghib (1998): Classification of isometry groups of compact Lorentzian manifolds. (Higher indices are much more difficult.)
- Zeghib (1998):

Classification of compact homogeneous Lorentzian manifolds.

Induced scalar product

Assumptions:

- G acts transitively and by isometries on M = G/H,
- *G* acts almost effectively (*H* has no connected normal subgroups).

The metric g on M induces a symmetric bilinear form $\langle \cdot, \cdot \rangle$ on g. Then:

• $\langle \cdot, \cdot \rangle$ is $\operatorname{Ad}_{\mathfrak{g}}(H)$ -invariant (and $\operatorname{ad}_{\mathfrak{g}}(\mathfrak{h})$ -invariant),

$$\begin{split} & \langle \mathrm{Ad}_{\mathfrak{g}}(h)x, \mathrm{Ad}_{\mathfrak{g}}(h)y \rangle = \langle x, y \rangle \quad \text{for all } h \in H, \\ & \langle \mathrm{ad}_{\mathfrak{g}}(h')x, y \rangle = -\langle x, \mathrm{ad}_{\mathfrak{g}}(h')y \rangle \quad \text{for all } h' \in \mathfrak{h}. \end{split}$$

The kernel of (·, ·) is

 $\mathfrak{g}^{\perp} = \{ x \in \mathfrak{g} \mid \langle x, \cdot \rangle = 0 \} = \mathfrak{h}.$

Recall: Zariski closure

 $G \leq GL_n(\mathbb{C})$ is a linear algebraic group (given by polynomial equations). For a subgroup of $H \leq G$, let \overline{H}^2 denote the Zariski closure of H in G;

- \overline{H}^{z} is the smallest algebraic subgroup of G that contains H.
- *H* is Zariski-dense in G if $\overline{H}^{z} = G$.

Examples

 \mathbb{Z} is Zariski-dense in \mathbb{C} (or \mathbb{R}), SL_n(\mathbb{Z}) is Zariski-dense in SL_n(\mathbb{C}) (or SL_n(\mathbb{R})),...

Invariance under unipotent operators

Let (M, g) be a pseudo-Riemannian manifold of finite volume and $G \subseteq \text{Iso}(M, g)$. The adjoint representation of *G* on g induces a representation $\varrho(G)$ on $\text{Sym}^2 g^*$.

Invariance Theorem

For any $p \in M$, the symmetric bilinear form s_p on \mathfrak{g} given by

$$s_p(x, y) = g_p(X_p, Y_p),$$

is invariant by all unipotent elements in the Zariski closure $\overline{\varrho(G)}^z$ in GL(Sym²g^{*}). (Here X, Y denote the Killing fields on M corresponding to x, $y \in \mathfrak{g}$.)

Proof

- Set $V = \text{Sym}^2 \mathfrak{g}^*$ and $\pi : V \to \mathbb{P}(V)$ projectivization.
- Finite G-invariant measure on M induces finite G-invariant measure μ on $\mathbb{P}(V)$.
- Furstenberg Lemma: supp μ is finite union of projective subspaces $\pi(W_j)$, and PGL(V) μ restricted to $\pi(W_j)$ has compact closure.
- Pick j such that $s_p \in W_j$.
- PGL(V)_{μ} is real algebraic, so contains $\pi_*(\overline{\varrho(G)}^z)$.
- If $u \in \overline{\varrho(G)}^{\mathbb{Z}}$ unipotent, then $\pi_*(u)|_{\pi(W_j)}$ is unipotent and contained in a compact group, hence trivial.

Nil-invariance

Recall:

- G acts transitively and by isometries on M = G/H,
- G acts almost effectively on M.

Apply Invariance Theorem to homogeneous M and $\langle \cdot, \cdot \rangle$:

- $\langle \cdot, \cdot \rangle$ is invariant by all unipotent elements in $\overline{\mathrm{Ad}_{\mathfrak{g}}(G)}^{\mathbb{Z}}$.
- In particular, all nilpotent elements in of $\mathfrak{Lie}(\overline{\mathrm{Ad}_{\mathfrak{g}}(G)}^{\mathbb{Z}})$ are skew-symmetric with respect to $\langle \cdot, \cdot \rangle$.
- We call $\langle \cdot, \cdot \rangle$ nil-invariant.

Let KS be a Levi subgroup of G, where

- K is compact semisimple and
- S is semisimple without compact factors.

Let *R* denote the solvable radical of *G*, so that G = KSR, and let *N* denote the nilradical of *R*.

Corollary

```
\langle \cdot, \cdot \rangle is invariant by \operatorname{Ad}_{\mathfrak{g}}(S) and \operatorname{Ad}_{\mathfrak{g}}(N).
```

II Compact indefinite solvmanifolds

Solvmanifolds

For now, assume that G is a connected solvable Lie group, so that (M, g) is a compact pseudo-Riemannian solvmanifold.

- To understand G, study solvable Lie algebras \mathfrak{g} with nil-invariant $\langle \cdot, \cdot \rangle$.
- Recall: $\mathfrak{g}^{\perp} = \mathfrak{h}$.
- If G acts almost effectively, then \mathfrak{g}^{\perp} contains no ideal $\neq 0$ in \mathfrak{g} .

Example: Oscillator algebra

A solvable Lie algebra with Lorentzian (nil-)invariant product is the oscillator algebra

 $\mathfrak{g} = \mathfrak{osc}(\alpha) = \mathbb{R} \ltimes \mathfrak{hei}_{2n+1}$

where the Heisenberg algebra is

$$\mathfrak{hei}_{2n+1} = \mathbb{R}^{2n} \times \mathbb{R},$$

two-step nilpotent with one-dimensional center \mathbb{R} , and \mathbb{R} acts on \mathbb{R}^{2n} by rotations with weights $\alpha = (\alpha_1, \dots, \alpha_n)$.

Define Lorentzian $\langle \cdot, \cdot \rangle$ on $\mathfrak{osc}(\alpha)$ by a definite scalar product on \mathbb{R}^{2n} and a dual pairing of totally isotropic subspaces \mathbb{R} and \mathbb{R} .

- Medina (1985) and Hilgert & Hofmann (1985) showed that this is the only solvable non-abelian Lie algebra with invariant Lorentzian product.
- For index ≥ 2, Kath and Olbrich (2004) gave a classification scheme for Lie algebras with invariant scalar product, and a classification for index 2.
- For index \geq 3 classification becomes extremely complicated.

Discrete stabilizer for solvable G

Proposition

Let $\langle \cdot, \cdot \rangle$ be a symmetric nil-invariant bilinear form on a solvable Lie algebra \mathfrak{g} .

- Then \mathfrak{g}^{\perp} is an ideal in \mathfrak{g} .
- If \mathfrak{g}^{\perp} contains no non-trivial ideals of \mathfrak{g} , then $\mathfrak{g}^{\perp} = 0$.

Theorem A Assume G is solvable. Then G acts almost freely on M.

Meaning:

- The stabiliser $\Gamma = G_x$ is discrete.
- The metric g on M pulls back to a left-invariant pseudo-Riemannian metric g_G on G.
- g_G is invariant under conjugation by Γ .

Bi-invariant metric for solvable G

 \mathfrak{g} is solvable with nil-invariant scalar product $\langle \cdot, \cdot \rangle$.

Proposition

 $\langle \cdot, \cdot \rangle$ is invariant on g.

Proof

- Let j be a totally isotropic central ideal in g. Define the reduction $\overline{g} = j^{\perp}/j$.
- $\langle \cdot, \cdot \rangle$ induces a nil-invariant scalar product $\langle \cdot, \cdot \rangle_{\overline{\mathfrak{g}}}$ on $\overline{\mathfrak{g}}$.
- Assume that $\langle \cdot, \cdot \rangle_{\overline{\mathfrak{g}}}$ is invariant on $\overline{\mathfrak{g}}$.
- Verify that ⟨·, ·⟩ on g is invariant if ⟨·, ·⟩_ḡ is.
- Iterated reduction to the abelian case and induction yield the result.

Theorem B

Assume G is solvable. Then g pulls back to a bi-invariant pseudo-Riemannian metric g_G on G.

Corollary A+B

The universal cover \widetilde{M} of M is a pseudo-Riemannian symmetric space. In particular, M is locally symmetric.

No larger isometry groups

Theorem C Assume G is solvable and effective. Then $G = Iso(M)^{\circ}$.

Implications:

- Johnson (1972) showed that any solvmanifold has presentations by connected solvable groups of arbitrary dimension.
- Theorem A shows that most of them cannot act isometrically.
- Theorem C shows that no larger non-solvable group can act isometrically.

III Compact indefinite homogeneous spaces for arbitrary Lie groups

Lie groups of general type

Now let G = KSR be an arbitrary connected Lie group, and as before,

- *K* compact semisimple,
- S semisimple without compact factors,
- *R* the solvable radical of *G*.

Nil-invariant forms

We study Lie algebras

 $\mathfrak{g} = (\mathfrak{k} \times \mathfrak{s}) \ltimes \mathfrak{r}$

with nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$.

- $\langle \cdot, \cdot \rangle$ is a priori invariant under $ad_{\mathfrak{g}}(\mathfrak{s})$ and $ad_{\mathfrak{g}}(\mathfrak{n})$ (nilradical).
- From the solvable case it follows that the restriction ⟨·, ·⟩_{s×r} is invariant under ad_g(s κ r).

Lorentzian case

If the index of $\langle \cdot, \cdot \rangle$ is 1, then $\mathfrak{g} = \mathfrak{k} \times \mathfrak{s} \times \mathfrak{r}$, with either $\mathfrak{s} = 0$ or $\mathfrak{s} = \mathfrak{sl}_2(\mathbb{R})$.

Zeghib's Theorem (1998)

Let *M* be a homogeneous Lorentzian manifold of finite volume. Then, up to "Riemannian type factors", *M* is one of the following:

- Iso(*M*, g) contains a cover of PSL₂(\mathbb{R}). $\widetilde{M} = \widetilde{SL}_2(\mathbb{R}) \times L$, where *L* is a compact Riemannian homogeneous space.
- Iso(M, g) contains an oscillator group $Osc(\alpha)$. $\widetilde{M} = Osc(\alpha) \times_{S^1} L$, and $M = \widetilde{M}/\Gamma$, where Γ is isomorphic to a lattice in $Osc(\alpha)$.

Strong invariance property

Suppose the index of
$$\langle \cdot, \cdot \rangle$$
 is ≥ 1 .

Theorem D

- $\langle \cdot, \cdot \rangle$ is $\operatorname{ad}_{\mathfrak{g}}(\mathfrak{s} \ltimes \mathfrak{r})$ -invariant.
- $(\bullet, \cdot)_{\mathfrak{s} \ltimes \mathfrak{r}} \text{ is } \mathrm{ad}_{\mathfrak{g}}(\mathfrak{g}) \text{-invariant.}$

Proof

- Decompose $\mathfrak{g} = (\mathfrak{s} \ltimes \mathfrak{r}) + \mathfrak{g}^{\mathfrak{s}}$, where $[\mathfrak{s}, \mathfrak{g}^{\mathfrak{s}}] = 0$.
- Apply result for solvable case to subalgebra $\mathbb{R}x + \mathfrak{r}$ for $x \in \mathfrak{g}^{\mathfrak{s}}$. This shows part 1.
- We know (·, ·) is ad(5 K n)-invariant. Nil-invariance relations show that it only remains to show that ad(x) is skew-symmetric in case [x, ℓ] = 0.
- Then ⟨[x, ℓ], g⟩ = 0 = -⟨ℓ, [x, g]⟩, since x ⊥ ℓ (follows from semisimplicity of ℓ). This shows part 2.

Note: We do not assume \mathfrak{g}^{\perp} contains no non-zero ideals.

Structure and classification for index ≤ 2

Theorem E

If the index of $\langle \cdot, \cdot \rangle$ is ≤ 2 and \mathfrak{g}^{\perp} does not contain a non-trivial ideal of \mathfrak{g} , then:

() \mathfrak{g} is a direct sum of ideals $\mathfrak{g} = \mathfrak{k} \times \mathfrak{s} \times \mathfrak{r}$.

Theorem F

Let g be a Lie algebra with nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$ of index 2, and assume that \mathfrak{g}^{\perp} does not contain a non-trivial ideal of g.

Then one of the following cases occurs:

- (I) $\mathfrak{g} = \mathfrak{r} \times \mathfrak{k}$, where \mathfrak{r} is one of the following:
 - (a) r is abelian.
 - (b) *r* is Lorentzian of oscillator type.
 - (c) \mathfrak{r} is solvable but non-abelian with invariant scalar product of index 2.
- (II) $\mathfrak{g} = \mathfrak{a} \times \mathfrak{k} \times \mathfrak{s}$. Here, \mathfrak{a} is abelian, $\mathfrak{s} = \mathfrak{sl}_2(\mathbb{R}) \times \mathfrak{sl}_2(\mathbb{R})$ with a non-degenerate invariant scalar product of index 2. Moreover, \mathfrak{a} is definite and $(\mathfrak{a} \times \mathfrak{k}) \perp \mathfrak{s}$.
- (III) $\mathfrak{g} = \mathfrak{r} \times \mathfrak{k} \times \mathfrak{sl}_2(\mathbb{R})$, where $\mathfrak{sl}_2(\mathbb{R})$ is Lorentzian, $(\mathfrak{r} \times \mathfrak{k}) \perp \mathfrak{sl}_2(\mathbb{R})$, and \mathfrak{r} is one of the following:
 - (a) r is abelian and either semidefinite or Lorentzian.
 - (b) r is Lorentzian of oscillator type.

What about index ≥ 3 ?

Example

- Let $\mathfrak{k} = \mathfrak{so}_3$, and let $\mathfrak{r} = \mathfrak{so}_3^I \oplus \mathfrak{so}_3^{II}$, considered as a vector space.
- Let \mathfrak{so}_3^{Δ} be the diagonal embedding of \mathfrak{so}_3 in \mathfrak{r} .
- Let $k \in \mathfrak{k}$ act on $x = x_1^{\mathrm{I}} + x_2^{\mathrm{II}} \in \mathfrak{r}$ by

$$\mathrm{ad}(k)x = [k, x_1]^{\mathrm{I}}.$$

This makes $\mathfrak{g} = \mathfrak{k} \ltimes \mathfrak{r}$ into a Lie algebra with solvable radical \mathfrak{r} .

• Let κ denote the Killing form on \mathfrak{so}_3 . We define $\langle \cdot, \cdot \rangle$ on \mathfrak{g} by

$$\langle k, x_1^{\mathrm{I}} + x_2^{\mathrm{II}} \rangle = \kappa(k, x_1) - \kappa(k, x_2), \quad \mathfrak{k} \perp \mathfrak{k}, \quad \mathfrak{r} \perp \mathfrak{r}$$

for all $k \in \mathfrak{k}, x_1^{\mathrm{I}} + x_2^{\mathrm{II}} \in \mathfrak{so}_3$.

We can verify that (·, ·) is ad(𝔅)-invariant, so (·, ·) is a nil-invariant form on 𝔅.
Since 𝑘[⊥] = 𝑘.

$$\mathfrak{g}^{\perp}=\mathfrak{k}^{\perp}\cap\mathfrak{r}=\mathfrak{so}_3^{\Delta}\subset\mathfrak{r}\quad\text{and}\quad\mathfrak{r}^{\perp}\cap\mathfrak{r}=\mathfrak{r}=\mathfrak{so}_3^{I}\oplus\mathfrak{so}_3^{II}.$$

In particular, the index on $\mathfrak{g}/\mathfrak{g}^{\perp}$ is 3.

References

- S. Adams, G. Stuck, The isometry group of a compact Lorentz manifold I, Inventiones Mathematicae 129, 1997
- O. Baues, W. Globke, Rigidity of compact pseudo-Riemannian homogeneous spaces for solvable Lie groups, International Mathematics Research Notices 2018 (10) (arXiv:1507.02575)
- O. Baues, W. Globke, A. Zeghib, Isometry Lie algebras of indefinite homogeneous spaces of finite volume, preprint (arXiv:1803.10436)
- W. Globke, Y. Nikolayevsky, Compact pseudo-Riemannian homogeneous Einstein manifolds of low dimension, Differential Geometry and Applications 54B, 2017 (arXiv:1611.08662)
- A. Zeghib,

Sur les espaces-temps homogènes, Geometry and Topology Monographs 1: The Epstein Birthday Schrift, 1998