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The results I am going to introduce in this talk have been obtained
in collaboration with the following colleagues:

? Verónica L. Cánovas, from Universidad de Murcia (Spain).

? Marco Rigoli, from Università degli Studi di Milano (Italy).

They can be found in the following papers:

Trapped submanifolds contained into a null hypersurface of de
Sitter spacetime, to appear in Communications in Contemporary
Mathematics, DOI 10.1142/S0219199717500596. Available online
since July 2017.
Codimension two spacelike submanifolds of the
Lorentz-Minkowski spacetime into the light cone, preprint 2017.
Submitted.

They will be part of Veronica’s PhD thesis, to be defended in
September 2018 (I hope so...)
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Trapped submanifolds

Consider an (n + 2)-dimensional spacetime Mn+2
1 , n ≥ 2, that is, a

time-oriented Lorentzian manifold of dimension n + 2 ≥ 4.

Let Σn be a codimension-two spacelike submanifold immersed into
the spacetime M.
That is, Σ is an n-dimensional connected manifold admitting a
smooth immersion ψ : Σ→M such that the induced metric on Σ is
Riemannian.

Second fundamental form

Let q : X(Σ)× X(Σ)→X⊥(Σ) be the vector valued second
fundamental form of the submanifold, that is the symmetric tensor

q(X ,Y ) = −(∇XY )⊥

Mean curvature vector field

The mean curvature vector field of Σ is given by

H =
1

n
trace(q) ∈ X⊥(Σ).
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Trapped submanifolds

Mean curvature vector field

The mean curvature vector field of Σ is given by

H =
1

n
trace(q) ∈ X⊥(Σ).

The submanifold Σ is said to be

Future (past) trapped if H is timelike and future-pointing
(past-pointing) on Σ.

Future (past) marginally trapped if H is null and future-pointing
(past-pointing) on Σ.

Future (past) weakly trapped if H is causal and future-pointing
(past-pointing) on Σ.

The extreme case H = 0 corresponds to a minimal submanifold.
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Trapped submanifolds

Each normal space (TpΣ)⊥, p ∈ Σ, is timelike and two dimensional,
and hence admits two future-pointing null directions normal to Σ.

This, if the normal bundle is trivial, Σ admits a globally defined
future-pointing normal null frame {ξ, η}, unique up to positive
pointwise scaling, satisfying 〈ξ, η〉 = −1.

As usual in relativity, we may decompose the second fundamental
form into two scalar valued null second fundamental forms, the
Weingarten (or shape) operators asociated to ξ and η.

That is, the symmetric operators Aξ,Aη : X(Σ)→X(Σ) given by

〈AξX ,Y 〉 = 〈q(X ,Y ), ξ〉, and 〈AηX ,Y 〉 = 〈q(X ,Y ), η〉.

Therefore, in terms of {ξ, η} we have

H = −θηξ − θξη

where

θξ =
1

n
trace(Aξ) and θη =

1

n
trace(Aη)

define the null mean curvatures (or null expansion scalars) of Σ.
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Trapped submanifolds

In particular
〈H,H〉 = −2θξθη

so that

Σ is a trapped submanifold if and only if

i) either both θξ < 0 and θη < 0 (future trapped),
ii) or both θξ > 0 and θη > 0 (past trapped).

Σ is a marginally trapped submanifold if and only if

i) either θξ = 0 and θη 6= 0 (future marginally trapped if θη < 0 and
past marginally trapped if θη > 0),

ii) or θξ 6= 0 and θη = 0 (future marginally trapped if θξ < 0 and past
marginally trapped if θξ > 0).

Σ is a weakly trapped submanifold if and only if

i) either both θξ ≤ 0 and θη ≤ 0 with θ2
ξ + θ2

η > 0 (future weakly
trapped),

ii) or both θξ ≥ 0 and θη ≥ 0 with θ2
ξ + θ2

η > 0 (past weakly trapped).

This was the original formulation of trapped surfaces given by
Penrose in terms of the signs or the vanishing of the null expansions.
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The (n + 2)-dimensional de Sitter spacetime

Let Ln+3 be the (n + 3)-dimensional Lorentz-Minkowski space,
endowed with the Lorentzian metric

〈, 〉 = −(dx0)2 + (dx1)2 + · · ·+ (dxn+2)2, x = (x0, . . . , xn+2)

The hyperquadric

Sn+2
1 = {x ∈ Ln+3 : 〈x , x〉 = 1}

endowed with the induced metric from Ln+3 is the standard model
of the de Sitter space.
Sn+2

1 is a complete, simply connected (n ≥ 2), (n + 2)-dimensional
Lorentzian manifold with constant sectional curvature 1.
In some sense, Sn+2

1 can be seen, in Lorentzian geometry, as the
equivalent of the Euclidean sphere.
Consider on Sn+2

1 the time-orientation induced by the globally
defined timelike vector field e∗0 ∈ X(Sn+2

1 ) given by

e∗0 (x) = e0 − 〈e0, x〉x = e0 + x0x , e0 = (1, 0, . . . , 0),

with
〈e∗0 (x), e∗0 (x)〉 = −1− 〈e0, x〉2 ≤ −1 < 0.
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Luis J. Aĺıas Trapped submanifolds in de Sitter space



Null hypersurfaces in de Sitter spacetime

Let ψ : Σn → Sn+2
1 be a codimension-two spacelike submanifold of

de Sitter space.

We are interested in the case where Σ is contained into one of the
two following null hypersurfaces of de Sitter space:

The future component of the light cone.
The past infinite of the steady state space.

Recall that a null hypersurface into a spacetime M is a smooth
codimension one embedded submanifold such that the pull-back of
the Lorentzian metric of M is degenerate.

When the submanifold Σ is contained into a null hypersurface of M,
there always exists a globally defined future-pointing normal null
frame {ξ, η} on Σ.
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The light cone of de Sitter space

Light cone of de Sitter spacetime

Fix a point a ∈ Sn+2
1 . The light cone in Sn+2

1 with vertex at a is the
subset

Λa = {x ∈ Sn+2
1 : 〈a, x〉 = 1, x 6= a}.

Geometrically, Λa corresponds to the subset of all points of de Sitter
space which can be reached from a through a null geodesic starting
at a.
The future component of Λa is

Λ+
a = {x ∈ Sn+2

1 : 〈a, x〉 = 1, 〈x − a, e0〉 = −x0 + a0 < 0}.
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Marginally trapped submanifolds into the light cone

Let ψ : Σn → Sn+2
1 be a codimension-two spacelike submanifold.

Assume that ψ(Σ) is contained into the future connected
component of the light cone with vertex at a = (0, 0, . . . , 1) ∈ Sn+2

1 ,

ψ(Σ) ⊂ Λ+ = {x ∈ Sn+2
1 : xn+2 = 1, x0 > 0, x 6= a}.

Define the function u : Σ→ (0,+∞) by

u = −〈ψ, e0〉 = ψ0 > 0.

Future-pointing normal null frame

In these conditions

ξ = ψ − a and η = −1 + ‖∇u‖2 + u2

2u2
ξ +

1

u
e⊥0

gives two future-pointing null normal vector fields globally defined on
Σ with 〈ξ, η〉 = −1, where we are denoting

e0 = e>0 (p) + e⊥0 (p) + 〈ψ(p), e0〉ψ(p), p ∈ Σ.
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Null shape operators

The corresponding null second forms associated to the global null frame
{ξ, η} are given by

Aξ = I and Aη = −1 + ‖∇u‖2 − u2

2u2
I +

1

u
∇2u,

where ∇2u is the Hessian operator of u.

In particular, the null expansions are

θξ =
1

n
tr(Aξ) = 1 > 0

and

θη =
1

n
tr(Aη) =

2u∆u − n(1 + ‖∇u‖2 − u2)

2nu2
,

where ∆u is the Laplacian of u.
Therefore, Σ is marginally trapped if and only if θη = 0, that is,

2u∆u − n(1 + ‖∇u‖2 − u2) = 0 on Σ.

In that case, it is necessarily past marginally trapped since
θξ = 1 > 0.
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Luis J. Aĺıas Trapped submanifolds in de Sitter space



On the other hand, it follows from the Gauss equation that the Ricci
and the scalar curvatures of Σ are given by

Ric(X ,Y ) = (n−1)(1+〈H,H〉)〈X ,Y 〉+n − 2

nu
(∆u〈X ,Y 〉−nHess u(X ,Y )),

and
Scal = n(n − 1)(1 + 〈H,H〉).

Corollary 1

Let ψ : Σn → Λ+ ⊂ Sn+2
1 be a codimension-two spacelike submanifold

which is contained in the future component of the light cone of de Sitter
space. The following assertions are equivalent:

Σ is (necessarily past) marginally trapped.

The positive function u = −〈ψ, e0〉 satisfies the differential equation

2u∆u − n(1 + ‖∇u‖2 − u2) = 0 on Σ.

Σ has constant scalar curvature Scal = n(n − 1).
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Codimension-two compact submanifolds in Λ+

Example 1

For each positive smooth function f : Sn→(0,+∞), consider the
embedding ψf : Sn→Λ+ ⊂ Sn+2

1 given by

ψf (p) = (f (p), f (p)p, 1).

It is not difficult to see that for every v,w ∈ TpSn

〈d(ψf )p(v), d(ψf )p(w)〉 = f 2(p)〈v,w〉0,

〈, 〉0 the standard metric of the round sphere.

That is
ψ∗f (〈, 〉) = f 2〈, 〉0,

which means that ψf defines a spacelike immersion of Sn into Λ+

with induced metric conformal to 〈, 〉0.

Moreover, ψf is marginally trapped if and only if f satisfies

2f ∆f − n(1 + ‖∇f ‖2 − f 2) = 0

on Sn with respect to the pointwise conformal metric f 2〈, 〉0.
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We will see now that every codimension-two compact spacelike
submanifold in Λ+ is, up to a conformal diffeomorphism, as in Example 1.

Proposition 1

Let ψ : Σn → Λ+ ⊂ Sn+2
1 be a codimension-two compact spacelike

submanifold contained in Λ+. There exists a conformal diffeomorphism

Ψ : (Σn, 〈, 〉)→ (Sn, 〈, 〉0) such that 〈, 〉 = u2Ψ∗(〈, 〉0),

with u = −〈ψ, e0〉 = ψ0 > 0, and ψ = ψf ◦Ψ where f = u ◦Ψ−1.

Σn u //

Φ

��

(0,+∞)

Sn
f

;;

Ψ

OO Σn ψ //

Φ

��

Λ+ ⊂ Sn+2
1

Sn
ψf

::

Ψ

OO

In particular, the immersion ψ is an embedding.
Moreover, ψ is marginally trapped if and only if u satisfies

2u∆u − n(1 + ‖∇u‖2 − u2) = 0 on (Σn, 〈, 〉).

Equivalently, f satisfies
2f ∆f − n(1 + ‖∇f ‖2 − f 2) = 0 on (Sn, f 2〈, 〉0).
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Proof of Proposition 1

Let ψ : Σn → Λ+ ⊂ Sn+2
1 be a codimension-two spacelike

submanifold contained in Λ+.

Then ψ(p) = (u(p), ψ1(p), . . . , ψn+1(p), 1) with
n+1∑
i=1

ψ2
i (p) = u2(p) > 0.

Define the function Ψ : Σn → Sn by

Ψ(p) =
1

u(p)
(ψ1(p), . . . , ψn+1(p)).

A straightforward computation yields

〈dΨp(v), dΨp(w)〉0 =
1

u2(p)
〈v,w〉

for every p ∈ Σ and v,w ∈ TpΣ.

In particular, Ψ is a local diffeomorphism.

Assume now that Σ is complete (that is, 〈, 〉 is a complete
Riemannian metric on Σ) and u∗ = supΣ u < +∞.
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Then the conformal metric 〈̃, 〉 = 1
u2 〈, 〉 is also complete on Σ.

Then, the map

Ψ : (Σn, 〈̃, 〉)→ (Sn, 〈, 〉0)

is a local isometry between complete Riemannian manifolds.

Hence, Ψ is a covering map, but Sn being simply connected this
means that Ψ is in fact a global diffeomorphism.

Let Φ : Sn → Σn the inverse of Ψ. Then taking f = u ◦ Φ one has
f ◦Ψ = u and ψ = ψf ◦Ψ. This completes the proof.

In our result, Σ is assumed to be compact.

But the proof also works under any assumption which implies that

the conformal metric 〈̃, 〉 is complete.

For instance, it is enough if Σ is complete and u satisfies

ĺım sup
r→+∞

u

r log(r)
< +∞

r the Riemannian distance from a fixed origin o ∈ Σ.

Luis J. Aĺıas Trapped submanifolds in de Sitter space



Then the conformal metric 〈̃, 〉 = 1
u2 〈, 〉 is also complete on Σ.

Then, the map

Ψ : (Σn, 〈̃, 〉)→ (Sn, 〈, 〉0)

is a local isometry between complete Riemannian manifolds.

Hence, Ψ is a covering map, but Sn being simply connected this
means that Ψ is in fact a global diffeomorphism.

Let Φ : Sn → Σn the inverse of Ψ. Then taking f = u ◦ Φ one has
f ◦Ψ = u and ψ = ψf ◦Ψ. This completes the proof.

In our result, Σ is assumed to be compact.

But the proof also works under any assumption which implies that

the conformal metric 〈̃, 〉 is complete.

For instance, it is enough if Σ is complete and u satisfies
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Luis J. Aĺıas Trapped submanifolds in de Sitter space



Motivated by Proposition 1 we consider the following example.

Example 2

For every fixed vector b ∈ Rn+1, let fb : Sn→(0,+∞) be the
function

fb(p) =
1

〈p,b〉0 +
√

1 + ‖b‖2
0

where 〈, 〉0 stands both for the Euclidean metric in Rn+1 and for the
induced standard metric on the Euclidean sphere Sn.

It is not difficult to see that the corresponding embedding

ψb := ψfb : Sn→Λ+ ⊂ Sn+2
1

is a (necessarily past) marginally trapped submanifold.

To see it, it suffices to check the validity, for f = fb, of

2f ∆f − n(1 + ‖∇f ‖2 − f 2) = 0 on (Sn, f 2〈, 〉0). (EQ1)

Equivalently,

2f ∆0f + (n − 4)‖∇0f ‖2
0 − nf 2(1− f 2) = 0 (EQ2)

on (Sn, 〈, 〉0).
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We now come to our main classification result, which shows that the
above examples are in fact the only examples of codimension two
compact marginally trapped submanifolds contained into Λ+.

Theorem 1

Let ψ : Σn → Λ+ ⊂ Sn+2
1 be a codimension-two compact marginally

trapped spacelike immersed submanifold contained in Λ+.

There exists a conformal diffeomorphism Ψ : (Σn, 〈, 〉)→ (Sn, 〈, 〉0)
such that ψ = ψb ◦Ψ, where fb : Sn → (0,+∞) is

fb(p) =
1

〈p,b〉0 +
√

1 + ‖b‖2
0

for some fixed vector b ∈ Rn+1 and ψb : Sn→Λ+ ⊂ Sn+2
1 is the embedding

ψb(p) = (fb(p), fb(p)p, 1).

In particular, Σ is embedded.
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Proof of Theorem 1

From our previous discussion, the proof of Theorem 1 reduces to
find the positive solutions of the differential equation

2f ∆f − n(1 + ‖∇f ‖2 − f 2) = 0

on (Sn, 〈, 〉) , where 〈, 〉 = f 2〈, 〉0.

Here we are denoting by ‖ · ‖2, ∇ and ∆ the norm, the gradient and
the Laplacian operator on Sn with respect to the conformal metric
〈, 〉.
We also know from Corollary 1 that (Sn, 〈, 〉) has constant scalar
curvature n(n − 1).

From a classical result by Obata (1971), a conformal metric on the
Euclidean sphere Sn has constant scalar curvature n(n − 1) if and
only if it has constant sectional curvature 1.

Therefore, (Sn, 〈, 〉) has constant sectional curvature 1.
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Luis J. Aĺıas Trapped submanifolds in de Sitter space



Proof of Theorem 1

From our previous discussion, the proof of Theorem 1 reduces to
find the positive solutions of the differential equation

2f ∆f − n(1 + ‖∇f ‖2 − f 2) = 0

on (Sn, 〈, 〉) , where 〈, 〉 = f 2〈, 〉0.

Here we are denoting by ‖ · ‖2, ∇ and ∆ the norm, the gradient and
the Laplacian operator on Sn with respect to the conformal metric
〈, 〉.
We also know from Corollary 1 that (Sn, 〈, 〉) has constant scalar
curvature n(n − 1).

From a classical result by Obata (1971), a conformal metric on the
Euclidean sphere Sn has constant scalar curvature n(n − 1) if and
only if it has constant sectional curvature 1.

Therefore, (Sn, 〈, 〉) has constant sectional curvature 1.

Luis J. Aĺıas Trapped submanifolds in de Sitter space



Proof of Theorem 1

From our previous discussion, the proof of Theorem 1 reduces to
find the positive solutions of the differential equation

2f ∆f − n(1 + ‖∇f ‖2 − f 2) = 0

on (Sn, 〈, 〉) , where 〈, 〉 = f 2〈, 〉0.

Here we are denoting by ‖ · ‖2, ∇ and ∆ the norm, the gradient and
the Laplacian operator on Sn with respect to the conformal metric
〈, 〉.
We also know from Corollary 1 that (Sn, 〈, 〉) has constant scalar
curvature n(n − 1).

From a classical result by Obata (1971), a conformal metric on the
Euclidean sphere Sn has constant scalar curvature n(n − 1) if and
only if it has constant sectional curvature 1.

Therefore, (Sn, 〈, 〉) has constant sectional curvature 1.
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Summing up, our problem becomes equivalent to solving the
Yamabe problem on the unit round sphere.

That is, finding the positive functions f on Sn for which the
conformal metric f 2〈, 〉0 has constant sectional curvature 1.

This problem was solved by Obata in 1971, who proved that the
conformal metric f 2〈, 〉0 is obtained from 〈, 〉0 by a conformal
diffeomorphism of the unit round sphere.

In particular, the conformal factor f is the conformal factor of a
conformal diffeomorphism of the unit round sphere.

Recall that, up to orthogonal transformations, every conformal
diffeomorphism of (Sn, 〈, 〉0) is given by

Fc(p) =
p + (µ〈p, c〉0 + λ)c

λ(1 + 〈p, c〉0)

for all p ∈ Sn, where c ∈ Bn+1, Bn+1 the open unit ball in Rn+1, and

λ = (1− ‖c‖2
0)−1/2 and µ = (λ− 1)‖c‖2

0.
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This problem was solved by Obata in 1971, who proved that the
conformal metric f 2〈, 〉0 is obtained from 〈, 〉0 by a conformal
diffeomorphism of the unit round sphere.

In particular, the conformal factor f is the conformal factor of a
conformal diffeomorphism of the unit round sphere.

Recall that, up to orthogonal transformations, every conformal
diffeomorphism of (Sn, 〈, 〉0) is given by

Fc(p) =
p + (µ〈p, c〉0 + λ)c

λ(1 + 〈p, c〉0)

for all p ∈ Sn, where c ∈ Bn+1, Bn+1 the open unit ball in Rn+1, and
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A direct computation shows that the conformal factor f of Fc is
given by

f (p) =

√
1− ‖c‖2

0

1 + 〈p, c〉0
for c ∈ Bn+1

Equivalently,

f (p) =

√
1− ‖c‖2

0

1 + 〈p, c〉0
=

1

〈p,b〉0 +
√

1 + ‖b‖2
0

with
b =

c√
1− ‖c‖2

0

∈ Rn+1.

This completes the proof of Theorem 1.
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Luis J. Aĺıas Trapped submanifolds in de Sitter space



A direct computation shows that the conformal factor f of Fc is
given by

f (p) =

√
1− ‖c‖2

0

1 + 〈p, c〉0
for c ∈ Bn+1

Equivalently,

f (p) =

√
1− ‖c‖2

0

1 + 〈p, c〉0
=

1

〈p,b〉0 +
√

1 + ‖b‖2
0

with
b =

c√
1− ‖c‖2

0

∈ Rn+1.

This completes the proof of Theorem 1.
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Remark: Non-congruence of the examples

Although all the embeddings ψb given in Example 2 are conformal to
the round sphere and have the same constant sectional curvature 1,
they are not congruent to each other.

In other words, ψb1 is congruent to ψb2 for b1,b2 ∈ Rn+1

Sn
ψb1 //

ψb2

��

Λ+ ⊂ Sn+2
1

Axx
Λ+ ⊂ Sn+2

1

if and only if b1 = b2.
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The past infinity of the steady state space

Past infinity of steady state space

Fix a null vector a ∈ Ln+3, a 6= 0, and consider the null hypersurface in
Sn+2

1 given by
J− = {x ∈ Sn+2

1 : 〈a, x〉 = 0}

Without loss of generality we may assume that a is past-pointing,
〈a, e0〉 > 0. The open region

Hn+2 = {x ∈ Sn+2
1 : 〈x , a〉 > 0}.

is the steady state model of the universe.
The steady state space is a non-complete manifold, being only half
of the de Sitter space and having as boundary the null hypersurface
J−, which represents the past infinity of Hn+2.
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Marginally trapped submanifolds into J −

Let ψ : Σn → Sn+2
1 be a codimension-two spacelike submanifold.

Assume that ψ(Σ) is contained in the past infinite of the steady
state space,

ψ(Σ) ⊂ J− = {x ∈ Sn+2
1 : 〈a, x〉 = 0},

where a 6= 0 is a fixed past pointing null vector.

Define the function u : Σ→ R as

u = −〈ψ, e0〉 = ψ0.

Future-pointing normal null frame

In these conditions

ξ = −a and η = −1 + ‖∇u‖2 + u2

2〈a, e0〉2
ξ +

1

〈a, e0〉
e⊥0

gives two future-pointing null normal vector fields globally defined on
Σ with 〈ξ, η〉 = −1.
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Null shape operators

The corresponding null second forms associated to the global null frame
{ξ, η} are given by

Aξ = 0 and Aη =
1

〈a, e0〉
(∇2u + uI ).

In particular, the null expansions are θξ = 1
n tr(Aξ) = 0 and

θη =
1

n
tr(Aη) =

1

n〈a, e0〉
(∆u + nu).

Therefore,

H = − 1

n〈a, e0〉
(∆u + nu)ξ

and Σ is always marginally trapped except at points where
∆u + nu = 0 (if any), where it is minimal.

Proposition 2

Let ψ : Σn → J− ⊂ Sn+2
1 be a codimension-two spacelike submanifold

which is contained in the past infinite of the steady state space. Then Σ
is always marginally trapped, except at points where ∆u + nu = 0 (if
any), u = −〈ψ, e0〉, where it is minimal.
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Example 3

For each smooth function f : Sn→R, consider the embedding
φf : Sn→J− ⊂ Sn+2

1 given by

φf (p) = (f (p), p, f (p)).

It is not difficult to see that for every v,w ∈ TpSn

〈d(φf )p(v), d(φf )p(w)〉 = 〈v,w〉0,
〈, 〉0 the standard metric of the round sphere.

That is φ∗f (〈, 〉) = 〈, 〉0, which means that φf defines a spacelike
isometric immersion of the round sphere into J−.

Moreover, φf is marginally trapped except at points (if any) where

∆0f + nf = 0.
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We will see now that every codimension-two complete spacelike
submanifold in J− is compact and, up to a conformal diffeomorphism, is
as in Example 3.

Proposition 3

Let ψ : Σn → J− ⊂ Sn+2
1 be a codimension-two complete spacelike

submanifold contained in J−.

Then Σ is compact and there exists an isometry

Ψ : (Σn, 〈, 〉)→ (Sn, 〈, 〉0)

such that ψ = φf ◦Ψ where f = u ◦Ψ−1 with u = −〈ψ, e0〉 = ψ0.

Σn u //

Φ
��

R

Sn
f

>>

Ψ

OO Σn ψ //

Φ

��

J− ⊂ Sn+2
1

Sn
φf

99

Ψ

OO

In particular, the immersion ψ is an embedding and it is always
marginally trapped except at points where ∆u + nu = 0 (if any),
where it is minimal.

Luis J. Aĺıas Trapped submanifolds in de Sitter space



We will see now that every codimension-two complete spacelike
submanifold in J− is compact and, up to a conformal diffeomorphism, is
as in Example 3.

Proposition 3

Let ψ : Σn → J− ⊂ Sn+2
1 be a codimension-two complete spacelike

submanifold contained in J−.

Then Σ is compact and there exists an isometry

Ψ : (Σn, 〈, 〉)→ (Sn, 〈, 〉0)

such that ψ = φf ◦Ψ where f = u ◦Ψ−1 with u = −〈ψ, e0〉 = ψ0.

Σn u //

Φ
��

R

Sn
f

>>

Ψ

OO Σn ψ //

Φ

��

J− ⊂ Sn+2
1

Sn
φf

99

Ψ

OO

In particular, the immersion ψ is an embedding and it is always
marginally trapped except at points where ∆u + nu = 0 (if any),
where it is minimal.
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Luis J. Aĺıas Trapped submanifolds in de Sitter space



Proof of Proposition 3

Let ψ : Σn → J− ⊂ Sn+2
1 be a codimension-two spacelike

submanifold contained in J−.

Assume without loss of generality that a = (−1, 0 . . . , 0,−1).
Then ψ(p) = (u(p), ψ1(p), . . . , ψn+1(p), u(p)) with

n+1∑
i=1

ψ2
i (p) = 1.

Define the function Ψ : Σn → Sn by
Ψ(p) = (ψ1(p), . . . , ψn+1(p)).

A straightforward computation yields

〈dΨp(v), dΨp(w)〉0 = 〈v,w〉

for every p ∈ Σ and v,w ∈ TpΣ.
That is, the map

Ψ : (Σn, 〈, 〉)→ (Sn, 〈, 〉0)

is a local isometry.
Therefore, is we assume Σ to be complete, Sn being simply
connected, we conclude that Ψ is in fact a global isometry.
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Corollary 2

Let ψ : Σn → J− ⊂ Sn+2
1 be a codimension-two complete spacelike

submanifold contained in J− and having parallel mean curvature
vector.

Then Σ is compact and there exists an isometry

Ψ : (Σn, 〈, 〉)→ (Sn, 〈, 〉0)

such that ψ = φb,c ◦Ψ, where φb,c : Sn→J− ⊂ Sn+2
1 is the

embedding

φb,c(p) = (〈p,b〉0 + c , p, 〈p,b〉0 + c).

for any b ∈ Rn+1 and c ∈ R.

Moreover:

(i) Σ is minimal if and only if c = 0.
(ii) Σ is future marginally trapped if and only if c < 0.

(iii) Σ is past marginally trapped if and only if c > 0.
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Proof of Corollary 2

Since 〈a, e0〉 = 1, it follows that

H =
1

n
(∆u + nu)a. (1)

Then, H is parallel if and only if ∆u + nu = constant on (Σ, 〈, 〉).
Equivalently, H is parallel if and only if ∆0f + nf = constant on
(Sn, 〈, 〉0).
Therefore, the Laplacian of f satisfies ∆0f = −n(f − c) for a certain
constant c .
That is,

∆0%+ n% = 0

where % = f − c .
This implies that either % ≡ 0 or % ∈ Spec(Sn, 〈, 〉0) is a first
eigenfunction of the round sphere.
In the first case f ≡ c is constant (which corresponds to b = 0).
In the second case, %(p) = 〈p,b〉0 for some fixed vector b ∈ Rn+1,
b 6= 0, and f (p) = 〈p,b〉0 + c .
The last assertions follow from (1) since H = ca, with a
past-pointing.
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Luis J. Aĺıas Trapped submanifolds in de Sitter space



Corollary 3

Let ψ : Σn → J− ⊂ Sn+2
1 be a codimension-two complete spacelike

submanifold contained in J−.

Σ is minimal if and only if there exists an isometry

Ψ : (Σn, 〈, 〉)→ (Sn, 〈, 〉0)

such that ψ = φb ◦Ψ, where φb : Sn→J− ⊂ Sn+2
1 is the embedding

φb(p) = (〈p,b〉0, p, 〈p,b〉0).

for any b ∈ Rn+1.

Luis J. Aĺıas Trapped submanifolds in de Sitter space



Corollary 3

Let ψ : Σn → J− ⊂ Sn+2
1 be a codimension-two complete spacelike

submanifold contained in J−.

Σ is minimal if and only if there exists an isometry

Ψ : (Σn, 〈, 〉)→ (Sn, 〈, 〉0)

such that ψ = φb ◦Ψ, where φb : Sn→J− ⊂ Sn+2
1 is the embedding

φb(p) = (〈p,b〉0, p, 〈p,b〉0).

for any b ∈ Rn+1.
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A uniqueness result for the marginally trapped type
equation on compact manifolds

Motivated by the geometric meaning of the solutions to the partial
differential equation 2u∆u − n(1 + ‖∇u‖2 − u2) = 0, we establish
the following intrinsic uniqueness result for this equation.

Theorem 2

Let (Σ, 〈, 〉) be a compact, Riemannian manifold of dimension n ≥ 2
and Ricci curvature satisfying

Ric ≥ K

for some constant K > (n − 1).

The only positive solution to the partial differential equation

2u∆u − n(1 + ‖∇u‖2 − u2) = 0 (MT)

on Σ is the constant function u ≡ 1.

Luis J. Aĺıas Trapped submanifolds in de Sitter space



A uniqueness result for the marginally trapped type
equation on compact manifolds

Motivated by the geometric meaning of the solutions to the partial
differential equation 2u∆u − n(1 + ‖∇u‖2 − u2) = 0, we establish
the following intrinsic uniqueness result for this equation.

Theorem 2

Let (Σ, 〈, 〉) be a compact, Riemannian manifold of dimension n ≥ 2
and Ricci curvature satisfying

Ric ≥ K

for some constant K > (n − 1).

The only positive solution to the partial differential equation

2u∆u − n(1 + ‖∇u‖2 − u2) = 0 (MT)

on Σ is the constant function u ≡ 1.
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Proof of Theorem 2

Consider the vector field

V = u−(n−1)

(
1

2
∇‖∇u‖2 − ∆u

n
∇u
)
.

The divergence of V is given by

div(V ) =u−(n−1)

(
1

2
∆‖∇u‖2 − 1

n
((∆u)2 + 〈∇∆u,∇u〉)

)
− n − 1

2
u−n〈∇‖∇u‖2,∇u〉 − n − 1

n
u−n∆u‖∇u‖2.

(2)

Bochner-Lichnerowicz formula states that

1

2
∆‖∇u‖2 = ‖∇2u‖2 + 〈∇∆u,∇u〉+ Ric(∇u,∇u).

Using this into (2) jointly with (MT) we obtain

div(V ) =u−(n−1)

(
‖∇2u‖2 − (∆u)2

n

)
+ u−(n−1)

(
Ric(∇u,∇u)− (n − 1)‖∇u‖2

)
.
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Integrating this and using the divergence theorem we obtain∫
Σ

u−(n−1)

(
‖∇2u‖2 − (∆u)2

n
+ Ric(∇u,∇u)− (n − 1)‖∇u‖2

)
= 0.

(3)

We know from Cauchy-Schwarz inequality that

‖∇2u‖2 − (∆u)2

n
≥ 0,

with equality if and only if ∇u is a conformal vector field on Σ.

On the other hand, from Ric ≥ K we also have

Ric(∇u,∇u)− (n − 1)‖∇u‖2 ≥ (K − (n − 1))‖∇u‖2 ≥ 0

Therefore, from (3) we conclude that ‖∇2u‖2 − (∆u)2

n = 0, and

Ric(∇u,∇u)− (n − 1)‖∇u‖2 = (K − (n − 1))‖∇u‖2 = 0.

Since K > (n − 1), this last equation implies that u is constant and,
by (MT) it must be u ≡ 1.
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Remark: Theorem 2 is not true if K = n − 1

When K = n − 1, if u is non-constant we conclude from the
reasoning above that ∇u is a conformal vector field on Σ which is a
direction of least Ricci curvature at points where ∇u(p) 6= 0.

This is in fact what happens with the non-constant solutions given
in Example 2, where

u(p) = f (p) =
1

〈p,b〉0 +
√

1 + ‖b‖2
0

and Σ = Sn with the metric 〈, 〉 = f 2〈, 〉0.
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Trapped submanifolds in the Lorentz-Minkowski space

Light cone of the Lorentz-Minkowski space

The light cone in Ln+2 is the subset

Λ = {x ∈ Ln+2 : 〈x , x〉 = 0, x 6= 0}, x = (x1, . . . , xn+2).

Geometrically, Λ corresponds to the subset of all points of the
Lorentz-Minkowski space which can be reached from the origin 0
through a null geodesic starting at 0.

The future component of Λ is

Λ+ = {x ∈ Ln+2 : 〈x , x〉 = 0, x1 > 0}.
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Trapped submanifolds into the light cone

Let ψ : Σn → Ln+2 be a codimension-two spacelike submanifold.

Assume that ψ(Σ) is contained into the future connected
component of the light cone

ψ(Σ) ⊂ Λ+ = {x ∈ Ln+2 : 〈x , x〉 = 0, x1 > 0}.

Define the function u : Σ→ (0,+∞) by

u = −〈ψ, e1〉 = ψ1 > 0.

Future-pointing normal null frame

In these conditions

ξ = ψ and η = −1 + ‖∇u‖2

2u2
ξ +

1

u
e⊥1

gives two future-pointing null normal vector fields globally defined on
Σ with 〈ξ, η〉 = −1, where we are denoting

e1 = e>1 (p) + e⊥1 (p), p ∈ Σ.
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Null shape operators

The corresponding null second forms associated to the global null frame
{ξ, η} are given by

Aξ = I and Aη = −1 + ‖∇u‖2

2u2
I +

1

u
∇2u,

where ∇2u is the Hessian operator of u.

In particular, the null expansions are

θξ =
1

n
tr(Aξ) = 1 > 0

and

θη =
1

n
tr(Aη) =

2u∆u − n(1 + ‖∇u‖2)

2nu2
,

where ∆u is the Laplacian of u.
Therefore, Σ is marginally trapped if and only if θη = 0, that is,

2u∆u − n(1 + ‖∇u‖2) = 0 on Σ.

In that case, it is necessarily past marginally trapped since
θξ = 1 > 0.
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On the other hand, it follows from the Gauss equation that the Ricci
and the scalar curvatures of Σ are given by

Ric(X ,Y ) = (n−1)〈H,H〉〈X ,Y 〉+n − 2

nu
(∆u〈X ,Y 〉−nHess u(X ,Y )),

and
Scal = n(n − 1)〈H,H〉.

Corollary 4

Let ψ : Σn → Λ+ ⊂ Ln+2 be a codimension-two spacelike submanifold
which is contained in the future component of the light cone of the
Lorentz-Minkowski space.

Σ is (necessarily past) marginally trapped if and only if u = −〈ψ, e0〉
satisfies the differential equation

2u∆u − n(1 + ‖∇u‖2) = 0 on Σ.

Σ is (necessarily past) weakly trapped if and only if u = −〈ψ, e0〉
satisfies the differential inequality

2u∆u − n(1 + ‖∇u‖2) ≥ 0 on Σ.
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Examples

Example 4

Let ψ : Rn → Λ+ ⊂ Ln+2 be the map given by

ψ(p) =

(
‖p‖2 + 1

2
,
‖p‖2 − 1

2
, p

)
, u(p) =

‖p‖2 + 1

2
.

Is is not difficult to see that for every v,w ∈ TpRn,

〈dψp(v), dψp(w)〉 = 〈v,w〉Rn .

That is ψ∗(〈, 〉) = 〈, 〉Rn , which means that ψ is an isometric

immersion of (Rn, 〈, 〉Rn) into Λ+ ⊂ Ln+2.

In particular, ∇u(p) = ∇Rn

u(p) = p and ∆u(p) = ∆Rnu(p) = n,
and u satisfies

2u∆u − n(1 + ‖∇u‖2) = n(‖p‖2 + 1)− n(1 + ‖p‖2) = 0

which means ψ is a marginally trapped immersion of Rn into Λ+.
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Luis J. Aĺıas Trapped submanifolds in de Sitter space



Examples

Example 4

Let ψ : Rn → Λ+ ⊂ Ln+2 be the map given by

ψ(p) =

(
‖p‖2 + 1

2
,
‖p‖2 − 1

2
, p

)
, u(p) =

‖p‖2 + 1

2
.

Is is not difficult to see that for every v,w ∈ TpRn,

〈dψp(v), dψp(w)〉 = 〈v,w〉Rn .

That is ψ∗(〈, 〉) = 〈, 〉Rn , which means that ψ is an isometric

immersion of (Rn, 〈, 〉Rn) into Λ+ ⊂ Ln+2.

In particular, ∇u(p) = ∇Rn

u(p) = p and ∆u(p) = ∆Rnu(p) = n,
and u satisfies

2u∆u − n(1 + ‖∇u‖2) = n(‖p‖2 + 1)− n(1 + ‖p‖2) = 0

which means ψ is a marginally trapped immersion of Rn into Λ+.
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Examples

Example 5

Let φ : (0,+∞)×Hn−1 → Λ+ ⊂ Ln+2 be the map given by

ψ(t, p) = (p, cos(t), sin(t)), u(p) = p1.

Is is not difficult to see that φ∗(〈, 〉) = dt2 + 〈, 〉Hn−1 , which means
that φ gives an isometric immersion of the Riemannian product
manifold (0,+∞)×Hn−1 into Λ+ ⊂ Ln+2.

In particular, and after some computations, we have

‖∇u‖2 = −1 + u2 and ∆u = (n − 1)u,

which implies that

2u∆u − n(1 + ‖∇u‖2) = (n − 2)u2 ≥ 0.

Therefore, Σ is a weakly trapped submanifold, and it is marginally
trapped if, and only if n = 2.
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Non-existence of weakly marginally trapped submanifolds
into the light cone

Our first result establishes the non-existence of compact weakly trapped
submanifolds into Ln+2

Proposition 4

There exists no codimension two compact weakly trapped submanifold in
Ln+2.

The proof of Proposition 4 follows from that fact that

∆u = −n〈H, e1〉

and that the mean curvature vector field H satisfies 〈H, e1〉 < 0 or
〈H, e1〉 > 0 since H is not spacelike.

Therefore ∆u > 0 (or ∆u < 0) on Σ and from the divergence
theorem we have ∫

Σ

∆udΣ = 0

what implies ∆u ≡ 0 and gives us a contradiction.

Luis J. Aĺıas Trapped submanifolds in de Sitter space



Non-existence of weakly marginally trapped submanifolds
into the light cone

Our first result establishes the non-existence of compact weakly trapped
submanifolds into Ln+2

Proposition 4

There exists no codimension two compact weakly trapped submanifold in
Ln+2.

The proof of Proposition 4 follows from that fact that

∆u = −n〈H, e1〉

and that the mean curvature vector field H satisfies 〈H, e1〉 < 0 or
〈H, e1〉 > 0 since H is not spacelike.

Therefore ∆u > 0 (or ∆u < 0) on Σ and from the divergence
theorem we have ∫

Σ

∆udΣ = 0

what implies ∆u ≡ 0 and gives us a contradiction.
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As a consequence, and using a compactness result for codimension two
spacelike submanifolds into the light cone of Ln+2, we have the following.

Corollary 5

There is no codimension two complete weakly trapped immersed
submanifold in Λ+ ⊂ Ln+2 for which the positive function u = −〈ψ, e1〉
satisfies

u ≤ Cr log r , r >> 1.

In particular, there is no codimension two complete weakly trapped
immersed submanifold in Λ+ ⊂ Ln+2 for which the positive function u is
bounded from above.

More generally, with the aid of the weak maximum principle we can
extend this non-existence result to stochastically complete submanifolds
as follows

Theorem 3

There is no codimension two stochastically complete weakly trapped
immersed submanifold in Λ+ ⊂ Ln+2 for which the positive function u is
bounded from above.
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Stochastic completeness and the weak maximum principle

The weak maximum principle is said to hold on Σ if, for any
u ∈ C2(Σ) with u∗ < +∞ there is a sequence {pk}k∈N in Σ with

(i) u(pk) > u∗ − 1

k
, and (ii) ∆u(pk) <

1

k
.

Pigola, Rigoli and Setti (2003) proved that the weak maximum
principle holds on a (non-necessarily complete) Riemannian manifold
Σ if and only if Σ is stochastically complete.

Recall that Σ is said to be stochastically complete if its Brownian
motion is stochastically complete, i.e, the probability of a particle to
be found in the state space is constantly equal to 1.

This is equivalent (among other conditions) to the fact that for
every λ > 0, the only non-negative bounded smooth solution u of
∆u ≥ λu on Σ is the constant u = 0.

In particular, every parabolic manifold is stochastically complete.
Hence, the weak max principle holds on every parabolic manifold.
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Proof of Theorem 3

Let ψ : Σn → Λ+ ⊂ Ln+2 be an n-dimensional stochastically
complete weakly trapped submanifold such as ψ(Σ) ⊂ Λ+.

Consider u = −〈ψ, e1〉 as usual, which satisfies

2u∆u − n(1 + ‖∇u‖2) ≥ 0. (4)

Supose that u∗ = supΣ u < +∞. Since Σ is stochastically complete,
by the weak maximum principle there exists a sequence
{pk}k∈N ⊂ Σ with

∆u(pk) <
1

k
for every k ∈ N

Putting this into (4) we obtain

n ≤ n(1 + ‖∇u(pk)‖2) ≤ 2u(pk)∆u(pk) < 2
u(pk)

k
,

and making k → +∞ we get

n ≤ 0

which is not possible.
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That’s all !!

Thank you very much for your attention
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