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I Geometric background



The objects of interest

(M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume.

o The metric tensor g is non-degenerate but can be indefinite.
@ A proper subspace U C T, M can be totally isotropic, that is, g, |y = 0.

@ The index s of (M, g) is the maximal dimension of a totally isotropic subspace
UcCTpyM.
o Riemannian s = 0 (positive definite).
o Lorentzian s = 1 (“lightlike lines”).



Groups of isometries

(M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume;
@ M = G/H for a connected Lie group G and a closed subgroup H,
@ G acts transitively and by isometries (in particular volume-preserving),

o G acts almost effectively (H has no connected normal subgroups).

Question:
@ Which Lie groups G can be isometry groups of such M ?
@ Which subgroups H C G can be stabilizers of such actions?
@ How is geometry of G and M related?



Previous work

@ Zimmer’s and Gromov’s work in the 1980s on rigid geometric structures.

@ Adams & Stuck (1997), Zeghib (1998):
Classification of isometry groups of compact Lorentzian manifolds.
(Higher indices are much more difficult.)

o Zeghib (1998):
Classification of compact homogeneous Lorentzian manifolds.



Induced scalar product

Assumptions:
@ G acts transitively and by isometrieson M = G/H,

@ G acts almost effectively (H has no connected normal subgroups).

The metric g on M induces a symmetric bilinear form (-, -) on g. Then:
@ (-,-) is Ady(H )-invariant (and ady(h)-invariant),
(Adg(h)x,Adg(h)y) = (x,y) forallh € H,
(adg(h')x,y) = —(x,adg(h’)y) forallh’ €.
@ The kernel of (-, -) is

gt ={xegl{x,) =0 =



Recall: Zariski closure

G < GL,(C) is a linear algebralc group (given by polynomial equations).
For a subgroup of H < G, let H" denote the Zariski closure of H in G;
o H” is the smallest algebraic subgroup of G that contains H.

o H is Zariski-dense in Gif H~ = G.

Examples
7. is Zariski-dense in C (or R),
SL, (Z) is Zariski-dense in SL; (C) (or SL, (R)),...



Let (M, g) be a pseudo-Riemannian manifold of finite volume and G C Iso(M, g).

Invariance under unipotent operators

The adjoint representation of G on g induces a representation o(G) on Sym?g*.

Invariance Theorem
For any p € M, the symmetric bilinear form s on g given by

is invariant by all unipotent elements in the Zariski closure Q(G)Z in GL(Sym?g*).

Sp(xvY) = gp(va Yp),

(Here X, Y denote the Killing fields on M corresponding to x,y € g.)

Proof

Set V = Sym2g* and 7w : V — IP(V) projectivization.
Finite G -invariant measure on M induces finite G-invariant measure & on P(V).

Furstenberg Lemma: supp j is finite union of projective subspaces 7w (W), and
PGL(V),, restricted to 7w (W) has compact closure.

Pick j such that s, € W;.
PGL(V),, is real algebraic, so contains 7« (Q(G)Z).

Ifue Q(G)Z unipotent, then 77 (u)lﬂ(wi) is unipotent and contained in a compact
group, hence trivial. i

O



Nil-invariance
Recall:
@ G acts transitively and by isometries on M = G/H,
@ G acts almost effectively on M.

Apply Invariance Theorem to homogeneous M and (-, -):
@ (-,-) is invariant by all unipotent elements in mz.
o In particular, all nilpotent elements in of Sie(mz) are skew-symmetric
with respect to (-, -).
@ We call (-, -) nil-invariant.

Let K'S be a Levi subgroup of G, where
@ K is compact semisimple and
o S is semisimple without compact factors.

Let R denote the solvable radical of G, so that G = KSR, and let N denote the
nilradical of R.

Corollary
(-, ) is invariant by Ady(S) and Adg(N).



IT

Compact indefinite solvmanifolds



Solvmanifolds

For now, assume that G is a connected solvable Lie group,
so that (M, g) is a compact pseudo-Riemannian solvmanifold.

@ To understand G, study solvable Lie algebras g with nil-invariant (-, -).
@ Recall: gJ- =h.

o If G acts almost effectively, then gJ- contains no ideal # 0 in g.



Example: Oscillator algebra

A solvable Lie algebra with Lorentzian (nil-)invariant product is the
oscillator algebra

g = osc(ar) = R x heigy4q

where the Heisenberg algebra is
beizyt1 = R* xR,

two-step nilpotent with one-dimensional center IR,
and R acts on R2" by rotations with weights o = (g, ..., o).

Define Lorentzian (-, -) on osc(a) by a definite scalar product on IR?” and a dual
pairing of totally isotropic subspaces R and R.

@ Medina (1985) and Hilgert & Hofmann (1985) showed that this is the only
solvable non-abelian Lie algebra with invariant Lorentzian product.

e For index > 2, Kath and Olbrich (2004) gave a classification scheme for Lie
algebras with invariant scalar product, and a classification for index 2.

e For index > 3 classification becomes extremely complicated.



Discrete stabilizer for solvable G

Proposition
Let (-, ) be a symmetric nil-invariant bilinear form on a solvable Lie algebra g.

o Then gl is an ideal in g.

° IfgL contains no non-trivial ideals of g, then gL =0.

Theorem A
Assume G is solvable.
Then G acts almost freely on M .

Meaning:
@ The stabiliser I" = G is discrete.

@ The metric g on M pulls back to a left-invariant pseudo-Riemannian metric gg
onG.

@ g is invariant under conjugation by I".



Bi-invariant metric for solvable G
g is solvable with nil-invariant scalar product (-, -).

Proposition
(-,+) is invariant on g.

Proof

@ Letj be a totally isotropic central ideal in g. Define the reduction g = j- /j.

@ (-,-) induces a nil-invariant scalar product (-, -)g on g.

@ Assume that (-, -)g is invariant on g.

@ Verify that (-, -) on g is invariant if (-, -)g is.

@ Iterated reduction to the abelian case and induction yield the result.
Theorem B

Assume G is solvable.
Then g pulls back to a bi-invariant pseudo-Riemannian metric gg on G.

Corollary A+B .
The universal cover M of M is a pseudo-Riemannian symmetric space.
In particular, M is locally symmetric.



No larger isometry groups

Theorem C
Assume G is solvable and effective.
Then G = Iso(M)°.

Implications:

@ Johnson (1972) showed that any solvmanifold has presentations by connected
solvable groups of arbitrary dimension.

@ Theorem A shows that most of them cannot act isometrically.

@ Theorem C shows that no larger non-solvable group can act isometrically.
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Compact indefinite homogeneous spaces for arbitrary Lie groups



Lie groups of general type

Now let G = K SR be an arbitrary connected Lie group, and as before,
e K compact semisimple,
e § semisimple without compact factors,
@ R the solvable radical of G.



Nil-invariant forms

We study Lie algebras
g=((Exs)xt

with nil-invariant symmetric bilinear form (-, -).

@ (-, ) is a priori invariant under ad(s) and adg (n) (nilradical).

@ From the solvable case it follows that
the restriction (-, -) si is invariant under adg(s x t).



Lorentzian case

If the index of (-,-) is 1, then g = € x 5 x v, with either s = 0 or s = sl (R).

Zeghib’s Theorem (1998)
Let M be a homogeneous Lorentzian manifold of finite volume.
Then, up to “Riemannian type factors”, M is one of the following:
@ Iso(M, g) contains a cover of PSL (RR).
M = SLZ(]R) x L, where L is a compact Riemannian homogeneous space.
@ Iso(M, g) contains an oscillator group Osc(a).
M = Osc(a) xg1 L, and M = M/F where I is isomorphic to a lattice in
Osc(a).



Strong invariance property

Suppose the index of (-, -) is > 1.

Theorem D
Q (,)is adg(s X t)-invariant.
Q (-, -)sxc is adg(g)-invariant.
Proof
@ Decompose g = (5 X t) + g°, where [s, g°] = 0.
@ Apply result for solvable case to subalgebra Rx + t for x € g°. This shows part 1.

@ We know (-, -) is ad(s X n)-invariant. Nil-invariance relations show that it only remains to
show that ad(x) is skew-symmetric in case [x, €] = 0.

@ Then ([x,£],g) = 0 = —(&, [x, g]), since x L €& (follows from semisimplicity of €).
This shows part 2. O

Note: We do not assume gJ- contains no non-zero ideals.
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Structure and classification for index < 2

Theorem E
If the index of (-, -) is < 2 and g+ does not contain a non-trivial ideal of g, then:
@ gisadirect sumofideals g = € x5 x t.
Q@ gl Cci(t)yxtandgl n(sxt)=0.
Theorem F
Let g be a Lie algebra with nil-invariant symmetric bilinear form (-, -) of index 2, and
assume that gJ‘ does not contain a non-trivial ideal of g.
Then one of the following cases occurs:

(I) g = v x &, where v is one of the following:
(a) v is abelian.
(b) v is Lorentzian of oscillator type.
(c) v is solvable but non-abelian with invariant scalar product of index 2.

(II) g = a x & x s. Here, a is abelian, s = sl (R) X sl»(IR) with a non-degenerate
invariant scalar product of index 2. Moreover, a is definite and (a x £) L s.

(IIT) g = v x & xsly(R), where sl (R) is Lorentzian, (v x ) L sl>(R), and ¢t is one
of the following:

(a) v is abelian and either semidefinite or Lorentzian.
(b) v is Lorentzian of oscillator type.
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What about index > 3?

Example

Let £ = so03,and let v = 5013 ® 50131, considered as a vector space.
Let so 3A be the diagonal embedding of so3 in t.

Letk € tactonx = x{ —I—xiI € tby
ad(k)x = [k, x1]"

This makes g = £ x v into a Lie algebra with solvable radical t.

Let « denote the Killing form on so3. We define (-, -) on g by
(k,x] +x3) = k(k,x1) —k(k,x2), €L vlre

forall k € &, x{ + xg € 503.
We can verify that (-, -) is ad(v)-invariant, so (-, -) is a nil-invariant form on g.
Since 1 = T,

gJ‘ ZEJ‘ﬂt:503ACt and tJ‘ﬂtthﬁog@sog.
In particular, the index on g/ gl is 3.
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