Four-dimensional quasi-Einstein manifolds

Miguel Brozos Vázquez

IX International Meeting on Lorentzian Geometry

Institute of Mathematics, Polish Academy of Sciences,
Warsaw (Poland), 17-24 June 2018

Banach Center

Departamento de Matemáticas
Escola Politécnica Superior

Joint work with:

- Eduardo García Río,
- Peter Gilkey, and
- Xabier Valle Regueiro

Index

(1) Introduction
(2) Non-isotropic four-dimensional manifolds
(3) Isotropic four-dimensional manifolds

- Isotropic QE manifolds of Lorentzian signature
- Isotropic QE manifolds of neutral signature
(4) Affine QE manifolds

Context: Pseudo-Riemannian manifolds

Context

(M, g) Pseudo-Riemannian manifold of dimension 4:

- M differentiable manifold of dimension 4
- g Pseudo-Riemannian metric.

Context: Pseudo-Riemannian manifolds

Context

(M, g) Pseudo-Riemannian manifold of dimension 4:

- M differentiable manifold of dimension 4
- g Pseudo-Riemannian metric.

Curvature

(1) ∇ denotes the Levi-Civita connection.
(2) $R(x, y)=\nabla_{[x, y]}-\left[\nabla_{x}, \nabla_{y}\right]$ is the curvature operator.

For an orthonormal basis $\left\{e_{1}, \ldots, e_{4}\right\}$ with $\varepsilon_{i}=g\left(e_{i}, e_{i}\right)$:
Ricci tensor
Scalar curvature

$$
\rho(x, y)=\sum_{i} \varepsilon_{i} R\left(x, e_{i}, y, e_{i}\right)=g(\operatorname{Ric}(x), y)
$$

Context: Pseudo-Riemannian manifolds

Context

(M, g) Pseudo-Riemannian manifold of dimension 4:

- M differentiable manifold of dimension 4
- g Pseudo-Riemannian metric.

Curvature

(1) ∇ denotes the Levi-Civita connection.
(2) $R(x, y)=\nabla_{[x, y]}-\left[\nabla_{x}, \nabla_{y}\right]$ is the curvature operator.

For an orthonormal basis $\left\{e_{1}, \ldots, e_{4}\right\}$ with $\varepsilon_{i}=g\left(e_{i}, e_{i}\right)$:

Ricci tensor
Scalar curvature

$$
\rho(x, y)=\sum_{i} \varepsilon_{i} R\left(x, e_{i}, y, e_{i}\right)=g(\operatorname{Ric}(x), y)
$$

$\tau=\sum_{i} \varepsilon_{i} \rho\left(e_{i}, e_{i}\right)$

Weyl tensor

$$
\begin{aligned}
& \left.W(x, y, z, t)=R(x, y, z, t)+\frac{\tau}{6}\{g(x, z) g(y, t)-g(x, t) g(y, z))\right\} \\
& \quad+\frac{1}{2}\{\rho(x, t) g(y, z)-\rho(x, z) g(y, t)+\rho(y, z) g(x, t)-\rho(y, t) g(x, z)\}
\end{aligned}
$$

Quasi-Einstein manifolds

Bakry-Émery-Ricci tensor on a manifold with density

Let (M, g) be a pseudo-Riemannian manifold and f a function on M. Then

$$
\rho_{f}^{\mu}=\operatorname{Hes}_{f}+\rho-\mu d f \otimes d f, \text { for } \mu \in \mathbb{R}
$$

Quasi-Einstein manifolds

Bakry-Émery-Ricci tensor on a manifold with density

Let (M, g) be a pseudo-Riemannian manifold and f a function on M. Then

$$
\rho_{f}^{\mu}=\operatorname{Hes}_{f}+\rho-\mu d f \otimes d f, \text { for } \mu \in \mathbb{R}
$$

Quasi-Einstein manifolds

Let (M, g) be a pseudo-Riemannian manifold, f a function on M, and $\mu \in \mathbb{R}$. (M, g) is generalized quasi-Einstein if the tensor ρ_{f}^{μ} is a multiple of g :

$$
\begin{equation*}
\operatorname{Hes}_{f}+\rho-\mu d f \otimes d f=\lambda g \text { for some } \lambda \in \mathcal{C}^{\infty}(M) \tag{QEE}
\end{equation*}
$$

Quasi-Einstein manifolds

Bakry-Émery-Ricci tensor on a manifold with density

Let (M, g) be a pseudo-Riemannian manifold and f a function on M. Then

$$
\rho_{f}^{\mu}=\operatorname{Hes}_{f}+\rho-\mu d f \otimes d f, \text { for } \mu \in \mathbb{R}
$$

Quasi-Einstein manifolds

Let (M, g) be a pseudo-Riemannian manifold, f a function on M, and $\mu \in \mathbb{R}$. (M, g) is generalized quasi-Einstein if the tensor ρ_{f}^{μ} is a multiple of g :

$$
\begin{equation*}
\operatorname{Hes}_{f}+\rho-\mu d f \otimes d f=\lambda g \text { for some } \lambda \in \mathcal{C}^{\infty}(M) \tag{QEE}
\end{equation*}
$$

Einstein manifolds

For f constant, the QEE reduces to the Einstein equation:

$$
\rho=\lambda g
$$

where $\lambda=\frac{\tau}{4}$ is constant.

Quasi-Einstein manifolds generalize other well-known families

Gradient Ricci almost solitons

For $\mu=0$, the QEE reduces to the gradient Ricci almost soliton equation:

$$
\operatorname{Hes}_{f}+\rho=\lambda g, \text { for } \lambda \in \mathcal{C}^{\infty}(M)
$$

- When λ is constant this is the gradient Ricci soliton equation, which identifies self-similar solutions of the Ricci flow: $\frac{\partial}{\partial t} g(t)=-2 \rho(t)$.
- For $\lambda=\kappa \tau+\nu$, this identifies κ-Einstein solitons, which are self-similar solutions of the Ricci-Bourguignon flow: $\partial_{t} g(t)=-2(\rho(t)-\kappa \tau(t) g(t))$, $\kappa \in \mathbb{R}$.

Quasi-Einstein manifolds generalize other well-known families

Gradient Ricci almost solitons

For $\mu=0$, the QEE reduces to the gradient Ricci almost soliton equation:

$$
\operatorname{Hes}_{f}+\rho=\lambda g, \text { for } \lambda \in \mathcal{C}^{\infty}(M)
$$

- When λ is constant this is the gradient Ricci soliton equation, which identifies self-similar solutions of the Ricci flow: $\frac{\partial}{\partial t} g(t)=-2 \rho(t)$.
- For $\lambda=\kappa \tau+\nu$, this identifies κ-Einstein solitons, which are self-similar solutions of the Ricci-Bourguignon flow: $\partial_{t} g(t)=-2(\rho(t)-\kappa \tau(t) g(t))$, $\kappa \in \mathbb{R}$.

Conformally Einstein manifolds

The value $\mu=-\frac{1}{2}$ is exceptional :

$$
(M, g) \text { is generalized quasi-Einstein } \Leftrightarrow\left(M, e^{-f} g\right) \text { is Einstein. }
$$

Quasi-Einstein manifolds generalize other well-known families

Gradient Ricci almost solitons

For $\mu=0$, the QEE reduces to the gradient Ricci almost soliton equation:

$$
\operatorname{Hes}_{f}+\rho=\lambda g, \text { for } \lambda \in \mathcal{C}^{\infty}(M)
$$

- When λ is constant this is the gradient Ricci soliton equation, which identifies self-similar solutions of the Ricci flow: $\frac{\partial}{\partial t} g(t)=-2 \rho(t)$.
- For $\lambda=\kappa \tau+\nu$, this identifies κ-Einstein solitons, which are self-similar solutions of the Ricci-Bourguignon flow: $\partial_{t} g(t)=-2(\rho(t)-\kappa \tau(t) g(t))$, $\kappa \in \mathbb{R}$.

Conformally Einstein manifolds

The value $\mu=-\frac{1}{2}$ is exceptional :

$$
(M, g) \text { is generalized quasi-Einstein } \Leftrightarrow\left(M, e^{-f} g\right) \text { is Einstein. }
$$

Static space-times
For $\mu=1, h=e^{-f}$ and $\lambda=-\frac{\Delta h}{h}$, QEE becomes the defining equation of static manifolds:

$$
\mathrm{Hes}_{h}-h \rho=\Delta h g .
$$

Motivation of this talk

The QEE provides information directly on the Ricci tensor.

Decomposition of the curvature tensor

The space of curvature tensor decomposes under the action of the orthogonal group into orthogonal modules as follows:

- $n \geq 4$:

Motivation of this talk

The QEE provides information directly on the Ricci tensor.

Decomposition of the curvature tensor

The space of curvature tensor decomposes under the action of the orthogonal group into orthogonal modules as follows:

Motivation of this talk

The QEE provides information directly on the Ricci tensor.

Decomposition of the curvature tensor

The space of curvature tensor decomposes under the action of the orthogonal group into orthogonal modules as follows:

It seems reasonable to impose conditions on the Weyl tensor to obtain partial classification results for QE manifolds.

Motivation of this talk

The QEE provides information directly on the Ricci tensor.

Decomposition of the curvature tensor

The space of curvature tensor decomposes under the action of the orthogonal group into orthogonal modules as follows:

It seems reasonable to impose conditions on the Weyl tensor to obtain partial classification results for QE manifolds.

Motivation of this talk

The QEE provides information directly on the Ricci tensor.

Decomposition of the curvature tensor

The space of curvature tensor decomposes under the action of the orthogonal group into orthogonal modules as follows:

A manifold is said to be half conformally flat if either $W^{-}=0$ or $W^{+}=0$.

It seems reasonable to impose conditions on the Weyl tensor to obtain partial classification results for QE manifolds.

Motivation of this talk

There are natural conditions that one can impose related to the structure of the Weyl tensor:

- $W=0:(M, g)$ is locally conformally flat.
- $W^{ \pm}=0:(M, g)$ is half conformally flat.
- $\operatorname{div}_{4} W=0$: the Weyl tensor is harmonic.

$$
\begin{aligned}
& \operatorname{div}_{4} W(X, Y, Z)=-\frac{1}{2} C(X, Y, Z)= \\
& \quad(\nabla \times \rho)(Y, Z)-\left(\nabla_{Y} \rho\right)(X, Z)-\frac{1}{6}(X(\tau) g(Y, Z)-Y(\tau) g(X, Z))
\end{aligned}
$$

- The Cotton tensor is preserved by a conformal change of the form $\tilde{g}=e^{-f} g:$

$$
\tilde{C}=C+\frac{1}{4} W(\cdot, \cdot, \cdot, \nabla f)
$$

Motivation of this talk

There are natural conditions that one can impose related to the structure of the Weyl tensor:

- $W=0:(M, g)$ is locally conformally flat.
- $W^{ \pm}=0:(M, g)$ is half conformally flat.
- $\operatorname{div}_{4} W=0$: the Weyl tensor is harmonic.

$$
\begin{aligned}
& \operatorname{div}_{4} W(X, Y, Z)=-\frac{1}{2} C(X, Y, Z)= \\
& \quad(\nabla \times \rho)(Y, Z)-\left(\nabla_{Y} \rho\right)(X, Z)-\frac{1}{6}(X(\tau) g(Y, Z)-Y(\tau) g(X, Z))
\end{aligned}
$$

- The Cotton tensor is preserved by a conformal change of the form $\tilde{g}=e^{-f} g:$

$$
\tilde{C}=C+\frac{1}{4} W(\cdot, \cdot, \cdot, \nabla f)
$$

Aim of the talk

(1) To understand the local structure of quasi-Einstein manifolds in dimension four under "reasonable conditions" on the Weyl tensor.
(2) To find examples with some of the conditions above but $W \neq 0$.

Basic equations and causal character of ∇f

Basic relations:

(1) $\tau+\Delta f-\mu\|\nabla f\|^{2}=n \lambda$.
(2) $\nabla \tau+2 \mu(3 \lambda-\tau) \nabla f+2(\mu-1) \operatorname{Ric}(\nabla f)=6 \nabla \lambda$.
(3) $R(X, Y, Z, \nabla f)=d \lambda(X) g(Y, Z)-d \lambda(Y) g(X, Z)+\left(\nabla_{Y} \rho\right)(X, Z)$

$$
-\left(\nabla_{x} \rho\right)(Y, Z)+\mu\left\{d f(Y) \operatorname{Hes}_{f}(X, Z)-d f(X) \operatorname{Hes}_{f}(Y, Z)\right\}
$$

(4) Let $\eta=2 \mu+1$. Then

$$
\begin{aligned}
& W(X, Y, Z, \nabla f)=-C(X, Y, Z)+\frac{\tau \eta\{d f(Y) g(X, Z)-d f(X) g(Y, Z)\}}{6} \\
& +\frac{\eta\{\rho(X, \nabla f) g(Y, Z)-\rho(Y, \nabla f) g(X, Z)\}}{6}+\frac{\eta\{\rho(Y, Z) d f(X)-\rho(X, Z) d f(Y)\}}{2} .
\end{aligned}
$$

Basic equations and causal character of ∇f

Basic relations:

(1) $\tau+\Delta f-\mu\|\nabla f\|^{2}=n \lambda$.
(2) $\nabla \tau+2 \mu(3 \lambda-\tau) \nabla f+2(\mu-1) \operatorname{Ric}(\nabla f)=6 \nabla \lambda$.
(3) $R(X, Y, Z, \nabla f)=d \lambda(X) g(Y, Z)-d \lambda(Y) g(X, Z)+\left(\nabla_{Y} \rho\right)(X, Z)$

$$
-\left(\nabla_{X} \rho\right)(Y, Z)+\mu\left\{d f(Y) \operatorname{Hes}_{f}(X, Z)-d f(X) \operatorname{Hes}_{f}(Y, Z)\right\}
$$

(4) Let $\eta=2 \mu+1$. Then

$$
\begin{aligned}
& W(X, Y, Z, \nabla f)=-C(X, Y, Z)+\frac{\tau \eta\{d f(Y) g(X, Z)-d f(X) g(Y, Z)\}}{6} \\
& +\frac{\eta\{\rho(X, \nabla f) g(Y, Z)-\rho(Y, \nabla f) g(X, Z)\}}{6}+\frac{\eta\{\rho(Y, Z) d f(X)-\rho(X, Z) d f(Y)\}}{2} .
\end{aligned}
$$

Basic equations and causal character of ∇f

Basic relations:

(1) $\tau+\Delta f-\mu\|\nabla f\|^{2}=n \lambda$.
(2) $\nabla \tau+2 \mu(3 \lambda-\tau) \nabla f+2(\mu-1) \operatorname{Ric}(\nabla f)=6 \nabla \lambda$.
(3) $R(X, Y, Z, \nabla f)=d \lambda(X) g(Y, Z)-d \lambda(Y) g(X, Z)+\left(\nabla_{Y} \rho\right)(X, Z)$

$$
-\left(\nabla_{X} \rho\right)(Y, Z)+\mu\left\{d f(Y) \operatorname{Hes}_{f}(X, Z)-d f(X) \operatorname{Hes}_{f}(Y, Z)\right\}
$$

(4) Let $\eta=2 \mu+1$. Then

$$
\begin{aligned}
& W(X, Y, Z, \nabla f)=-C(X, Y, Z)+\frac{\tau \eta\{d f(Y) g(X, Z)-d f(X) g(Y, Z)\}}{6} \\
& +\frac{\eta\{\rho(X, \nabla f) g(Y, Z)-\rho(Y, \nabla f) g(X, Z)\}}{6}+\frac{\eta\{\rho(Y, Z) d f(X)-\rho(X, Z) d f(Y)\}}{2} .
\end{aligned}
$$

Basic equations and causal character of ∇f

Basic relations:

(1) $\tau+\Delta f-\mu\|\nabla f\|^{2}=n \lambda$.
(2) $\nabla \tau+2 \mu(3 \lambda-\tau) \nabla f+2(\mu-1) \operatorname{Ric}(\nabla f)=6 \nabla \lambda$.
(3) $R(X, Y, Z, \nabla f)=d \lambda(X) g(Y, Z)-d \lambda(Y) g(X, Z)+\left(\nabla_{Y} \rho\right)(X, Z)$

$$
-\left(\nabla_{X} \rho\right)(Y, Z)+\mu\left\{d f(Y) \operatorname{Hes}_{f}(X, Z)-d f(X) \operatorname{Hes}_{f}(Y, Z)\right\}
$$

(4) Let $\eta=2 \mu+1$. Then

$$
\begin{aligned}
& W(X, Y, Z, \nabla f)=-C(X, Y, Z)+\frac{\tau \eta\{d f(Y) g(X, Z)-d f(X) g(Y, Z)\}}{6} \\
& +\frac{\eta\{\rho(X, \nabla f) g(Y, Z)-\rho(Y, \nabla f) g(X, Z)\}}{6}+\frac{\eta\{\rho(Y, Z) d f(X)-\rho(X, Z) d f(Y)\}}{2} .
\end{aligned}
$$

Basic equations and causal character of ∇f

Basic relations:

(1) $\tau+\Delta f-\mu\|\nabla f\|^{2}=n \lambda$.
(2) $\nabla \tau+2 \mu(3 \lambda-\tau) \nabla f+2(\mu-1) \operatorname{Ric}(\nabla f)=6 \nabla \lambda$.
(3) $R(X, Y, Z, \nabla f)=d \lambda(X) g(Y, Z)-d \lambda(Y) g(X, Z)+\left(\nabla_{Y} \rho\right)(X, Z)$

$$
-\left(\nabla_{X} \rho\right)(Y, Z)+\mu\left\{d f(Y) \operatorname{Hes}_{f}(X, Z)-d f(X) \operatorname{Hes}_{f}(Y, Z)\right\}
$$

(4) Let $\eta=2 \mu+1$. Then

$$
\begin{aligned}
& W(X, Y, Z, \nabla f)=-C(X, Y, Z)+\frac{\tau \eta\{d f(Y) g(X, Z)-d f(X) g(Y, Z)\}}{6} \\
& +\frac{\eta\{\rho(X, \nabla f) g(Y, Z)-\rho(Y, \nabla f) g(X, Z)\}}{6}+\frac{\eta\{\rho(Y, Z) d f(X)-\rho(X, Z) d f(Y)\}}{2} .
\end{aligned}
$$

Basic equations and causal character of ∇f

Basic relations:

(1) $\tau+\Delta f-\mu\|\nabla f\|^{2}=n \lambda$.
(2) $\nabla \tau+2 \mu(3 \lambda-\tau) \nabla f+2(\mu-1) \operatorname{Ric}(\nabla f)=6 \nabla \lambda$.
(3) $R(X, Y, Z, \nabla f)=d \lambda(X) g(Y, Z)-d \lambda(Y) g(X, Z)+\left(\nabla_{Y} \rho\right)(X, Z)$

$$
-\left(\nabla_{X} \rho\right)(Y, Z)+\mu\left\{d f(Y) \operatorname{Hes}_{f}(X, Z)-d f(X) \operatorname{Hes}_{f}(Y, Z)\right\}
$$

(4) Let $\eta=2 \mu+1$. Then

$$
\begin{aligned}
& W(X, Y, Z, \nabla f)=-C(X, Y, Z)+\frac{\tau \eta\{d f(Y) g(X, Z)-d f(X) g(Y, Z)\}}{6} \\
& +\frac{\eta\{\rho(X, \nabla f) g(Y, Z)-\rho(Y, \nabla f) g(X, Z)\}}{6}+\frac{\eta\{\rho(Y, Z) d f(X)-\rho(X, Z) d f(Y)\}}{2} .
\end{aligned}
$$

Basic equations and causal character of ∇f

Basic relations:

(1) $\tau+\Delta f-\mu\|\nabla f\|^{2}=n \lambda$.
(2) $\nabla \tau+2 \mu(3 \lambda-\tau) \nabla f+2(\mu-1) \operatorname{Ric}(\nabla f)=6 \nabla \lambda$.
(3) $R(X, Y, Z, \nabla f)=d \lambda(X) g(Y, Z)-d \lambda(Y) g(X, Z)+\left(\nabla_{Y} \rho\right)(X, Z)$

$$
-\left(\nabla_{x} \rho\right)(Y, Z)+\mu\left\{d f(Y) \operatorname{Hes}_{f}(X, Z)-d f(X) \operatorname{Hes}_{f}(Y, Z)\right\}
$$

(4) Let $\eta=2 \mu+1$. Then

$$
\begin{aligned}
& W(X, Y, Z, \nabla f)=-C(X, Y, Z)+\frac{\tau \eta\{d f(Y) g(X, Z)-d f(X) g(Y, Z)\}}{6} \\
& \quad+\frac{\eta\{\rho(X, \nabla f) g(Y, Z)-\rho(Y, \nabla f) g(X, Z)\}}{6}+\frac{\eta\{\rho(Y, Z) d f(X)-\rho(X, Z) d f(Y)\}}{2} .
\end{aligned}
$$

In general, if (M, g) is QE, ∇f may have different causal characters.
We say that a gradient Ricci soliton (M, g, f) is

- isotropic if $\|\nabla f\|=0$: the level sets of f are degenerate hypersurfaces.
- non-isotropic if $\|\nabla f\| \neq 0$: the level sets of f are non-degenerate hypersurfaces.

Index

(1) Introduction
(2) Non-isotropic four-dimensional manifolds

3 Isotropic four-dimensional manifolds

- Isotropic QE manifolds of Lorentzian signature - Isotropic QE manifolds of neutral signature

4 Affine QE manifolds

Non-isotropic 4-dimensional manifolds

Theorem

Let (M, g) be a non-isotropic generalized QE manifold of dimension 4 with $\mu \neq-\frac{1}{2}$ and satisfying

- the Weyl tensor is harmonic and $W(\cdot, \nabla f, \cdot, \nabla f)=0$, or
- $W^{+}=0$.

Then (M, g) decomposes locally as a warped product of the form $I \times{ }_{\phi} N$, where N has constant sectional curvature. Hence (M, g) is locally conformally flat.

Non-isotropic 4-dimensional manifolds

Theorem

Let (M, g) be a non-isotropic generalized QE manifold of dimension 4 with $\mu \neq-\frac{1}{2}$ and satisfying

- the Weyl tensor is harmonic and $W(\cdot, \nabla f, \cdot, \nabla f)=0$, or
- $W^{+}=0$.

Then (M, g) decomposes locally as a warped product of the form $I \times{ }_{\phi} N$, where N has constant sectional curvature. Hence (M, g) is locally conformally flat.

Previous works in Riemannian signature:

- G. Catino; Generalized quasi-Einstein manifolds with harmonic Weyl tensor, Math. Z. 271 (2012).
- X. Chen, Y. Wang; On four-dimensional anti-self-dual gradient Ricci solitons, J. Geom. Anal. 25 2, (2011).
- G. Catino; A note on four-dimensional (anti-)self-dual quasi-Einstein manifolds, Differential Geom. Appl., 30 6, (2012).

Non-isotropic four-dimensional manifolds
Sketch of the proof. Non isotropic case.

QE manifolds

Sketch of the proof. Non isotropic case.

(1) Choose a local orthonormal frame $\left\{V=\frac{\nabla f}{\|\nabla f\|}, E_{1}, E_{2}, E_{3}\right\}$

Sketch of the proof. Non isotropic case.

(1) Choose a local orthonormal frame $\left\{V=\frac{\nabla f}{\|\nabla f\|}, E_{1}, E_{2}, E_{3}\right\}$
(2) ∇f is an eigenvector of the Ricci operator

$$
\begin{aligned}
& W(X, Y, Z, \nabla f)=-C(X, Y, Z)+\frac{\tau \eta\{d f(Y) g(X, Z)-d f(X) g(Y, Z)\}}{6} \\
& \quad+\frac{\eta\{\rho(X, \nabla f) g(Y, Z)-\rho(Y, \nabla f) g(X, Z)\}}{6}+\frac{\eta\{\rho(Y, Z) d f(X)-\rho(X, Z) d f(Y)\}}{2}
\end{aligned}
$$

Sketch of the proof. Non isotropic case.

(1) Choose a local orthonormal frame $\left\{V=\frac{\nabla f}{\|\nabla f\|}, E_{1}, E_{2}, E_{3}\right\}$
(2) ∇f is an eigenvector of the Ricci operator

$$
\begin{aligned}
& W(X, Y, Z, \nabla f)=-C(X, Y, Z)+\frac{\tau \eta\{d f(Y) g(X, Z)-d f(X) g(Y, Z)\}}{6} \\
& \quad+\frac{\eta\{\rho(X, \nabla f) g(Y, Z)-\rho(Y, \nabla f) g(X, Z)\}}{6}+\frac{\eta\{\rho(Y, Z) d f(X)-\rho(X, Z) d f(Y)\}}{2}
\end{aligned}
$$

Sketch of the proof. Non isotropic case.

(1) Choose a local orthonormal frame $\left\{V=\frac{\nabla f}{\|\nabla f\|}, E_{1}, E_{2}, E_{3}\right\}$
(2) ∇f is an eigenvector of the Ricci operator

$$
\begin{aligned}
& W(X, Y, Z, \nabla f)=-C(X, Y, Z)+\frac{\tau \eta\{d f(Y) g(X, Z)-d f(X) g(Y, Z)\}}{6} \\
& \quad+\frac{\eta\{\rho(X, \nabla f) g(Y, Z)-\rho(Y, \nabla f) g(X, Z)\}}{6}+\frac{\eta\{\rho(Y, Z) d f(X)-\rho(X, Z) d f(Y)\}}{2}
\end{aligned}
$$

(3) ∇f generates a totally geodesic distribution.

- The level sets of f are totally umbilical hypersurfaces.

Use previous relations to show that:
$\operatorname{Hes}_{f}\left(E_{i}, E_{j}\right)=\left(\lambda+\frac{1}{5}(\rho(V, V) \varepsilon-\tau)\right) g\left(E_{i}, E_{j}\right)$.

Sketch of the proof. Non isotropic case.

(1) Choose a local orthonormal frame $\left\{V=\frac{\nabla f}{\|\nabla f\|}, E_{1}, E_{2}, E_{3}\right\}$
(2) ∇f is an eigenvector of the Ricci operator

$$
\begin{aligned}
& W(X, Y, Z, \nabla f)=-C(X, Y, Z)+\frac{\tau \eta\{d f(Y) g(X, Z)-d f(X) g(Y, Z)\}}{6} \\
& \quad+\frac{\eta\{\rho(X, \nabla f) g(Y, Z)-\rho(Y, \nabla f) g(X, Z)\}}{6}+\frac{\eta\{\rho(Y, Z) d f(X)-\rho(X, Z) d f(Y)\}}{2}
\end{aligned}
$$

(3) ∇f generates a totally geodesic distribution.

- The level sets of f are totally umbilical hypersurfaces.

Use previous relations to show that:
$\operatorname{Hes}_{f}\left(E_{i}, E_{j}\right)=\left(\lambda+\frac{1}{5}(\rho(V, V) \varepsilon-\tau)\right) g\left(E_{i}, E_{j}\right)$.
(4) (M, g) is a twisted product $I \times{ }_{\omega} N$.

Sketch of the proof. Non isotropic case.

(1) Choose a local orthonormal frame $\left\{V=\frac{\nabla f}{\|\nabla f\|}, E_{1}, E_{2}, E_{3}\right\}$
(2) ∇f is an eigenvector of the Ricci operator

$$
\begin{aligned}
& W(X, Y, Z, \nabla f)=-C(X, Y, Z)+\frac{\tau \eta\{d f(Y) g(X, Z)-d f(X) g(Y, Z)\}}{6} \\
& \quad+\frac{\eta\{\rho(X, \nabla f) g(Y, Z)-\rho(Y, \nabla f) g(X, Z)\}}{6}+\frac{\eta\{\rho(Y, Z) d f(X)-\rho(X, Z) d f(Y)\}}{2}
\end{aligned}
$$

(3) ∇f generates a totally geodesic distribution.

- The level sets of f are totally umbilical hypersurfaces.

Use previous relations to show that:

$$
\operatorname{Hes}_{f}\left(E_{i}, E_{j}\right)=\left(\lambda+\frac{1}{5}(\rho(V, V) \varepsilon-\tau)\right) g\left(E_{i}, E_{j}\right)
$$

(4) (M, g) is a twisted product $I \times{ }_{\omega} N$.
(5) Since $\rho\left(V, E_{i}\right)=0$, the twisted product reduces to a warped product of the form

$$
(M, g)=\left(I \times N, \varepsilon d t^{2}+\psi(t)^{2} g_{N}\right)
$$

Sketch of the proof. Non isotropic case.

(1) Choose a local orthonormal frame $\left\{V=\frac{\nabla f}{\|\nabla f\|}, E_{1}, E_{2}, E_{3}\right\}$
(2) ∇f is an eigenvector of the Ricci operator

$$
\begin{aligned}
& W(X, Y, Z, \nabla f)=-C(X, Y, Z)+\frac{\tau \eta\{d f(Y) g(X, Z)-d f(X) g(Y, Z)\}}{6} \\
& \quad+\frac{\eta\{\rho(X, \nabla f) g(Y, Z)-\rho(Y, \nabla f) g(X, Z)\}}{6}+\frac{\eta\{\rho(Y, Z) d f(X)-\rho(X, Z) d f(Y)\}}{2}
\end{aligned}
$$

(3) ∇f generates a totally geodesic distribution.

- The level sets of f are totally umbilical hypersurfaces.

Use previous relations to show that:

$$
\operatorname{Hes}_{f}\left(E_{i}, E_{j}\right)=\left(\lambda+\frac{1}{5}(\rho(V, V) \varepsilon-\tau)\right) g\left(E_{i}, E_{j}\right)
$$

(4) (M, g) is a twisted product $I \times{ }_{\omega} N$.
(5) Since $\rho\left(V, E_{i}\right)=0$, the twisted product reduces to a warped product of the form

$$
(M, g)=\left(I \times N, \varepsilon d t^{2}+\psi(t)^{2} g_{N}\right)
$$

(6) Since the Weyl tensor is harmonic, $\left(N, g_{N}\right)$ is Einstein and of dimension 3. Hence (M, g) is locally conformally flat.

Index

(1) Introduction
(2) Non-isotropic four-dimensional manifolds
(3) Isotropic four-dimensional manifolds

- Isotropic QE manifolds of Lorentzian signature
- Isotropic QE manifolds of neutral signature

4 Affine QE manifolds

Isotropic 4-dimensional manifolds: the Lorentzian setting

Theorem

Let (M, g) be an isotropic generalized QE Lorentzian manifold of dimension 4 with $\mu \neq-\frac{1}{2}$. If

- the Weyl tensor is harmonic, and
- $W(\cdot, \cdot, \cdot, \nabla f)=0$,
then
- $\lambda=0$, and
- (M, g) is a pp-wave, i.e., (M, g) is locally isometric to $\mathbb{R}^{2} \times \mathbb{R}^{2}$ with metric

$$
g=2 d u d v+H\left(u, x_{1}, x_{2}\right) d u^{2}+d x_{1}^{2}+d x_{2}^{2}
$$

Sketch of the proof. Isotropic Lorentzian case.

(1) ∇f is an eigenvector of the Ricci operator for the eigenvalue λ

Sketch of the proof. Isotropic Lorentzian case.

(1) ∇f is an eigenvector of the Ricci operator for the eigenvalue λ
(2) Choose a local pseudo-orthonormal frame $\left\{\nabla f, U, E_{1}, E_{2}\right\}$

$$
g=\left(\begin{array}{ll|ll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Sketch of the proof. Isotropic Lorentzian case.

(1) ∇f is an eigenvector of the Ricci operator for the eigenvalue λ
(2) Choose a local pseudo-orthonormal frame $\left\{\nabla f, U, E_{1}, E_{2}\right\}$
(3) Compute the Ricci operator and the Hessian operator:

$$
\begin{gathered}
W(X, Y, Z, \nabla f)=-C(X, Y, Z)+\frac{\tau \eta\{d f(Y) g(X, Z)-d f(X) g(Y, Z)\}}{6} \\
\quad+\frac{\eta\{\rho(X, \nabla f) g(Y, Z)-\rho(Y, \nabla f) g(X, Z)\}}{6}+\frac{\eta\{\rho(Y, Z) d f(X)-\rho(X, Z) d f(Y)\}}{2} \\
\text { Ric }=\left(\begin{array}{ll|ll}
\lambda & \star & 0 & 0 \\
0 & \lambda & 0 & 0 \\
\hline 0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right) \quad \operatorname{hes}_{f}=\left(\begin{array}{ll|ll}
0 & \star & 0 & 0 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Sketch of the proof. Isotropic Lorentzian case.

(1) ∇f is an eigenvector of the Ricci operator for the eigenvalue λ
(2) Choose a local pseudo-orthonormal frame $\left\{\nabla f, U, E_{1}, E_{2}\right\}$
(3) Compute the Ricci operator and the Hessian operator:

$$
\begin{aligned}
& W(X, Y, Z, \nabla f)=-C(X, Y, Z)+\frac{\tau \eta\{d f(Y) g(X, Z)-d f(X) g(Y, Z)\}}{6} \\
& \quad+\frac{\eta\{\rho(X, \nabla f) g(Y, Z)-\rho(Y, \nabla f) g(X, Z)\}}{6}+\frac{\eta\{\rho(Y, Z) d f(X)-\rho(X, Z) d f(Y)\}}{2}
\end{aligned}
$$

$$
\text { Ric }=\left(\begin{array}{cc|cc}
\lambda & \star & 0 & 0 \\
0 & \lambda & 0 & 0 \\
\hline 0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right) \quad \operatorname{hes}_{f}=\left(\begin{array}{cc|cc}
0 & \star & 0 & 0 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(4) $\mathcal{D}=\operatorname{span}\{\nabla f\}$ is a null parallel distribution: Walker manifold.

Sketch of the proof. Isotropic Lorentzian case.

(1) ∇f is an eigenvector of the Ricci operator for the eigenvalue λ
(2) Choose a local pseudo-orthonormal frame $\left\{\nabla f, U, E_{1}, E_{2}\right\}$
(3) Compute the Ricci operator and the Hessian operator:

$$
\begin{aligned}
& W(X, Y, Z, \nabla f)=-C(X, Y, Z)+\frac{\tau \eta\{d f(Y) g(X, Z)-d f(X) g(Y, Z)\}}{6} \\
& \quad+\frac{\eta\{\rho(X, \nabla f) g(Y, Z)-\rho(Y, \nabla f) g(X, Z)\}}{6}+\frac{\eta\{\rho(Y, Z) d f(X)-\rho(X, Z) d f(Y)\}}{2}
\end{aligned}
$$

$$
\text { Ric }=\left(\begin{array}{cc|cc}
0 & \star & 0 & 0 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \text { hes }_{f}=\left(\begin{array}{cc|cc}
0 & \star & 0 & 0 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(4) $\mathcal{D}=\operatorname{span}\{\nabla f\}$ is a null parallel distribution: Walker manifold.
(5) $0=R\left(E_{i}, U, \nabla f, E_{i}\right)=\frac{\lambda}{3} \Rightarrow \lambda=0$.

Sketch of the proof. Isotropic Lorentzian case.

(1) ∇f is an eigenvector of the Ricci operator for the eigenvalue λ
(2) Choose a local pseudo-orthonormal frame $\left\{\nabla f, U, E_{1}, E_{2}\right\}$
(3) Compute the Ricci operator and the Hessian operator:

$$
\begin{aligned}
& W(X, Y, Z, \nabla f)=-C(X, Y, Z)+\frac{\tau \eta\{d f(Y) g(X, Z)-d f(X) g(Y, Z)\}}{6} \\
& \quad+\frac{\eta\{\rho(X, \nabla f) g(Y, Z)-\rho(Y, \nabla f) g(X, Z)\}}{6}+\frac{\eta\{\rho(Y, Z) d f(X)-\rho(X, Z) d f(Y)\}}{2}
\end{aligned}
$$

$$
\text { Ric }=\left(\begin{array}{cc|cc}
0 & \star & 0 & 0 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \text { hes }_{f}=\left(\begin{array}{cc|cc}
0 & \star & 0 & 0 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(4) $\mathcal{D}=\operatorname{span}\{\nabla f\}$ is a null parallel distribution: Walker manifold.
(5) $0=R\left(E_{i}, U, \nabla f, E_{i}\right)=\frac{\lambda}{3} \Rightarrow \lambda=0$.
(6) $R\left(\nabla f^{\perp}, \nabla f^{\perp}, \cdot, \cdot\right)=0$ and the Ricci tensor is isotropic, so (M, g) is a pp-wave.

Isotropic Lorentzian pp-waves

Locally conformally flat quasi-Einstein pp-waves

A locally conformally flat $p p$-wave is locally isometric to $\mathbb{R}^{2} \times \mathbb{R}^{2}$ with metric

$$
g=2 d u d v+H\left(u, x_{1}, x_{2}\right) d u^{2}+d x_{1}^{2}+d x_{2}^{2}
$$

where $H\left(u, x_{1}, x_{2}\right)=a(u)\left(x_{1}^{2}+x_{2}^{2}\right)+b_{1}(u) x_{1}+b_{2}(u) x_{2}+c(u)$, and it is isotropic QE for f a function of u satisfying $f^{\prime \prime}(u)-\mu f^{\prime}(u)^{2}-2 a(u)=0$.
-, E. García-Río and S. Gavino-Fernández; Locally conformally flat Lorentzian quasi-Einstein manifolds. Monatsh. Math. 173 (2014), 175-186.

Isotropic Lorentzian pp-waves

Locally conformally flat quasi-Einstein pp-waves

A locally conformally flat $p p$-wave is locally isometric to $\mathbb{R}^{2} \times \mathbb{R}^{2}$ with metric

$$
g=2 d u d v+H\left(u, x_{1}, x_{2}\right) d u^{2}+d x_{1}^{2}+d x_{2}^{2}
$$

where $H\left(u, x_{1}, x_{2}\right)=a(u)\left(x_{1}^{2}+x_{2}^{2}\right)+b_{1}(u) x_{1}+b_{2}(u) x_{2}+c(u)$, and it is isotropic QE for f a function of u satisfying $f^{\prime \prime}(u)-\mu f^{\prime}(u)^{2}-2 a(u)=0$.
-, E. García-Río and S. Gavino-Fernández; Locally conformally flat Lorentzian quasi-Einstein manifolds. Monatsh. Math. 173 (2014), 175-186.

Non-locally conformally flat quasi-Einstein pp-waves

Let (M, g) be a $p p$-wave with $W \neq 0$, the following statements are equivalent:

- (M, g) is isotropic generalized quasi-Einstein,
- W is harmonic,
- $\Delta_{x} H=\phi(u)$.

If any of these conditions holds, then $W(\cdot, \cdot, \cdot, \nabla f)=0$ and f is given by:

$$
f^{\prime \prime}(u)+\mu f^{\prime}(u)^{2}-\frac{1}{2}\left(\frac{\partial^{2} H}{\partial x_{1}^{2}}\left(u, x_{1}, x_{2}\right)+\frac{\partial^{2} H}{\partial x_{2}^{2}}\left(u, x_{1}, x_{2}\right)\right)=0
$$

Index

(1) Introduction
(2) Non-isotropic four-dimensional manifolds
(3) Isotropic four-dimensional manifolds

- Isotropic QE manifolds of Lorentzian signature
- Isotropic QE manifolds of neutral signature

4 Affine QE manifolds

Isotropic half conformally flat QE manifolds of signature $(2,2)$

Theorem

Let (M, g) be a self-dual isotropic generalized-quasi Einstein manifold of signature $(2,2)$, with $\mu \neq-\frac{1}{2}$. Then (M, g) is a Walker manifold with a 2-dimensional null parallel distribution.

Isotropic half conformally flat QE manifolds of signature $(2,2)$

Theorem

Let (M, g) be a self-dual isotropic generalized-quasi Einstein manifold of signature $(2,2)$, with $\mu \neq-\frac{1}{2}$. Then (M, g) is a Walker manifold with a 2-dimensional null parallel distribution.

Isotropic half conformally flat QE manifolds of signature $(2,2)$

Theorem

Let (M, g) be a self-dual isotropic generalized-quasi Einstein manifold of signature $(2,2)$, with $\mu \neq-\frac{1}{2}$. Then (M, g) is a Walker manifold with a 2-dimensional null parallel distribution.

Walker metrics

The metric of a Walker manifold can be written in local coordinates as:

$$
g_{W}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\begin{array}{cccc}
a\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & c\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & 1 & 0 \\
c\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & b\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Sketch of the proof. Isotropic case.

Sketch of the proof. Isotropic case.

(1) Choose a local appropriate frame of null vectors: $\{\nabla f, u, v, w\}$

The self-dual condition expresses as:

$$
g=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

$$
\begin{aligned}
W(\nabla f, v, z, t) & =W(u, w, z, t) \\
W(u, v, z, t) & =0 \\
W(\nabla f, w, z, t) & =0
\end{aligned}
$$

Sketch of the proof. Isotropic case.

(1) Choose a local appropriate frame of null vectors: $\{\nabla f, u, v, w\}$

The self-dual condition expresses as:

$$
g=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \quad \begin{aligned}
W(\nabla f, v, z, t) & =W(u, w, z, t) \\
& W(u, v, z, t)
\end{aligned}=0,
$$

$$
\begin{aligned}
& W(X, Y, Z, \nabla f)=-C(X, Y, Z)+\frac{\tau \eta\{d f(Y) g(X, Z)-d f(X) g(Y, Z)\}}{6} \\
& \quad+\frac{\eta\{\rho(X, \nabla f) g(Y, Z)-\rho(Y, \nabla f) g(X, Z)\}}{6}+\frac{\eta\{\rho(Y, Z) d f(X)-\rho(X, Z) d f(Y)\}}{2}
\end{aligned}
$$

Sketch of the proof. Isotropic case.

(1) Choose a local appropriate frame of null vectors: $\{\nabla f, u, v, w\}$

The self-dual condition expresses as:

$$
\begin{gathered}
g=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \quad \begin{array}{r}
W(\nabla f, v, z, t)=W(u, w, z, t), \\
W(u, v, z, t)=0 \\
W(\nabla f, w, z, t)=0
\end{array} \\
\begin{array}{l}
W(X, Y, Z, \nabla f)=-C(X, Y, Z)+\frac{\tau \eta\{d f(Y) g(X, Z)-d f(X) g(Y, Z)\}}{6} \\
+\frac{\eta\{\rho(X, \nabla f) g(Y, Z)-\rho(Y, \nabla f) g(X, Z)\}}{6}+\frac{\eta\{\rho(Y, Z) d f(X)-\rho(X, Z) d f(Y)\}}{2}
\end{array}
\end{gathered}
$$

(2) Use these relations to show that $\lambda=\frac{\tau}{4}$ and the Ricci operator has the form:

$$
\text { Ric }=\left(\begin{array}{cccc}
\lambda & 0 & a & c \\
0 & \lambda & c & b \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right)
$$

Sketch of the proof. Isotropic case.

(1) Choose a local appropriate frame of null vectors: $\{\nabla f, u, v, w\}$

The self-dual condition expresses as:

$$
\begin{gathered}
g=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \quad \begin{array}{r}
W(\nabla f, v, z, t)=W(u, w, z, t), \\
W(u, v, z, t)=0 \\
W(\nabla f, w, z, t)=0
\end{array} \\
\begin{array}{c}
W(X, Y, Z, \nabla f)=-C(X, Y, Z)+\frac{\tau \eta\{d f(Y) g(X, Z)-d f(X) g(Y, Z)\}}{6} \\
+\frac{\eta\{\rho(X, \nabla f) g(Y, Z)-\rho(Y, \nabla f) g(X, Z)\}}{6}+\frac{\eta\{\rho(Y, Z) d f(X)-\rho(X, Z) d f(Y)\}}{2}
\end{array}
\end{gathered}
$$

(2) Use these relations to show that $\lambda=\frac{\tau}{4}$ and the Ricci operator has the form:

$$
\text { Ric }=\left(\begin{array}{cccc}
\lambda & 0 & a & c \\
0 & \lambda & c & b \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right) .
$$

(3) $\mathcal{D}=\operatorname{span}\{\nabla f, u\}$ is a null parallel distribution, so (M, g) is a Walker manifold.

Isotropic half conformally flat QE manifolds of signature $(2,2)$

Theorem

Let (M, g) be an isotropic generalized-quasi Einstein manifold of signature $(2,2)$, with $\mu \neq-\frac{1}{2}$. Then (M, g) is a Walker manifold with a 2-dimensional null parallel distribution.

Walker metrics

The metric of a Walker manifold can be written in local coordinates as:

$$
g_{W}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\begin{array}{cccc}
a\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & c\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & 1 & 0 \\
c\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & b\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

There are several families of Walker manifolds that will play a role:
(1) Deformed Riemannian extensions,
(2) Modified Riemannian extensions.

Riemannian extensions

$\left(T^{*} \Sigma, g_{D}\right)$
π
(Σ, D)

Reference:

Patterson and Walker; Riemann extensions, Quart. J. Math., Oxford Ser. (2) 31952.

Riemannian extensions

$$
g_{D}\left(X^{c}, Y^{c}\right)=-\iota\left(D_{X} Y+D_{Y} X\right)
$$

$\left(T^{*} \Sigma, g_{D}\right) \quad$ In local coordinates $\left(x_{1}, x_{2}, x_{1^{\prime}}, x_{2^{\prime}}\right)$:

$$
g_{D}=\left(\begin{array}{cccc}
-2 x_{1}, \Gamma_{11}^{1}-2 x_{2}, ~ \Gamma_{11}^{2} & -2 x_{1}, \Gamma_{12}^{1}-2 x_{2}, \Gamma_{12}^{2} & 1 & 0 \\
-2 x_{1}, \Gamma_{12}^{1}-2 x_{2}, \Gamma_{12}^{2} & -2 x_{1}, \Gamma_{22}^{1}-2 x_{2}, \Gamma_{22}^{2} & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Parallel null distribution:
ker π_{*}

Reference:

Patterson and Walker; Riemann extensions, Quart. J. Math., Oxford Ser. (2) 31952.

Riemannian extensions

$$
g_{D}\left(X^{c}, Y^{c}\right)=-\iota\left(D_{X} Y+D_{Y} X\right)
$$

$\left(T^{*} \Sigma, g_{D}\right) \quad$ In local coordinates $\left(x_{1}, x_{2}, x_{1^{\prime}}, x_{2^{\prime}}\right)$:
$\stackrel{\downarrow^{\pi}}{\downarrow^{2}} \underset{(\Sigma, D)}{ }$

Parallel null distribution:
ker π_{*}

$$
g_{D}=\left(\begin{array}{cccc}
-2 x_{1}, ~ \Gamma_{11}^{1}-2 x_{2}, \Gamma_{111}^{2} & -2 x_{1^{\prime}}, \Gamma_{12}^{1}-2 x_{2}, \Gamma_{12}^{2} & 1 & 0 \\
-2 x_{1^{\prime}}, \Gamma_{12}^{1}-2 x_{2^{\prime}} \Gamma_{12}^{2} & -2 x_{1^{\prime}}, \Gamma_{22}^{1}-2 x_{2}, \Gamma_{22}^{2} & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

- $\left(T^{*} \Sigma, g_{D}\right)$ self-dual.
- $\left(T^{*} \Sigma, g_{D}\right)$ Einstein $\Leftrightarrow \rho_{\text {sym }}^{D}=0$.
- ($\left.T^{*} \Sigma, g_{D}\right)$ locally conformally flat $\Leftrightarrow(\Sigma, D)$ projectively flat.

Reference:

Patterson and Walker; Riemann extensions, Quart. J. Math., Oxford Ser. (2) 31952.

Riemannian extensions

Φ is a $(0,2)$-symmetric tensor field on Σ
$\left(T^{*} \Sigma, g_{D, \Phi}\right) \quad g_{D, \Phi}\left(X^{\mathcal{C}}, Y^{\mathcal{C}}\right)=-\iota\left(D_{X} Y+D_{Y} X\right)+\pi^{*} \Phi$

$$
\begin{gathered}
\downarrow^{\Downarrow} \\
(\Sigma, D, \Phi)
\end{gathered}
$$

In local coordinates:
$g_{D}=\left(\begin{array}{cccc}-2 x_{1}, \Gamma_{11}^{1}-2 x_{2}, \Gamma_{11}^{2}+\Phi_{11} & -2 x_{1}, \Gamma_{12}^{1}-2 x_{2^{\prime}}, \Gamma_{122}^{2}+\Phi_{12} & 1 & 0 \\ -2 x_{1^{\prime}}, \Gamma_{12}^{1}-2 x_{2}, \Gamma_{12}^{2}+\Phi_{21} & -2 x_{1^{\prime}}, \Gamma_{22}^{1}-2 x_{2^{\prime}} \Gamma_{22}^{2}+\Phi_{22} & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$
Parallel null distribution: ker π_{*}

- $\left(T^{*} \Sigma, g_{D, \Phi}\right)$ self-dual.
- $\left(T^{*} \Sigma, g_{D, \Phi}\right)$ Einstein $\Leftrightarrow \rho_{\text {sym }}^{D}=0$.
- $\left(T^{*} \Sigma, g_{D, \Phi}\right)$ locally conformally flat $\Rightarrow(\Sigma, D)$ projectively flat.

Reference:

Afifi; Riemann extensions of affine connected spaces, Quart. J. Math., Oxford Ser. (2) 51954.

Deformed Riemannian extensions

Φ is a $(0,2)$-symmetric tensor field on Σ
$\left(T^{*} \Sigma, g_{D, \Phi}\right) \quad \begin{aligned} & g_{D, \Phi}\left(X^{\mathcal{C}}, Y^{\mathcal{C}}\right)=-\iota\left(D_{X} Y+D_{Y} X\right)+\pi^{*} \Phi \\ & \text { In local coordinates. }\end{aligned}$
 In local coordinates.
$g_{D}=\left(\begin{array}{cccc}-2 x_{1^{\prime}}, \Gamma_{11}^{1}-2 x_{2}, \Gamma_{11}^{2}+\Phi_{11} & -2 x_{1}, \Gamma_{12}^{1}-2 x_{2}, \Gamma_{12}^{2}+\Phi_{12} & 1 & 0 \\ -2 x_{1^{\prime}}, \Gamma_{12}^{1}-2 x_{2^{\prime}}, \Gamma_{12}^{2}+\Phi_{21} & -2 x_{1^{\prime}}, \Gamma_{22}^{1}-2 x_{2}, \Gamma_{22}^{2}+\Phi_{22} & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$
Parallel null distribution: ker π_{*}

- $\left(T^{*} \Sigma, g_{D, \Phi}\right)$ self-dual.
- $\left(T^{*} \Sigma, g_{D, \Phi}\right)$ Einstein $\Leftrightarrow \rho_{\text {sym }}^{D}=0$.
- $\left(T^{*} \Sigma, g_{D, \Phi}\right)$ locally conformally flat $\Rightarrow(\Sigma, D)$ projectively flat.

Reference:

Afifi; Riemann extensions of affine connected spaces, Quart. J. Math., Oxford Ser. (2) 51954.

Isotropic half conformally flat QE manifolds of signature $(2,2)$

Quasi-Einstein manifolds with λ constant

Let (M, g) be an isotropic self-dual quasi-Einstein manifold of signature $(2,2)$ with $\mu \neq-\frac{1}{2}$ which is not Ricci flat. Then (M, g) is locally isometric to a deformed Riemannian extension $\left(T^{*} \Sigma, g_{D, \phi}\right)$ of an affine surface (Σ, D) that satisfies the affine quasi-Einstein equation:

$$
\operatorname{Hes}_{\hat{f}}^{D}+2 \rho_{s}^{D}-\mu d \hat{f} \otimes d \hat{f}=0 \text { for some } \hat{f} \in \mathcal{C}^{\infty}(\Sigma) \text { and } \mu \in \mathbb{R}
$$

and, moreover, $f=\pi^{*} \hat{f}$ and $\lambda=0$.

Isotropic half conformally flat QE manifolds of signature $(2,2)$

Quasi-Einstein manifolds with λ constant

Let (M, g) be an isotropic self-dual quasi-Einstein manifold of signature $(2,2)$ with $\mu \neq-\frac{1}{2}$ which is not Ricci flat. Then (M, g) is locally isometric to a deformed Riemannian extension $\left(T^{*} \Sigma, g_{D, \phi}\right)$ of an affine surface (Σ, D) that satisfies the affine quasi-Einstein equation:

$$
\operatorname{Hes}_{\hat{f}}^{D}+2 \rho_{s}^{D}-\mu d \hat{f} \otimes d \hat{f}=0 \text { for some } \hat{f} \in \mathcal{C}^{\infty}(\Sigma) \text { and } \mu \in \mathbb{R}
$$

and, moreover, $f=\pi^{*} \hat{f}$ and $\lambda=0$.

Remarks.

Isotropic half conformally flat QE manifolds of signature $(2,2)$

Quasi-Einstein manifolds with λ constant

Let (M, g) be an isotropic self-dual quasi-Einstein manifold of signature $(2,2)$ with $\mu \neq-\frac{1}{2}$ which is not Ricci flat. Then (M, g) is locally isometric to a deformed Riemannian extension $\left(T^{*} \Sigma, g_{D, \phi}\right)$ of an affine surface (Σ, D) that satisfies the affine quasi-Einstein equation:

$$
\operatorname{Hes}_{\hat{f}}^{D}+2 \rho_{s}^{D}-\mu d \hat{f} \otimes d \hat{f}=0 \text { for some } \hat{f} \in \mathcal{C}^{\infty}(\Sigma) \text { and } \mu \in \mathbb{R}
$$

and, moreover, $f=\pi^{*} \hat{f}$ and $\lambda=0$.

Remarks.

- There exist examples of self-dual QE manifolds which are NOT locally conformally flat in dimension four.

Isotropic half conformally flat QE manifolds of signature $(2,2)$

Quasi-Einstein manifolds with λ constant

Let (M, g) be an isotropic self-dual quasi-Einstein manifold of signature $(2,2)$ with $\mu \neq-\frac{1}{2}$ which is not Ricci flat. Then (M, g) is locally isometric to a deformed Riemannian extension $\left(T^{*} \Sigma, g_{D, \phi}\right)$ of an affine surface (Σ, D) that satisfies the affine quasi-Einstein equation:

$$
\operatorname{Hes}_{\hat{f}}^{D}+2 \rho_{s}^{D}-\mu d \hat{f} \otimes d \hat{f}=0 \text { for some } \hat{f} \in \mathcal{C}^{\infty}(\Sigma) \text { and } \mu \in \mathbb{R}
$$

and, moreover, $f=\pi^{*} \hat{f}$ and $\lambda=0$.

Remarks.

- There exist examples of self-dual QE manifolds which are NOT locally conformally flat in dimension four.
- The previous result suggest the new concept of affine quasi-Einstein manifold:
(N, D) is quasi-Einstein if there exist a function \hat{f} in N satisfying the affine quasi-Einstein equation

$$
\operatorname{Hes}_{\hat{f}}^{D}+2 \rho_{s}^{D}-\mu d \hat{f} \otimes d \hat{f}=0 .
$$

Sketch of the proof. Isotropic case. λ constant

(1) We use the previous pseudo-orthonormal frame $\{\nabla f, u, v, w\}$ where

$$
\text { Ric }=\left(\begin{array}{cccc}
\lambda & 0 & a & c \\
0 & \lambda & c & b \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right)
$$

Sketch of the proof. Isotropic case. λ constant

(1) We use the previous pseudo-orthonormal frame $\{\nabla f, u, v, w\}$ where

$$
\text { Ric }=\left(\begin{array}{llll}
0 & 0 & a & c \\
0 & 0 & c & b \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(2) We use that $\lambda=$ const. to see that $\lambda=0, \tau=0$ and $\operatorname{Ric}(\nabla f)=0$.

Sketch of the proof. Isotropic case. λ constant

(1) We use the previous pseudo-orthonormal frame $\{\nabla f, u, v, w\}$ where

$$
\text { Ric }=\left(\begin{array}{llll}
0 & 0 & a & c \\
0 & 0 & c & b \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(2) We use that $\lambda=$ const. to see that $\lambda=0, \tau=0$ and $\operatorname{Ric}(\nabla f)=0$.
(3) $\mathcal{D}=\operatorname{span}\{\nabla f, u\}$ is a null parallel distribution such that $\operatorname{Ric}(\mathcal{D})=0$ and $\mathrm{Ric}^{2}=0$.

Sketch of the proof. Isotropic case. λ constant

(1) We use the previous pseudo-orthonormal frame $\{\nabla f, u, v, w\}$ where

$$
\operatorname{Ric}=\left(\begin{array}{llll}
0 & 0 & a & c \\
0 & 0 & c & b \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(2) We use that $\lambda=$ const. to see that $\lambda=0, \tau=0$ and $\operatorname{Ric}(\nabla f)=0$.
(3) $\mathcal{D}=\operatorname{span}\{\nabla f, u\}$ is a null parallel distribution such that $\operatorname{Ric}(\mathcal{D})=0$ and $R i^{2}=0$.
(4) We see that $R(\cdot, \mathcal{D}) \mathcal{D}=0$, this shows that (M, g) is indeed a deformed Riemannian extension.

Reference:

Afifi; Riemann extensions of affine connected spaces, Quart. J. Math., Oxford Ser. (2) 51954.

Sketch of the proof. Isotropic case. λ constant

(1) We use the previous pseudo-orthonormal frame $\{\nabla f, u, v, w\}$ where

$$
\operatorname{Ric}=\left(\begin{array}{llll}
0 & 0 & a & c \\
0 & 0 & c & b \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(2) We use that $\lambda=$ const. to see that $\lambda=0, \tau=0$ and $\operatorname{Ric}(\nabla f)=0$.
(3) $\mathcal{D}=\operatorname{span}\{\nabla f, u\}$ is a null parallel distribution such that $\operatorname{Ric}(\mathcal{D})=0$ and $R i c^{2}=0$.
(4) We see that $R(\cdot, \mathcal{D}) \mathcal{D}=0$, this shows that (M, g) is indeed a deformed Riemannian extension.
(5) We work in local coordinates and check that the condition for a deformed Riemannian extension to be quasi-Einstein is equivalent to the condition for the affine surface to be affine quasi-Einstein.

Reference:

Afifi; Riemann extensions of affine connected spaces, Quart. J. Math., Oxford Ser. (2) 51954.

Isotropic half conformally flat QE manifolds of signature $(2,2)$

Generalized Quasi-Einstein manifolds (λ non-constant)

Let (M, g) be an isotropic self-dual generalized quasi-Einstein manifold of signature $(2,2)$ with $\mu \neq \frac{1}{2}$ which is not Ricci flat. If λ is not constant then (M, g) is locally isometric to a modified Riemannian extension $\left(T^{*} \Sigma, g_{D, \Phi, T, I d}\right)$ of an affine surface (Σ, D) with:

- $\Phi=\frac{2}{C} e^{\hat{f}}\left(\operatorname{Hes}_{\hat{f}}^{D}+2 \rho_{s}^{D}-\mu d \hat{f} \otimes d \hat{f}\right)$,
- $T=C e^{-\hat{f}} I d$,
- $\lambda=\frac{3}{2} C e^{-f}$.

Modified Riemannian extensions

Φ is a (0,2)-symmetric tensor field on Σ
$\left(T^{*} \Sigma, g_{D, \Phi}\right)$

$$
g_{D, \Phi} \quad\left(X^{\mathcal{C}}, Y^{\mathcal{C}}\right)=-\iota\left(D_{X} Y+D_{Y} X\right)+\pi^{*} \Phi
$$

In local coordinates:

$$
\begin{aligned}
g_{D, \Phi} & =\left(\begin{array}{cccc}
g_{11} & g_{12} & 1 & 0 \\
g_{12} & g_{22} & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \\
g_{i j} & =-2 \sum_{k} x_{k^{\prime}} \Gamma_{i j}^{k}+\Phi_{i j}
\end{aligned}
$$

Modified Riemannian extensions

Φ is a $(0,2)$-symmetric tensor field on Σ
T and S are (1,1)-tensor fields on Σ
$\left(T^{*} \Sigma, g_{D, \Phi}\right)$
$g_{D, \Phi, T, S}\left(X^{\mathcal{C}}, Y^{\mathcal{C}}\right)=\iota T \circ \iota S-\iota\left(D_{X} Y+D_{Y} X\right)+\pi^{*} \Phi$
In local coordinates:

Parallel null distribution:
ker π_{*}

$$
\begin{gathered}
g_{D, \Phi, T, S}=\left(\begin{array}{cccc}
g_{11} & g_{12} & 1 & 0 \\
g_{12} & g_{22} & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \\
g_{i j}=\frac{1}{2} \sum_{r, s} x_{r^{\prime}} x_{s^{\prime}}\left(T_{i}^{r} S_{j}^{s}+T_{j}^{r} S_{i}^{s}\right)-2 \sum_{k} x_{k^{\prime}} \Gamma_{i j}^{k}+\Phi_{i j}
\end{gathered}
$$

Modified Riemannian extensions

Φ is a $(0,2)$-symmetric tensor field on Σ
T and S are (1,1)-tensor fields on Σ
$\left(T^{*} \Sigma, g_{D, \Phi}\right)$
$g_{D, \Phi, T, \mathrm{ld}}\left(X^{\mathcal{C}}, Y^{\mathcal{C}}\right)=\iota T \circ \iota \mathrm{Id}-\iota\left(D_{X} Y+D_{Y} X\right)+\pi^{*} \Phi$
In local coordinates:

$$
\begin{gathered}
g_{D, \Phi, T, \text { ld }}=\left(\begin{array}{cccc}
g_{11} & g_{12} & 1 & 0 \\
g_{12} & g_{22} & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \\
g_{i j}=\frac{1}{2} \sum_{r, s} x_{r^{\prime}} x_{s^{\prime}}\left(T_{i}^{r} \delta_{j}^{s}+T_{j}^{r} \delta_{i}^{s}\right)-2 \sum_{k} x_{k^{\prime}} \Gamma^{k}{ }_{i j}^{k}+\Phi_{i j}
\end{gathered}
$$

Modified Riemannian extensions

Φ is a $(0,2)$-symmetric tensor field on Σ
T and S are (1,1)-tensor fields on Σ
$\left(T^{*} \Sigma, g_{D, \Phi}\right)$
$g_{D, \Phi, T, \text { ld }}\left(X^{\mathcal{C}}, Y^{\mathcal{C}}\right)=\iota T \circ \iota \mathrm{ld}-\iota\left(D_{X} Y+D_{Y} X\right)+\pi^{*} \Phi$
In local coordinates:

$$
\begin{gathered}
g_{D, \Phi, T, \mathrm{ld}}=\left(\begin{array}{cccc}
g_{11} & g_{12} & 1 & 0 \\
g_{12} & g_{22} & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \\
g_{i j}=\frac{1}{2} \sum_{r, s} x_{r^{\prime}} x_{s^{\prime}}\left(T_{i}^{r} \delta_{j}^{s}+T_{j}^{r} \delta_{i}^{s}\right)-2 \sum_{k} x_{k^{\prime}} \Gamma_{i j}^{k}+\Phi_{i j}
\end{gathered}
$$

Self-dual Walker manifolds (E. Calviño-Louzao, E. García-Río, R. Vázquez-Lorenzo)
A four-dimensional Walker metric is self-dual if and only if it is locally isometric to the cotangent bundle $\left(T^{*} \Sigma, g\right)$, where

$$
g=\iota X(\iota \text { Id } \circ \iota \text { Id })+\iota T \circ \iota \text { Id }+g_{D}+\pi^{*} \Phi
$$

Methods to construct examples

Method to construct examples with constant λ :

Method to construct examples with non-constant λ :

Methods to construct examples

Method to construct examples with constant λ :
(1) Take any affine surface (Σ, D).

Method to construct examples with non-constant λ :

Methods to construct examples

Method to construct examples with constant λ :
(1) Take any affine surface (Σ, D).
(2) Solve the affine quasi-Einstein equation:

$$
\operatorname{Hes}_{\hat{f}}^{D}+2 \rho_{s}^{D}-\mu d \hat{f} \otimes d \hat{f}=0
$$

Method to construct examples with non-constant λ :

Methods to construct examples

Method to construct examples with constant λ :
(1) Take any affine surface (Σ, D).
(2) Solve the affine quasi-Einstein equation:

$$
\operatorname{Hes}_{\hat{f}}^{D}+2 \rho_{s}^{D}-\mu d \hat{f} \otimes d \hat{f}=0 .
$$

Then $\left(T^{*} \Sigma, g_{D, \Phi}\right)$ is a self-dual QE manifold with $\lambda=0$ and $f=\pi^{*} \hat{f}$.
Method to construct examples with non-constant λ :

Methods to construct examples

Method to construct examples with constant λ :
(1) Take any affine surface (Σ, D).
(2) Solve the affine quasi-Einstein equation:

$$
\operatorname{Hes}_{\hat{f}}^{D}+2 \rho_{s}^{D}-\mu d \hat{f} \otimes d \hat{f}=0
$$

Then $\left(T^{*} \Sigma, g_{D, \Phi}\right)$ is a self-dual QE manifold with $\lambda=0$ and $f=\pi^{*} \hat{f}$.
Method to construct examples with non-constant λ :
(1) Take any affine surface (Σ, D).

Methods to construct examples

Method to construct examples with constant λ :
(1) Take any affine surface (Σ, D).
(2) Solve the affine quasi-Einstein equation:

$$
\operatorname{Hes}_{\hat{f}}^{D}+2 \rho_{s}^{D}-\mu d \hat{f} \otimes d \hat{f}=0 .
$$

Then $\left(T^{*} \Sigma, g_{D, \Phi}\right)$ is a self-dual QE manifold with $\lambda=0$ and $f=\pi^{*} \hat{f}$.
Method to construct examples with non-constant λ :
(1) Take any affine surface (Σ, D).
(2) Take any non-constant function \hat{f} on Σ.

Methods to construct examples

Method to construct examples with constant λ :
(1) Take any affine surface (Σ, D).
(2) Solve the affine quasi-Einstein equation:

$$
\operatorname{Hes}_{\hat{f}}^{D}+2 \rho_{s}^{D}-\mu d \hat{f} \otimes d \hat{f}=0
$$

Then $\left(T^{*} \Sigma, g_{D, \Phi}\right)$ is a self-dual QE manifold with $\lambda=0$ and $f=\pi^{*} \hat{f}$.
Method to construct examples with non-constant λ :
(1) Take any affine surface (Σ, D).
(2) Take any non-constant function \hat{f} on Σ.
(3) Consider:

$$
f=\pi^{*} \hat{f}, \quad T=C e^{-\hat{f}} \mathrm{Id}, \quad \text { and } \quad \Phi=\frac{2}{C} e^{\hat{f}}\left(\operatorname{Hes}_{\hat{f}}^{D}+2 \rho_{s}^{D}-\mu d \hat{f} \otimes d \hat{f}\right)
$$

for a constant C.

Methods to construct examples

Method to construct examples with constant λ :
(1) Take any affine surface (Σ, D).
(2) Solve the affine quasi-Einstein equation:

$$
\operatorname{Hes}_{\hat{f}}^{D}+2 \rho_{s}^{D}-\mu d \hat{f} \otimes d \hat{f}=0
$$

Then $\left(T^{*} \Sigma, g_{D, \Phi}\right)$ is a self-dual QE manifold with $\lambda=0$ and $f=\pi^{*} \hat{f}$.
Method to construct examples with non-constant λ :
(1) Take any affine surface (Σ, D).
(2) Take any non-constant function \hat{f} on Σ.
(3) Consider:

$$
f=\pi^{*} \hat{f}, \quad T=C e^{-\hat{f}} \mathrm{Id}, \quad \text { and } \quad \Phi=\frac{2}{C} e^{\hat{f}}\left(\operatorname{Hes}_{\hat{f}}^{D}+2 \rho_{s}^{D}-\mu d \hat{f} \otimes d \hat{f}\right)
$$

for a constant C.
Then $\left(T^{*} \Sigma, g_{D, \Phi, T, \mathrm{ld}}, f\right)$ is a self-dual generalized QE manifold with $\lambda=\frac{1}{4} \tau=\frac{3}{2} C e^{-f}$.

Index

(4) Affine QE manifolds

\title{

(2) Non-isotropic four-dimensional manifolds
 (3) Isotropic four-dimensional manifolds

- Isotropic QE manifolds of Lorentzian signature
 Isotropic four-dimensional manifolds
- Isotropic QE manifolds of Lorentzian signature - Isotropic QE manifolds of neutral signature

(

—

The affine quasi-Einstein equation

For an affine manifold (N, D) consider the QEE

$$
\operatorname{Hes}_{\hat{f}}^{D}+2 \rho_{s}^{D}-\mu d \hat{f} \otimes d \hat{f}=0 .
$$

Consider the change of variable $f=e^{-\frac{1}{2} \mu \hat{f}}$ to transform the equation into

$$
\operatorname{Hes}_{f}=\mu f \rho_{s}
$$

Let $E(\mu)$ be the space of solutions for the affine QEE.

First results for the affine QEE.

If $f \in E(\mu)$ then
(1) If X is Killing, then $X f \in E(\mu)$.
(2) $f \in C^{\infty}(N)$ and, if N is real analytic, then f is real analytic.
(3) If $f(p)=0$ and $d f(p)=0$, then $f=0$ near p.
(4) $\operatorname{dim}(E(\mu)) \leq \operatorname{dim} N+1$.

References

Main references:

- ——, E. García-Río, P. Gilkey, and X. Valle-Regueiro; Half conformally flat generalized quasi-Einstein manifolds of metric signature $(2,2)$. International J. Math. 29 (2018), no. 1, 1850002, 25 pp. (arXiv:1702.06714).
- ——, E. García-Río, X. Valle Regueiro; Isotropic generalized quasi-Einstein Lorentzian manifolds, something between work in progress and a preprint.

Related references:

- ——, E. García-Río, P. Gilkey, and X. Valle-Regueiro; A natural linear equation in affine geometry: The affine quasi-Einstein Equation. Proc. Amer. Math. Soc. 146 (2018), no. 8, 3485-3497. (arXiv:1705.08352)
- -, E. García-Río, P. Gilkey, and X. Valle-Regueiro; The affine quasi-Einstein Equation for homogeneous surfaces, to appear in Manuscripta Mathematica, online version available. (arXiv:1707.06304)

\qquad

Four-dimensional quasi-Einstein manifolds

Miguel Brozos Vázquez

IX International Meeting on Lorentzian Geometry

Institute of Mathematics, Polish Academy of Sciences,
Warsaw (Poland), 17-24 June 2018

Banach Center

Departamento de Matemáticas
Escola Politécnica Superior

Joint work with:

- Eduardo García Río,
- Peter Gilkey, and
- Xabier Valle Regueiro

