Trapped submanifolds in de Sitter space

Luis J. Alías¹

Departamento de Matemáticas Universidad de Murcia

IX International Meeting on Lorentzian Geometry Institute of Mathematics, Polish Academy of Sciences Warsaw, Poland June 18, 2018

¹Partially supported by MINECO/FEDER project reference MTM2015-65430-P, Spain, and Fundación Séneca project reference 19901/GERM/15, Spain, and Fundación Séneca project reference 19901/Seneca project reference 1990 The results I am going to introduce in this talk have been obtained in collaboration with the following colleagues:

- * Verónica L. Cánovas, from Universidad de Murcia (Spain).
- * Marco Rigoli, from Università degli Studi di Milano (Italy).

The results I am going to introduce in this talk have been obtained in collaboration with the following colleagues:

- * Verónica L. Cánovas, from Universidad de Murcia (Spain).
- * Marco Rigoli, from Università degli Studi di Milano (Italy).
- They can be found in the following papers:
 - Trapped submanifolds contained into a null hypersurface of de Sitter spacetime, to appear in Communications in Contemporary Mathematics, DOI 10.1142/S0219199717500596. Available online since July 2017.
 - Codimension two spacelike submanifolds of the Lorentz-Minkowski spacetime into the light cone, preprint 2017. Submitted.

The results I am going to introduce in this talk have been obtained in collaboration with the following colleagues:

- * Verónica L. Cánovas, from Universidad de Murcia (Spain).
- * Marco Rigoli, from Università degli Studi di Milano (Italy).
- They can be found in the following papers:
 - Trapped submanifolds contained into a null hypersurface of de Sitter spacetime, to appear in Communications in Contemporary Mathematics, DOI 10.1142/S0219199717500596. Available online since July 2017.
 - Codimension two spacelike submanifolds of the Lorentz-Minkowski spacetime into the light cone, preprint 2017. Submitted.
- They will be part of **Veronica's PhD thesis**, to be defended in September 2018 (I hope so...)

• Consider an (n + 2)-dimensional spacetime M_1^{n+2} , $n \ge 2$, that is, a time-oriented Lorentzian manifold of dimension $n + 2 \ge 4$.

< ∃ > _

- Consider an (n + 2)-dimensional spacetime M_1^{n+2} , $n \ge 2$, that is, a time-oriented Lorentzian manifold of dimension $n + 2 \ge 4$.
- Let Σⁿ be a codimension-two spacelike submanifold immersed into the spacetime M.

- Consider an (n + 2)-dimensional spacetime M_1^{n+2} , $n \ge 2$, that is, a time-oriented Lorentzian manifold of dimension $n + 2 \ge 4$.
- Let Σ^n be a **codimension-two** spacelike submanifold immersed into the spacetime M.
- That is, Σ is an *n*-dimensional connected manifold admitting a smooth immersion $\psi : \Sigma \rightarrow M$ such that the induced metric on Σ is Riemannian.

- Consider an (n + 2)-dimensional spacetime M_1^{n+2} , $n \ge 2$, that is, a time-oriented Lorentzian manifold of dimension $n + 2 \ge 4$.
- Let Σ^n be a **codimension-two** spacelike submanifold immersed into the spacetime M.
- That is, Σ is an *n*-dimensional connected manifold admitting a smooth immersion $\psi : \Sigma \rightarrow M$ such that the induced metric on Σ is Riemannian.

Second fundamental form

Let $II : \mathfrak{X}(\Sigma) \times \mathfrak{X}(\Sigma) \rightarrow \mathfrak{X}^{\perp}(\Sigma)$ be the vector valued **second fundamental form** of the submanifold, that is the symmetric tensor

$$\amalg(X,Y)=-(\overline{\nabla}_XY)^{\perp}$$

★≣▶

- Consider an (n + 2)-dimensional spacetime M_1^{n+2} , $n \ge 2$, that is, a time-oriented Lorentzian manifold of dimension $n + 2 \ge 4$.
- Let Σ^n be a **codimension-two** spacelike submanifold immersed into the spacetime M.
- That is, Σ is an *n*-dimensional connected manifold admitting a smooth immersion $\psi : \Sigma \rightarrow M$ such that the induced metric on Σ is Riemannian.

Second fundamental form

Let $II : \mathfrak{X}(\Sigma) \times \mathfrak{X}(\Sigma) \rightarrow \mathfrak{X}^{\perp}(\Sigma)$ be the vector valued **second fundamental form** of the submanifold, that is the symmetric tensor

$$\amalg(X,Y) = -(\overline{\nabla}_X Y)^{\perp}$$

Mean curvature vector field

The **mean curvature vector field** of Σ is given by

$$\mathbf{H} = \frac{1}{n} \operatorname{trace}(\mathrm{II}) \in \mathfrak{X}^{\perp}(\Sigma).$$

The mean curvature vector field of Σ is given by

$$\mathbf{H} = rac{1}{n} \operatorname{trace}(\amalg) \in \mathfrak{X}^{\perp}(\Sigma).$$

The submanifold $\boldsymbol{\Sigma}$ is said to be

∢ ≣ ≯

The **mean curvature vector field** of Σ is given by

$$\mathbf{H} = rac{1}{n} \operatorname{trace}(\amalg) \in \mathfrak{X}^{\perp}(\Sigma).$$

The submanifold $\boldsymbol{\Sigma}$ is said to be

• Future (past) trapped if H is timelike and future-pointing (past-pointing) on Σ.

∢ ≣ ≯

The **mean curvature vector field** of Σ is given by

$$\mathbf{H} = rac{1}{n} \operatorname{trace}(\amalg) \in \mathfrak{X}^{\perp}(\Sigma).$$

The submanifold $\boldsymbol{\Sigma}$ is said to be

- Future (past) trapped if H is timelike and future-pointing (past-pointing) on Σ .
- Future (past) marginally trapped if H is null and future-pointing (past-pointing) on Σ .

< ∃ →

The **mean curvature vector field** of Σ is given by

$$\mathbf{H} = rac{1}{n} \operatorname{trace}(\amalg) \in \mathfrak{X}^{\perp}(\Sigma).$$

The submanifold $\boldsymbol{\Sigma}$ is said to be

- Future (past) trapped if H is timelike and future-pointing (past-pointing) on Σ .
- Future (past) marginally trapped if H is null and future-pointing (past-pointing) on Σ .
- Future (past) weakly trapped if H is causal and future-pointing (past-pointing) on Σ .

< ∃→

The **mean curvature vector field** of Σ is given by

$$\mathbf{H} = rac{1}{n} \operatorname{trace}(\amalg) \in \mathfrak{X}^{\perp}(\Sigma).$$

The submanifold $\boldsymbol{\Sigma}$ is said to be

- Future (past) trapped if H is timelike and future-pointing (past-pointing) on Σ .
- Future (past) marginally trapped if H is null and future-pointing (past-pointing) on Σ .
- Future (past) weakly trapped if H is causal and future-pointing (past-pointing) on Σ .
- The extreme case $\mathbf{H} = 0$ corresponds to a minimal submanifold.

< ∃→

 Each normal space (T_pΣ)[⊥], p ∈ Σ, is timelike and two dimensional, and hence admits two future-pointing null directions normal to Σ.

★ 프 ▶ - 프

- Each normal space (T_pΣ)[⊥], p ∈ Σ, is timelike and two dimensional, and hence admits two future-pointing null directions normal to Σ.
- This, if the normal bundle is trivial, Σ admits a globally defined future-pointing normal null frame $\{\xi, \eta\}$, unique up to positive pointwise scaling, satisfying $\langle \xi, \eta \rangle = -1$.

E ► ★ E ► _ E

- Each normal space (T_pΣ)[⊥], p ∈ Σ, is timelike and two dimensional, and hence admits two future-pointing null directions normal to Σ.
- This, if the normal bundle is trivial, Σ admits a globally defined future-pointing normal null frame $\{\xi, \eta\}$, unique up to positive pointwise scaling, satisfying $\langle \xi, \eta \rangle = -1$.
- As usual in relativity, we may decompose the second fundamental form into two scalar valued null second fundamental forms, the Weingarten (or shape) operators associated to ξ and η .

- 金田 ト 三臣

- Each normal space (T_pΣ)[⊥], p ∈ Σ, is timelike and two dimensional, and hence admits two future-pointing null directions normal to Σ.
- This, if the normal bundle is trivial, Σ admits a globally defined future-pointing normal null frame $\{\xi, \eta\}$, unique up to positive pointwise scaling, satisfying $\langle \xi, \eta \rangle = -1$.
- As usual in relativity, we may decompose the second fundamental form into two scalar valued null second fundamental forms, the Weingarten (or shape) operators associated to ξ and η .
- That is, the symmetric operators $A_{\xi}, A_{\eta} : \mathfrak{X}(\Sigma) \rightarrow \mathfrak{X}(\Sigma)$ given by

$$\langle A_{\xi}X,Y
angle = \langle \amalg(X,Y),\xi
angle, ext{ and } \langle A_{\eta}X,Y
angle = \langle \amalg(X,Y),\eta
angle.$$

프) (프) 프

- Each normal space (T_pΣ)[⊥], p ∈ Σ, is timelike and two dimensional, and hence admits two future-pointing null directions normal to Σ.
- This, if the normal bundle is trivial, Σ admits a globally defined future-pointing normal null frame $\{\xi, \eta\}$, unique up to positive pointwise scaling, satisfying $\langle \xi, \eta \rangle = -1$.
- As usual in relativity, we may decompose the second fundamental form into two scalar valued null second fundamental forms, the Weingarten (or shape) operators associated to ξ and η .
- That is, the symmetric operators $A_{\xi}, A_{\eta} : \mathfrak{X}(\Sigma) \rightarrow \mathfrak{X}(\Sigma)$ given by

$$\langle A_{\xi}X,Y
angle = \langle \amalg(X,Y),\xi
angle, ext{ and } \langle A_{\eta}X,Y
angle = \langle \amalg(X,Y),\eta
angle.$$

• Therefore, in terms of $\{\xi, \eta\}$ we have

$$\mathbf{H} = -\theta_{\eta}\xi - \theta_{\xi}\eta$$

where

$$heta_{\xi} = rac{1}{n} ext{trace}(A_{\xi}) \quad ext{and} \quad heta_{\eta} = rac{1}{n} ext{trace}(A_{\eta})$$

define the null mean curvatures (or null expansion scalars) of Σ .

In particular

$$\langle \mathbf{H}, \mathbf{H} \rangle = -2\theta_{\xi}\theta_{\eta}$$

so that

ヨト くヨトー

æ

In particular

$$\langle {\bf H}, {\bf H} \rangle = -2 \theta_{\xi} \theta_{\eta}$$

so that

- Σ is a trapped submanifold if and only if
 - i) either both $\theta_{\xi} < 0$ and $\theta_{\eta} < 0$ (future trapped),
 - ii) or both $\theta_{\xi} > 0$ and $\theta_{\eta} > 0$ (past trapped).

∢ ≣ ≯

In particular

$$\langle \mathbf{H},\mathbf{H}\rangle = -2\theta_{\xi}\theta_{\eta}$$

so that

- $\bullet~\Sigma$ is a trapped submanifold if and only if
 - i) either both $heta_{\xi} < 0$ and $heta_{\eta} < 0$ (future trapped),
 - ii) or both $\theta_{\xi} > 0$ and $\theta_{\eta} > 0$ (past trapped).
- $\bullet~\Sigma$ is a marginally trapped submanifold if and only if
 - i) either $\theta_{\xi} = 0$ and $\theta_{\eta} \neq 0$ (future marginally trapped if $\theta_{\eta} < 0$ and past marginally trapped if $\theta_{\eta} > 0$),
 - ii) or $\theta_{\xi} \neq 0$ and $\theta_{\eta} = 0$ (future marginally trapped if $\theta_{\xi} < 0$ and past marginally trapped if $\theta_{\xi} > 0$).

< ∃→

In particular

$$\langle {\bf H}, {\bf H} \rangle = -2 \theta_{\xi} \theta_{\eta}$$

so that

- $\bullet~\Sigma$ is a trapped submanifold if and only if
 - i) either both $\theta_{\xi} < 0$ and $\theta_{\eta} < 0$ (future trapped),
 - ii) or both $heta_{\xi} > 0$ and $heta_{\eta} > 0$ (past trapped).
- $\bullet~\Sigma$ is a marginally trapped submanifold if and only if
 - i) either $\theta_{\xi} = 0$ and $\theta_{\eta} \neq 0$ (future marginally trapped if $\theta_{\eta} < 0$ and past marginally trapped if $\theta_{\eta} > 0$),
 - ii) or $\theta_{\xi} \neq 0$ and $\theta_{\eta} = 0$ (future marginally trapped if $\theta_{\xi} < 0$ and past marginally trapped if $\theta_{\xi} > 0$).

$\bullet~\Sigma$ is a weakly trapped submanifold if and only if

- i) either both $\theta_{\xi} \leq 0$ and $\theta_{\eta} \leq 0$ with $\theta_{\xi}^2 + \theta_{\eta}^2 > 0$ (future weakly trapped),
- ii) or both $\theta_{\xi} \ge 0$ and $\theta_{\eta} \ge 0$ with $\theta_{\xi}^2 + \theta_{\eta}^2 > 0$ (past weakly trapped).

(E) < E)</p>

In particular

$$\langle {\bf H}, {\bf H} \rangle = -2 \theta_{\xi} \theta_{\eta}$$

so that

- $\bullet~\Sigma$ is a trapped submanifold if and only if
 - i) either both $heta_{\xi} < 0$ and $heta_{\eta} < 0$ (future trapped),
 - ii) or both $heta_{\xi} > 0$ and $heta_{\eta} > 0$ (past trapped).
- $\bullet~\Sigma$ is a marginally trapped submanifold if and only if
 - i) either $\theta_{\xi} = 0$ and $\theta_{\eta} \neq 0$ (future marginally trapped if $\theta_{\eta} < 0$ and past marginally trapped if $\theta_{\eta} > 0$),
 - ii) or $\theta_{\xi} \neq 0$ and $\theta_{\eta} = 0$ (future marginally trapped if $\theta_{\xi} < 0$ and past marginally trapped if $\theta_{\xi} > 0$).

• Σ is a weakly trapped submanifold if and only if

i) either both $\theta_{\xi} \leq 0$ and $\theta_{\eta} \leq 0$ with $\theta_{\xi}^2 + \theta_{\eta}^2 > 0$ (future weakly trapped),

ii) or both $\theta_{\xi} \ge 0$ and $\theta_{\eta} \ge 0$ with $\theta_{\xi}^2 + \theta_{\eta}^2 > 0$ (past weakly trapped).

• This was the original formulation of trapped surfaces given by Penrose in terms of the signs or the vanishing of the null expansions.

ヨ▶ ▲ヨ▶ ヨ のへの

 Let Lⁿ⁺³ be the (n + 3)-dimensional Lorentz-Minkowski space, endowed with the Lorentzian metric

$$\langle , \rangle = -(dx_0)^2 + (dx_1)^2 + \cdots + (dx_{n+2})^2, \qquad x = (x_0, \ldots, x_{n+2})$$

< ≣ →

 Let Lⁿ⁺³ be the (n + 3)-dimensional Lorentz-Minkowski space, endowed with the Lorentzian metric

$$\langle , \rangle = -(dx_0)^2 + (dx_1)^2 + \cdots + (dx_{n+2})^2, \qquad x = (x_0, \dots, x_{n+2})$$

• The hyperquadric

$$\mathbb{S}_1^{n+2} = \{ x \in \mathbb{L}^{n+3} : \langle x, x \rangle = 1 \}$$

endowed with the induced metric from \mathbb{L}^{n+3} is the standard model of the **de Sitter space**.

 Let Lⁿ⁺³ be the (n + 3)-dimensional Lorentz-Minkowski space, endowed with the Lorentzian metric

$$\langle , \rangle = -(dx_0)^2 + (dx_1)^2 + \cdots + (dx_{n+2})^2, \qquad x = (x_0, \dots, x_{n+2})$$

• The hyperquadric

$$\mathbb{S}_1^{n+2} = \{ x \in \mathbb{L}^{n+3} : \langle x, x \rangle = 1 \}$$

endowed with the induced metric from \mathbb{L}^{n+3} is the standard model of the **de Sitter space**.

• \mathbb{S}_1^{n+2} is a complete, simply connected $(n \ge 2)$, (n+2)-dimensional Lorentzian manifold with constant sectional curvature 1.

< ≣ > ____

 Let Lⁿ⁺³ be the (n + 3)-dimensional Lorentz-Minkowski space, endowed with the Lorentzian metric

$$\langle , \rangle = -(dx_0)^2 + (dx_1)^2 + \cdots + (dx_{n+2})^2, \qquad x = (x_0, \dots, x_{n+2})$$

The hyperquadric

$$\mathbb{S}_1^{n+2} = \{ x \in \mathbb{L}^{n+3} : \langle x, x \rangle = 1 \}$$

endowed with the induced metric from \mathbb{L}^{n+3} is the standard model of the **de Sitter space**.

- \mathbb{S}_1^{n+2} is a complete, simply connected $(n \ge 2)$, (n+2)-dimensional Lorentzian manifold with constant sectional curvature 1.
- In some sense, \mathbb{S}_1^{n+2} can be seen, in Lorentzian geometry, as the equivalent of the Euclidean sphere.

< ⊒ >

 Let Lⁿ⁺³ be the (n + 3)-dimensional Lorentz-Minkowski space, endowed with the Lorentzian metric

$$\langle , \rangle = -(dx_0)^2 + (dx_1)^2 + \cdots + (dx_{n+2})^2, \qquad x = (x_0, \dots, x_{n+2})$$

• The hyperquadric

$$\mathbb{S}_1^{n+2} = \{ x \in \mathbb{L}^{n+3} : \langle x, x \rangle = 1 \}$$

endowed with the induced metric from \mathbb{L}^{n+3} is the standard model of the **de Sitter space**.

- \mathbb{S}_1^{n+2} is a complete, simply connected $(n \ge 2)$, (n+2)-dimensional Lorentzian manifold with constant sectional curvature 1.
- In some sense, \mathbb{S}_1^{n+2} can be seen, in Lorentzian geometry, as the equivalent of the Euclidean sphere.
- Consider on \mathbb{S}_1^{n+2} the **time-orientation** induced by the globally defined timelike vector field $e_0^* \in \mathfrak{X}(\mathbb{S}_1^{n+2})$ given by

$$e_0^*(x) = e_0 - \langle e_0, x \rangle x = e_0 + x_0 x, \qquad e_0 = (1, 0, \dots, 0),$$

with

$$\left\langle e_{0}^{*}(x),e_{0}^{*}(x)
ight
angle =-1-\left\langle e_{0},x
ight
angle ^{2}\leq-1<0.$$

• Let $\psi: \Sigma^n \to \mathbb{S}_1^{n+2}$ be a codimension-two spacelike submanifold of de Sitter space.

< ≣ →

- Let $\psi: \Sigma^n \to \mathbb{S}_1^{n+2}$ be a codimension-two spacelike submanifold of de Sitter space.
- We are interested in the case where Σ is contained into one of the two following **null hypersurfaces** of de Sitter space:

- Let $\psi: \Sigma^n \to \mathbb{S}_1^{n+2}$ be a codimension-two spacelike submanifold of de Sitter space.
- We are interested in the case where Σ is contained into one of the two following **null hypersurfaces** of de Sitter space:
 - The future component of the light cone.

- Let $\psi: \Sigma^n \to \mathbb{S}_1^{n+2}$ be a codimension-two spacelike submanifold of de Sitter space.
- We are interested in the case where Σ is contained into one of the two following **null hypersurfaces** of de Sitter space:
 - The future component of the light cone.
 - The past infinite of the steady state space.

- Let $\psi: \Sigma^n \to \mathbb{S}_1^{n+2}$ be a codimension-two spacelike submanifold of de Sitter space.
- We are interested in the case where Σ is contained into one of the two following **null hypersurfaces** of de Sitter space:
 - The future component of the light cone.
 - The past infinite of the steady state space.
- Recall that a null hypersurface into a spacetime *M* is a smooth codimension one embedded submanifold such that the pull-back of the Lorentzian metric of *M* is degenerate.

- Let $\psi: \Sigma^n \to \mathbb{S}_1^{n+2}$ be a codimension-two spacelike submanifold of de Sitter space.
- We are interested in the case where Σ is contained into one of the two following **null hypersurfaces** of de Sitter space:
 - The future component of the light cone.
 - The past infinite of the steady state space.
- Recall that a null hypersurface into a spacetime *M* is a smooth codimension one embedded submanifold such that the pull-back of the Lorentzian metric of *M* is degenerate.
- When the submanifold Σ is contained into a null hypersurface of M, there always exists a globally defined future-pointing normal null frame {ξ, η} on Σ.

The light cone of de Sitter space

Light cone of de Sitter spacetime

Fix a point $\mathbf{a} \in \mathbb{S}_1^{n+2}$. The light cone in \mathbb{S}_1^{n+2} with vertex at \mathbf{a} is the subset

$$\Lambda_{\mathbf{a}} = \{ x \in \mathbb{S}_1^{n+2} : \langle \mathbf{a}, x \rangle = 1, x \neq \mathbf{a} \}.$$

The light cone of de Sitter space

Light cone of de Sitter spacetime

Fix a point $\mathbf{a} \in \mathbb{S}_1^{n+2}$. The light cone in \mathbb{S}_1^{n+2} with vertex at \mathbf{a} is the subset

$$\Lambda_{\mathbf{a}} = \{ x \in \mathbb{S}_1^{n+2} : \langle \mathbf{a}, x \rangle = 1, x \neq \mathbf{a} \}.$$

• Geometrically, Λ_a corresponds to the subset of all points of de Sitter space which can be reached from **a** through a null geodesic starting at **a**.

The light cone of de Sitter space

Light cone of de Sitter spacetime

Fix a point $\mathbf{a} \in \mathbb{S}_1^{n+2}$. The light cone in \mathbb{S}_1^{n+2} with vertex at \mathbf{a} is the subset

$$\Lambda_{\mathbf{a}} = \{ x \in \mathbb{S}_1^{n+2} : \langle \mathbf{a}, x \rangle = 1, x \neq \mathbf{a} \}.$$

- Geometrically, Λ_a corresponds to the subset of all points of de Sitter space which can be reached from **a** through a null geodesic starting at **a**.
- The future component of Λ_a is

$$\Lambda_{\mathbf{a}}^{+} = \{ x \in \mathbb{S}_{1}^{n+2} : \langle \mathbf{a}, x \rangle = 1, \langle x - \mathbf{a}, \mathbf{e}_{0} \rangle = -x_{0} + a_{0} < 0 \}.$$

• Let $\psi: \Sigma^n \to \mathbb{S}_1^{n+2}$ be a codimension-two spacelike submanifold.

★ 글 ▶ → 글

- Let $\psi: \Sigma^n \to \mathbb{S}_1^{n+2}$ be a codimension-two spacelike submanifold.
- Assume that ψ(Σ) is contained into the future connected component of the light cone with vertex at a = (0,0,...,1) ∈ S₁ⁿ⁺²,

$$\psi(\boldsymbol{\Sigma}) \subset \Lambda^+ = \{ x \in \mathbb{S}_1^{n+2} : x_{n+2} = 1, x_0 > 0, x \neq \mathbf{a} \}.$$

- Let $\psi: \Sigma^n \to \mathbb{S}_1^{n+2}$ be a codimension-two spacelike submanifold.
- Assume that ψ(Σ) is contained into the future connected component of the light cone with vertex at a = (0,0,...,1) ∈ S₁ⁿ⁺²,

$$\psi(\boldsymbol{\Sigma}) \subset \Lambda^+ = \{ x \in \mathbb{S}_1^{n+2} : x_{n+2} = 1, x_0 > 0, x \neq \mathbf{a} \}.$$

• Define the function $u:\Sigma
ightarrow(0,+\infty)$ by

$$u = -\langle \psi, e_0 \rangle = \psi_0 > 0.$$

- Let $\psi: \Sigma^n \to \mathbb{S}_1^{n+2}$ be a codimension-two spacelike submanifold.
- Assume that ψ(Σ) is contained into the future connected component of the light cone with vertex at a = (0,0,...,1) ∈ S₁ⁿ⁺²,

$$\psi(\Sigma) \subset \Lambda^+ = \{x \in \mathbb{S}_1^{n+2} : x_{n+2} = 1, x_0 > 0, x \neq a\}.$$

• Define the function $u:\Sigma
ightarrow(0,+\infty)$ by

$$u=-\langle\psi,e_0\rangle=\psi_0>0.$$

Future-pointing normal null frame

In these conditions

$$\xi = \psi - \mathbf{a}$$
 and $\eta = -\frac{1 + \|\nabla u\|^2 + u^2}{2u^2}\xi + \frac{1}{u}e_0^{\perp}$

gives two future-pointing null normal vector fields globally defined on Σ with $\langle \xi, \eta \rangle = -1$, where we are denoting

$$e_0=e_0^ op(p)+e_0^ot(p)+\langle\psi(p),e_0
angle\psi(p),\quad p\in\Sigma.$$

The corresponding null second forms associated to the global null frame $\{\xi,\eta\}$ are given by

$$A_{\xi} = I$$
 and $A_{\eta} = -\frac{1 + \|\nabla u\|^2 - u^2}{2u^2}I + \frac{1}{u}\nabla^2 u,$

where $\nabla^2 u$ is the Hessian operator of u.

∢ ≣ ▶

The corresponding null second forms associated to the global null frame $\{\xi,\eta\}$ are given by

$$A_{\xi}=I$$
 and $A_{\eta}=-rac{1+\|
abla u\|^2-u^2}{2u^2}I+rac{1}{u}
abla^2 u,$

where $\nabla^2 u$ is the Hessian operator of u.

• In particular, the null expansions are

$$\theta_{\xi} = \frac{1}{n} \operatorname{tr}(A_{\xi}) = 1 > 0$$

and

$$\theta_{\eta} = \frac{1}{n} \operatorname{tr}(A_{\eta}) = \frac{2u\Delta u - n(1 + \|\nabla u\|^2 - u^2)}{2nu^2},$$

where Δu is the Laplacian of u.

The corresponding null second forms associated to the global null frame $\{\xi,\eta\}$ are given by

$$A_{\xi}=I$$
 and $A_{\eta}=-rac{1+\|
abla u\|^2-u^2}{2u^2}I+rac{1}{u}
abla^2 u,$

where $\nabla^2 u$ is the Hessian operator of u.

• In particular, the null expansions are

$$\theta_{\xi} = \frac{1}{n} \operatorname{tr}(A_{\xi}) = 1 > 0$$

and

$$\theta_{\eta} = \frac{1}{n} \operatorname{tr}(A_{\eta}) = \frac{2u\Delta u - n(1 + \|\nabla u\|^2 - u^2)}{2nu^2},$$

where Δu is the Laplacian of u.

• Therefore, Σ is marginally trapped if and only if $\theta_{\eta} = 0$, that is,

$$2u\Delta u - n(1 + \|\nabla u\|^2 - u^2) = 0 \quad \text{on} \quad \Sigma.$$

The corresponding null second forms associated to the global null frame $\{\xi,\eta\}$ are given by

$$A_{\xi}=I$$
 and $A_{\eta}=-rac{1+\|
abla u\|^2-u^2}{2u^2}I+rac{1}{u}
abla^2 u,$

where $\nabla^2 u$ is the Hessian operator of u.

• In particular, the null expansions are

$$\theta_{\xi} = \frac{1}{n} \operatorname{tr}(A_{\xi}) = 1 > 0$$

and

$$\theta_{\eta} = \frac{1}{n} \operatorname{tr}(A_{\eta}) = \frac{2u\Delta u - n(1 + \|\nabla u\|^2 - u^2)}{2nu^2},$$

where Δu is the Laplacian of u.

• Therefore, Σ is marginally trapped if and only if $\theta_{\eta} = 0$, that is,

$$2u\Delta u - n(1 + \|\nabla u\|^2 - u^2) = 0 \quad \text{on} \quad \Sigma.$$

• In that case, it is necessarily past marginally trapped since $\theta_{\xi} = 1 > 0$.

$$\operatorname{Ric}(X,Y) = (n-1)(1+\langle \mathbf{H},\mathbf{H}\rangle)\langle X,Y\rangle + \frac{n-2}{nu}(\Delta u \langle X,Y\rangle - n\operatorname{Hess} u(X,Y)),$$

and

$$\mathsf{Scal} = n(n-1)(1 + \langle \mathbf{H}, \mathbf{H} \rangle).$$

∢ 臣 ▶

$$\operatorname{Ric}(X,Y) = (n-1)(1+\langle \mathbf{H},\mathbf{H}\rangle)\langle X,Y\rangle + \frac{n-2}{nu}(\Delta u \langle X,Y\rangle - n\operatorname{Hess} u(X,Y)),$$

and

$$\mathsf{Scal} = n(n-1)(1 + \langle \mathbf{H}, \mathbf{H} \rangle).$$

Corollary 1

Let $\psi: \Sigma^n \to \Lambda^+ \subset \mathbb{S}_1^{n+2}$ be a codimension-two spacelike submanifold which is contained in the future component of the light cone of de Sitter space. The following assertions are equivalent:

$$\operatorname{Ric}(X,Y) = (n-1)(1+\langle \mathbf{H},\mathbf{H}\rangle)\langle X,Y\rangle + \frac{n-2}{nu}(\Delta u \langle X,Y\rangle - n\operatorname{Hess} u(X,Y)),$$

and

$$\mathsf{Scal} = n(n-1)(1 + \langle \mathbf{H}, \mathbf{H} \rangle).$$

Corollary 1

Let $\psi: \Sigma^n \to \Lambda^+ \subset \mathbb{S}_1^{n+2}$ be a codimension-two spacelike submanifold which is contained in the future component of the light cone of de Sitter space. The following assertions are equivalent:

Σ is (necessarily past) marginally trapped.

$$\operatorname{Ric}(X,Y) = (n-1)(1+\langle \mathbf{H},\mathbf{H}\rangle)\langle X,Y\rangle + \frac{n-2}{nu}(\Delta u \langle X,Y\rangle - n\operatorname{Hess} u(X,Y)),$$

and

$$\mathsf{Scal} = n(n-1)(1 + \langle \mathbf{H}, \mathbf{H} \rangle).$$

Corollary 1

Let $\psi: \Sigma^n \to \Lambda^+ \subset \mathbb{S}_1^{n+2}$ be a codimension-two spacelike submanifold which is contained in the future component of the light cone of de Sitter space. The following assertions are equivalent:

- Σ is (necessarily past) marginally trapped.
- The positive function $u=-\langle\psi,e_0
 angle$ satisfies the differential equation

$$2u\Delta u - n(1 + \|\nabla u\|^2 - u^2) = 0$$
 on Σ .

$$\operatorname{Ric}(X,Y) = (n-1)(1+\langle \mathbf{H},\mathbf{H}\rangle)\langle X,Y\rangle + \frac{n-2}{nu}(\Delta u \langle X,Y\rangle - n\operatorname{Hess} u(X,Y)),$$

and

$$\mathsf{Scal} = n(n-1)(1 + \langle \mathbf{H}, \mathbf{H} \rangle).$$

Corollary 1

Let $\psi: \Sigma^n \to \Lambda^+ \subset \mathbb{S}_1^{n+2}$ be a codimension-two spacelike submanifold which is contained in the future component of the light cone of de Sitter space. The following assertions are equivalent:

- Σ is (necessarily past) marginally trapped.
- The positive function $u=-\langle\psi,e_0
 angle$ satisfies the differential equation

$$2u\Delta u - n(1 + \|\nabla u\|^2 - u^2) = 0$$
 on Σ .

• Σ has constant scalar curvature Scal = n(n-1).

Example 1

• For each **positive** smooth function $f : \mathbb{S}^n \to (0, +\infty)$, consider the embedding $\psi_f : \mathbb{S}^n \to \Lambda^+ \subset \mathbb{S}_1^{n+2}$ given by

 $\psi_f(p) = (f(p), f(p)p, 1).$

Example 1

• For each **positive** smooth function $f : \mathbb{S}^n \to (0, +\infty)$, consider the embedding $\psi_f : \mathbb{S}^n \to \Lambda^+ \subset \mathbb{S}_1^{n+2}$ given by

$$\psi_f(p) = (f(p), f(p)p, 1).$$

• It is not difficult to see that for every $\mathbf{v}, \mathbf{w} \in \mathcal{T}_{
ho} \mathbb{S}^n$

$$\langle d(\psi_f)_{
ho}(\mathbf{v}), d(\psi_f)_{
ho}(\mathbf{w})
angle = f^2(
ho) \langle \mathbf{v}, \mathbf{w}
angle_0,$$

 \langle,\rangle_0 the standard metric of the round sphere.

Example 1

• For each **positive** smooth function $f : \mathbb{S}^n \to (0, +\infty)$, consider the embedding $\psi_f : \mathbb{S}^n \to \Lambda^+ \subset \mathbb{S}_1^{n+2}$ given by

$$\psi_f(p) = (f(p), f(p)p, 1).$$

• It is not difficult to see that for every $\mathbf{v}, \mathbf{w} \in T_p \mathbb{S}^n$

$$\langle d(\psi_f)_{
ho}(\mathbf{v}), d(\psi_f)_{
ho}(\mathbf{w})
angle = f^2(
ho) \langle \mathbf{v}, \mathbf{w}
angle_0,$$

 \langle,\rangle_0 the standard metric of the round sphere.

That is

$$\psi_f^*(\langle,\rangle) = f^2\langle,\rangle_0,$$

which means that ψ_f defines a spacelike immersion of \mathbb{S}^n into Λ^+ with induced metric conformal to \langle , \rangle_0 .

Example 1

• For each **positive** smooth function $f : \mathbb{S}^n \to (0, +\infty)$, consider the embedding $\psi_f : \mathbb{S}^n \to \Lambda^+ \subset \mathbb{S}_1^{n+2}$ given by

$$\psi_f(p) = (f(p), f(p)p, 1).$$

• It is not difficult to see that for every $\mathbf{v}, \mathbf{w} \in \mathcal{T}_{p}\mathbb{S}^{n}$

$$\langle d(\psi_f)_{
ho}(\mathbf{v}), d(\psi_f)_{
ho}(\mathbf{w})
angle = f^2(
ho) \langle \mathbf{v}, \mathbf{w}
angle_0,$$

- \langle,\rangle_0 the standard metric of the round sphere.
- That is

$$\psi_f^*(\langle,\rangle) = f^2\langle,\rangle_0,$$

which means that ψ_f defines a spacelike immersion of \mathbb{S}^n into Λ^+ with induced metric conformal to \langle , \rangle_0 .

• Moreover, ψ_f is marginally trapped if and only if f satisfies

$$2f\Delta f - n(1 + \|\nabla f\|^2 - f^2) = 0$$

on \mathbb{S}^n with respect to the **pointwise conformal metric** $f^2\langle , \rangle_0$.

We will see now that every codimension-two compact spacelike submanifold in Λ^+ is, up to a conformal diffeomorphism, as in Example 1.

< ∃ →

э

We will see now that every codimension-two compact spacelike submanifold in Λ^+ is, up to a conformal diffeomorphism, as in Example 1.

Proposition 1

Let $\psi: \Sigma^n \to \Lambda^+ \subset \mathbb{S}_1^{n+2}$ be a codimension-two compact spacelike submanifold contained in Λ^+ . There exists a **conformal diffeomorphism**

$$\Psi:(\Sigma^n,\langle,\rangle)\to(\mathbb{S}^n,\langle,\rangle_0) \quad \text{such that} \quad \langle,\rangle=u^2\Psi^*(\langle,\rangle_0),$$

with $u = -\langle \psi, e_0 \rangle = \psi_0 > 0$, and $\psi = \psi_f \circ \Psi$ where $f = u \circ \Psi^{-1}$.

In particular, the immersion ψ is an **embedding**.

We will see now that every codimension-two compact spacelike submanifold in Λ^+ is, up to a conformal diffeomorphism, as in Example 1.

Proposition 1

Let $\psi: \Sigma^n \to \Lambda^+ \subset \mathbb{S}_1^{n+2}$ be a codimension-two compact spacelike submanifold contained in Λ^+ . There exists a conformal diffeomorphism

$$\Psi: (\Sigma^n, \langle, \rangle) \to (\mathbb{S}^n, \langle, \rangle_0) \quad \text{such that} \quad \langle, \rangle = u^2 \Psi^*(\langle, \rangle_0),$$

with $u = -\langle \psi, e_0 \rangle = \psi_0 > 0$, and $\psi = \psi_f \circ \Psi$ where $f = u \circ \Psi^{-1}$.

In particular, the immersion ψ is an **embedding**. Moreover, ψ is **marginally trapped** if and only if u satisfies $2u\Delta u - n(1 + ||\nabla u||^2 - u^2) = 0$ on $(\Sigma^n, \langle, \rangle)$.

Equivalently, f satisfies $2f\Delta f - n(1 + \|\nabla f\|^2 - f^2) = 0$ on $(\mathbb{S}^n, f^2\langle, \rangle_0)$.

• Let $\psi: \Sigma^n \to \Lambda^+ \subset \mathbb{S}_1^{n+2}$ be a codimension-two spacelike submanifold contained in Λ^+ .

문에 비원에 다

3

• Let $\psi: \Sigma^n \to \Lambda^+ \subset \mathbb{S}_1^{n+2}$ be a codimension-two spacelike submanifold contained in Λ^+ .

• Then
$$\psi(p) = (u(p), \psi_1(p), \dots, \psi_{n+1}(p), 1)$$
 with

$$\sum_{i=1}^{n+1} \psi_i^2(p) = u^2(p) > 0.$$

돈에 세종에 다

э

• Let $\psi: \Sigma^n \to \Lambda^+ \subset \mathbb{S}_1^{n+2}$ be a codimension-two spacelike submanifold contained in Λ^+ .

• Then
$$\psi(p) = (u(p), \psi_1(p), \dots, \psi_{n+1}(p), 1)$$
 with $\sum_{i=1}^{n+1} \psi_i^2(p) = u^2(p) > 0.$

• Define the function $\Psi: \Sigma^n \to \mathbb{S}^n$ by $\Psi(p) = \frac{1}{u(p)}(\psi_1(p), \dots, \psi_{n+1}(p)).$

E ► ★ E ► _ E

• Let $\psi: \Sigma^n \to \Lambda^+ \subset \mathbb{S}_1^{n+2}$ be a codimension-two spacelike submanifold contained in Λ^+ .

• Then
$$\psi(p) = (u(p), \psi_1(p), \dots, \psi_{n+1}(p), 1)$$
 with $\sum_{i=1}^{n+1} \psi_i^2(p) = u^2(p) > 0.$

- Define the function $\Psi: \Sigma^n \to \mathbb{S}^n$ by $\Psi(p) = \frac{1}{u(p)}(\psi_1(p), \dots, \psi_{n+1}(p)).$
- A straightforward computation yields $\left\langle d\Psi_p(\mathbf{v}),d\Psi_p(\mathbf{w})\right\rangle_0=\frac{1}{u^2(p)}\langle\mathbf{v},\mathbf{w}\rangle$

for every $p \in \Sigma$ and $\mathbf{v}, \mathbf{w} \in T_p \Sigma$.

글 눈 옷 글 눈 드 글

• Let $\psi: \Sigma^n \to \Lambda^+ \subset \mathbb{S}_1^{n+2}$ be a codimension-two spacelike submanifold contained in Λ^+ .

• Then
$$\psi(p) = (u(p), \psi_1(p), \dots, \psi_{n+1}(p), 1)$$
 with $\sum_{i=1}^{n+1} \psi_i^2(p) = u^2(p) > 0.$

- Define the function $\Psi: \Sigma^n \to \mathbb{S}^n$ by $\Psi(p) = \frac{1}{u(p)}(\psi_1(p), \dots, \psi_{n+1}(p)).$
- A straightforward computation yields $\left\langle d\Psi_p(\mathbf{v}),d\Psi_p(\mathbf{w})\right\rangle_0=\frac{1}{u^2(p)}\langle\mathbf{v},\mathbf{w}\rangle$

for every $p \in \Sigma$ and $\mathbf{v}, \mathbf{w} \in T_p \Sigma$.

• In particular, Ψ is a **local diffeomorphism**.

- 本臣 ト 三臣

• Let $\psi: \Sigma^n \to \Lambda^+ \subset \mathbb{S}_1^{n+2}$ be a codimension-two spacelike submanifold contained in Λ^+ .

• Then
$$\psi(p) = (u(p), \psi_1(p), \dots, \psi_{n+1}(p), 1)$$
 with $\sum_{i=1}^{n+1} \psi_i^2(p) = u^2(p) > 0.$

- Define the function $\Psi: \Sigma^n \to \mathbb{S}^n$ by $\Psi(p) = \frac{1}{u(p)}(\psi_1(p), \dots, \psi_{n+1}(p)).$
- A straightforward computation yields $\langle d\Psi_{-}(\mathbf{y}) \ d\Psi_{-}(\mathbf{w}) \rangle = -\frac{1}{2}$

$$\langle d\Psi_{p}(\mathbf{v}), d\Psi_{p}(\mathbf{w}) \rangle_{0} = \frac{1}{u^{2}(p)} \langle \mathbf{v}, \mathbf{w} \rangle$$

for every $p \in \Sigma$ and $\mathbf{v}, \mathbf{w} \in \mathcal{T}_p \Sigma$.

- In particular, Ψ is a local diffeomorphism.
- Assume now that Σ is complete (that is, \langle, \rangle is a complete Riemannian metric on Σ) and $u^* = \sup_{\Sigma} u < +\infty$.

• Then the conformal metric $\widetilde{\langle,\rangle} = \frac{1}{u^2} \langle,\rangle$ is also complete on Σ .

문에 세명에 가운

- Then the conformal metric $\widetilde{\langle,\rangle} = \frac{1}{u^2}\langle,\rangle$ is also complete on Σ .
- Then, the map

$$\Psi: (\Sigma^n, \widetilde{\langle, \rangle}) \to (\mathbb{S}^n, \langle, \rangle_0)$$

★ 프 ▶ 프

- Then the conformal metric $\widetilde{\langle , \rangle} = \frac{1}{u^2} \langle , \rangle$ is also complete on Σ .
- Then, the map

$$\Psi: (\Sigma^n, \widetilde{\langle, \rangle}) \to (\mathbb{S}^n, \langle, \rangle_0)$$

 Hence, Ψ is a covering map, but Sⁿ being simply connected this means that Ψ is in fact a global diffeomorphism.

∢ ≣ ≯

- Then the conformal metric $\widetilde{\langle,\rangle} = \frac{1}{u^2}\langle,\rangle$ is also complete on Σ .
- Then, the map

$$\Psi: (\Sigma^n, \widetilde{\langle, \rangle}) \to (\mathbb{S}^n, \langle, \rangle_0)$$

- Hence, Ψ is a covering map, but Sⁿ being simply connected this means that Ψ is in fact a global diffeomorphism.
- Let $\Phi : \mathbb{S}^n \to \Sigma^n$ the inverse of Ψ . Then taking $f = u \circ \Phi$ one has $f \circ \Psi = u$ and $\psi = \psi_f \circ \Psi$. This completes the proof.

- Then the conformal metric $\widetilde{\langle , \rangle} = \frac{1}{u^2} \langle , \rangle$ is also complete on Σ .
- Then, the map

$$\Psi: (\Sigma^n, \widetilde{\langle, \rangle}) \to (\mathbb{S}^n, \langle, \rangle_0)$$

- Hence, Ψ is a covering map, but Sⁿ being simply connected this means that Ψ is in fact a global diffeomorphism.
- Let $\Phi : \mathbb{S}^n \to \Sigma^n$ the inverse of Ψ . Then taking $f = u \circ \Phi$ one has $f \circ \Psi = u$ and $\psi = \psi_f \circ \Psi$. This completes the proof.
- In our result, Σ is assumed to be **compact**.

- Then the conformal metric $\widetilde{\langle,\rangle} = \frac{1}{u^2}\langle,\rangle$ is also complete on Σ .
- Then, the map

$$\Psi: (\Sigma^n, \widetilde{\langle, \rangle}) \to (\mathbb{S}^n, \langle, \rangle_0)$$

- Hence, Ψ is a covering map, but Sⁿ being simply connected this means that Ψ is in fact a global diffeomorphism.
- Let $\Phi : \mathbb{S}^n \to \Sigma^n$ the inverse of Ψ . Then taking $f = u \circ \Phi$ one has $f \circ \Psi = u$ and $\psi = \psi_f \circ \Psi$. This completes the proof.
- In our result, Σ is assumed to be **compact**.
- But the proof also works under any assumption which implies that the conformal metric (,) is complete.

< ∃ >

- Then the conformal metric $\langle , \rangle = \frac{1}{u^2} \langle , \rangle$ is also complete on Σ .
- Then, the map

$$\Psi: (\Sigma^n, \widetilde{\langle, \rangle}) \to (\mathbb{S}^n, \langle, \rangle_0)$$

- Hence, Ψ is a covering map, but Sⁿ being simply connected this means that Ψ is in fact a global diffeomorphism.
- Let $\Phi : \mathbb{S}^n \to \Sigma^n$ the inverse of Ψ . Then taking $f = u \circ \Phi$ one has $f \circ \Psi = u$ and $\psi = \psi_f \circ \Psi$. This completes the proof.
- In our result, Σ is assumed to be **compact**.
- But the proof also works under any assumption which implies that the conformal metric (,) is complete.
- For instance, it is enough if Σ is complete and u satisfies

$$\limsup_{r \to +\infty} \frac{u}{r \log(r)} < +\infty$$

r the Riemannian distance from a fixed origin $o \in \Sigma$.

< ∃ →

Motivated by Proposition 1 we consider the following example.

<20 × 20 × 20 €
Example 2

• For every fixed vector $\mathbf{b} \in \mathbb{R}^{n+1}$, let $f_{\mathbf{b}} : \mathbb{S}^n \to (0, +\infty)$ be the function $f_{\mathbf{b}}(n) = \frac{1}{1 - 1}$

$$f_{\mathbf{b}}(p) = rac{1}{\left\langle p, \mathbf{b}
ight
angle_0 + \sqrt{1 + \|\mathbf{b}\|_0^2}}$$

where \langle, \rangle_0 stands both for the Euclidean metric in \mathbb{R}^{n+1} and for the induced standard metric on the Euclidean sphere \mathbb{S}^n .

Example 2

• For every fixed vector $\mathbf{b} \in \mathbb{R}^{n+1}$, let $f_{\mathbf{b}} : \mathbb{S}^n \to (0, +\infty)$ be the function $f_{\mathbf{b}}(p) = \frac{1}{\langle p, \mathbf{b} \rangle_0 + \sqrt{1 + \|\mathbf{b}\|_0^2}}$

where \langle, \rangle_0 stands both for the Euclidean metric in \mathbb{R}^{n+1} and for the induced standard metric on the Euclidean sphere \mathbb{S}^n .

• It is not difficult to see that the corresponding embedding

$$\psi_{\mathbf{b}} := \psi_{f_{\mathbf{b}}} : \mathbb{S}^n \to \Lambda^+ \subset \mathbb{S}_1^{n+2}$$

is a (necessarily past) marginally trapped submanifold.

Example 2

• For every fixed vector $\mathbf{b} \in \mathbb{R}^{n+1}$, let $f_{\mathbf{b}} : \mathbb{S}^n \to (0, +\infty)$ be the function $f_{\mathbf{b}}(p) = \frac{1}{\langle p, \mathbf{b} \rangle_0 + \sqrt{1 + \|\mathbf{b}\|_0^2}}$

where \langle, \rangle_0 stands both for the Euclidean metric in \mathbb{R}^{n+1} and for the induced standard metric on the Euclidean sphere \mathbb{S}^n .

• It is not difficult to see that the corresponding embedding

$$\psi_{\mathbf{b}} := \psi_{f_{\mathbf{b}}} : \mathbb{S}^n \to \Lambda^+ \subset \mathbb{S}_1^{n+2}$$

is a (necessarily past) marginally trapped submanifold.

• To see it, it suffices to check the validity, for $f = f_b$, of

$$2f\Delta f - n(1 + \|\nabla f\|^2 - f^2) = 0$$
 on $(\mathbb{S}^n, f^2\langle, \rangle_0).$ (EQ1)

Example 2

• For every fixed vector $\mathbf{b} \in \mathbb{R}^{n+1}$, let $f_{\mathbf{b}} : \mathbb{S}^n \to (0, +\infty)$ be the function $f_{\mathbf{b}}(p) = \frac{1}{\langle p, \mathbf{b} \rangle_0 + \sqrt{1 + \|\mathbf{b}\|_0^2}}$

where \langle, \rangle_0 stands both for the Euclidean metric in \mathbb{R}^{n+1} and for the induced standard metric on the Euclidean sphere \mathbb{S}^n .

• It is not difficult to see that the corresponding embedding

$$\psi_{\mathbf{b}} := \psi_{f_{\mathbf{b}}} : \mathbb{S}^n \to \Lambda^+ \subset \mathbb{S}_1^{n+2}$$

is a (necessarily past) marginally trapped submanifold.

• To see it, it suffices to check the validity, for $f = f_b$, of

$$2f\Delta f - n(1 + \|\nabla f\|^2 - f^2) = 0$$
 on $(\mathbb{S}^n, f^2\langle, \rangle_0).$ (EQ1)

Equivalently,

$$2f\Delta_0 f + (n-4) \|\nabla^0 f\|_0^2 - nf^2(1-f^2) = 0$$
 (EQ2)

on $(\mathbb{S}^n, \langle, \rangle_0)$.

We now come to our main classification result, which shows that the above examples are in fact the only examples of codimension two compact marginally trapped submanifolds contained into Λ^+ .

∢ ≣ ≯

We now come to our main classification result, which shows that the above examples are in fact the only examples of codimension two compact marginally trapped submanifolds contained into Λ^+ .

Theorem 1

Let $\psi: \Sigma^n \to \Lambda^+ \subset \mathbb{S}^{n+2}_1$ be a codimension-two **compact marginally trapped** spacelike immersed submanifold contained in Λ^+ .

There exists a conformal diffeomorphism $\Psi : (\Sigma^n, \langle, \rangle) \to (\mathbb{S}^n, \langle, \rangle_0)$ such that $\psi = \psi_{\mathbf{b}} \circ \Psi$, where $f_{\mathbf{b}} : \mathbb{S}^n \to (0, +\infty)$ is

$$f_{\mathbf{b}}(oldsymbol{
ho}) = rac{1}{ig\langle oldsymbol{
ho}, \mathbf{b} ig
angle_0 + \sqrt{1 + \|\mathbf{b}\|_0^2}}$$

for some fixed vector $\mathbf{b}\in\mathbb{R}^{n+1}$ and $\psi_{\mathbf{b}}:\mathbb{S}^n{\rightarrow}\Lambda^+\subset\mathbb{S}^{n+2}_1$ is the embedding

$$\psi_{\mathbf{b}}(\boldsymbol{p}) = (f_{\mathbf{b}}(\boldsymbol{p}), f_{\mathbf{b}}(\boldsymbol{p})\boldsymbol{p}, 1).$$

We now come to our main classification result, which shows that the above examples are in fact the only examples of codimension two compact marginally trapped submanifolds contained into Λ^+ .

Theorem 1

Let $\psi: \Sigma^n \to \Lambda^+ \subset \mathbb{S}^{n+2}_1$ be a codimension-two **compact marginally trapped** spacelike immersed submanifold contained in Λ^+ .

There exists a conformal diffeomorphism $\Psi : (\Sigma^n, \langle, \rangle) \to (\mathbb{S}^n, \langle, \rangle_0)$ such that $\psi = \psi_{\mathbf{b}} \circ \Psi$, where $f_{\mathbf{b}} : \mathbb{S}^n \to (0, +\infty)$ is

$$f_{\mathbf{b}}(oldsymbol{
ho}) = rac{1}{ig\langle oldsymbol{
ho}, \mathbf{b} ig
angle_0 + \sqrt{1 + \|\mathbf{b}\|_0^2}}$$

for some fixed vector $\mathbf{b}\in\mathbb{R}^{n+1}$ and $\psi_{\mathbf{b}}:\mathbb{S}^n{\rightarrow}\Lambda^+\subset\mathbb{S}^{n+2}_1$ is the embedding

$$\psi_{\mathbf{b}}(\boldsymbol{p}) = (f_{\mathbf{b}}(\boldsymbol{p}), f_{\mathbf{b}}(\boldsymbol{p})\boldsymbol{p}, 1).$$

In particular, Σ is **embedded**.

< ∃→

• From our previous discussion, the proof of Theorem 1 reduces to find the **positive solutions** of the differential equation

$$2f\Delta f - n(1 + \|\nabla f\|^2 - f^2) = 0$$

on $(\mathbb{S}^n, \langle, \rangle)$, where $\langle, \rangle = f^2 \langle, \rangle_0$.

★ 프 ▶ - 프

• From our previous discussion, the proof of Theorem 1 reduces to find the **positive solutions** of the differential equation

$$2f\Delta f - n(1 + \|\nabla f\|^2 - f^2) = 0$$

on $(\mathbb{S}^n, \langle, \rangle)$, where $\langle, \rangle = f^2 \langle, \rangle_0$.

• Here we are denoting by $\|\cdot\|^2$, ∇ and Δ the norm, the gradient and the Laplacian operator on \mathbb{S}^n with respect to the conformal metric \langle,\rangle .

< ∃ > _

• From our previous discussion, the proof of Theorem 1 reduces to find the **positive solutions** of the differential equation

$$2f\Delta f - n(1 + \|\nabla f\|^2 - f^2) = 0$$

on $(\mathbb{S}^n, \langle, \rangle)$, where $\langle, \rangle = f^2 \langle, \rangle_0$.

- Here we are denoting by $\|\cdot\|^2$, ∇ and Δ the norm, the gradient and the Laplacian operator on \mathbb{S}^n with respect to the conformal metric \langle,\rangle .
- We also know from Corollary 1 that (Sⁿ, ⟨, ⟩) has constant scalar curvature n(n − 1).

- (三) (二)

• From our previous discussion, the proof of Theorem 1 reduces to find the **positive solutions** of the differential equation

$$2f\Delta f - n(1 + \|\nabla f\|^2 - f^2) = 0$$

on $(\mathbb{S}^n, \langle, \rangle)$, where $\langle, \rangle = f^2 \langle, \rangle_0$.

- Here we are denoting by || · ||², ∇ and Δ the norm, the gradient and the Laplacian operator on Sⁿ with respect to the conformal metric ⟨,⟩.
- We also know from Corollary 1 that (Sⁿ, ⟨, ⟩) has constant scalar curvature n(n − 1).
- From a classical result by Obata (1971), a conformal metric on the Euclidean sphere Sⁿ has constant scalar curvature n(n − 1) if and only if it has constant sectional curvature 1.

• From our previous discussion, the proof of Theorem 1 reduces to find the **positive solutions** of the differential equation

$$2f\Delta f - n(1 + \|\nabla f\|^2 - f^2) = 0$$

on $(\mathbb{S}^n, \langle, \rangle)$, where $\langle, \rangle = f^2 \langle, \rangle_0$.

- Here we are denoting by $\|\cdot\|^2$, ∇ and Δ the norm, the gradient and the Laplacian operator on \mathbb{S}^n with respect to the conformal metric \langle,\rangle .
- We also know from Corollary 1 that (Sⁿ, ⟨, ⟩) has constant scalar curvature n(n − 1).
- From a classical result by Obata (1971), a conformal metric on the Euclidean sphere Sⁿ has constant scalar curvature n(n − 1) if and only if it has constant sectional curvature 1.
- Therefore, $(\mathbb{S}^n, \langle, \rangle)$ has constant sectional curvature 1.

• Summing up, our problem becomes equivalent to solving the **Yamabe problem** on the unit round sphere.

< ≣ >

э

- Summing up, our problem becomes equivalent to solving the Yamabe problem on the unit round sphere.
- That is, finding the positive functions f on Sⁿ for which the conformal metric f²⟨, ⟩₀ has constant sectional curvature 1.

★ 프 ▶ 프

- Summing up, our problem becomes equivalent to solving the **Yamabe problem** on the unit round sphere.
- That is, finding the positive functions f on Sⁿ for which the conformal metric f²⟨, ⟩₀ has constant sectional curvature 1.
- This problem was solved by Obata in 1971, who proved that the conformal metric $f^2\langle,\rangle_0$ is obtained from \langle,\rangle_0 by a conformal diffeomorphism of the unit round sphere.

< ≣ > ____

- Summing up, our problem becomes equivalent to solving the **Yamabe problem** on the unit round sphere.
- That is, finding the positive functions f on Sⁿ for which the conformal metric f²⟨, ⟩₀ has constant sectional curvature 1.
- This problem was solved by Obata in 1971, who proved that the conformal metric $f^2\langle,\rangle_0$ is obtained from \langle,\rangle_0 by a conformal diffeomorphism of the unit round sphere.
- In particular, the conformal factor *f* is the conformal factor of a conformal diffeomorphism of the unit round sphere.

< 三→

- Summing up, our problem becomes equivalent to solving the **Yamabe problem** on the unit round sphere.
- That is, finding the positive functions f on Sⁿ for which the conformal metric f²⟨, ⟩₀ has constant sectional curvature 1.
- This problem was solved by Obata in 1971, who proved that the conformal metric $f^2\langle,\rangle_0$ is obtained from \langle,\rangle_0 by a conformal diffeomorphism of the unit round sphere.
- In particular, the conformal factor *f* is the conformal factor of a conformal diffeomorphism of the unit round sphere.
- Recall that, up to orthogonal transformations, every conformal diffeomorphism of $(\mathbb{S}^n, \langle, \rangle_0)$ is given by

$$F_{\mathbf{c}}(p) = \frac{p + (\mu \langle p, \mathbf{c} \rangle_0 + \lambda) \mathbf{c}}{\lambda (1 + \langle p, \mathbf{c} \rangle_0)}$$

for all $p \in \mathbb{S}^n$, where $\mathbf{c} \in \mathbb{B}^{n+1}$, \mathbb{B}^{n+1} the open unit ball in \mathbb{R}^{n+1} , and

$$\lambda = (1 - \| \mathbf{c} \|_0^2)^{-1/2}$$
 and $\mu = (\lambda - 1) \| \mathbf{c} \|_0^2$

- ● 臣 → - - -

• A direct computation shows that the conformal factor *f* of *F*_c is given by

$$f(p) = rac{\sqrt{1 - \|\mathbf{c}\|_0^2}}{1 + \langle p, \mathbf{c}
angle_0}$$

for $\mathbf{c} \in \mathbb{B}^{n+1}$

문▶ ★ 문▶ · · 문

• A direct computation shows that the conformal factor *f* of *F*_c is given by

$$f(p) = rac{\sqrt{1 - \|\mathbf{c}\|_0^2}}{1 + \langle p, \mathbf{c}
angle_0}$$

for $\mathbf{c} \in \mathbb{B}^{n+1}$

• Equivalently,

$$f(\boldsymbol{\rho}) = \frac{\sqrt{1 - \|\mathbf{c}\|_0^2}}{1 + \langle \boldsymbol{\rho}, \mathbf{c} \rangle_0} = \frac{1}{\langle \boldsymbol{\rho}, \mathbf{b} \rangle_0 + \sqrt{1 + \|\mathbf{b}\|_0^2}}$$

with

$$\mathbf{b} = \frac{\mathbf{c}}{\sqrt{1 - \|\mathbf{c}\|_0^2}} \in \mathbb{R}^{n+1}.$$

∢ 臣 ▶

э

• A direct computation shows that the conformal factor f of F_c is given by

$$f(p) = rac{\sqrt{1 - \|\mathbf{c}\|_0^2}}{1 + \langle p, \mathbf{c}
angle_0}$$

for $\mathbf{c} \in \mathbb{B}^{n+1}$

• Equivalently,

$$f(p) = rac{\sqrt{1 - \|\mathbf{c}\|_0^2}}{1 + \langle p, \mathbf{c}
angle_0} = rac{1}{\langle p, \mathbf{b}
angle_0 + \sqrt{1 + \|\mathbf{b}\|_0^2}}$$

with

$$\mathbf{b} = rac{\mathbf{c}}{\sqrt{1 - \|\mathbf{c}\|_0^2}} \in \mathbb{R}^{n+1}.$$

• This completes the proof of Theorem 1.

< ∃→

Remark: Non-congruence of the examples

• Although all the embeddings $\psi_{\mathbf{b}}$ given in Example 2 are conformal to the round sphere and have the same constant sectional curvature 1, they are **not congruent** to each other.

∢ 臣 ▶

Remark: Non-congruence of the examples

- Although all the embeddings $\psi_{\mathbf{b}}$ given in Example 2 are conformal to the round sphere and have the same constant sectional curvature 1, they are **not congruent** to each other.
- In other words, $\psi_{\mathbf{b}_1}$ is congruent to $\psi_{\mathbf{b}_2}$ for $\mathbf{b}_1, \mathbf{b}_2 \in \mathbb{R}^{n+1}$

if and only if $\mathbf{b_1} = \mathbf{b_2}$.

★ Ξ →

The past infinity of the steady state space

Past infinity of steady state space

Fix a **null vector a** $\in \mathbb{L}^{n+3}$, $a \neq 0$, and consider the null hypersurface in \mathbb{S}_1^{n+2} given by

$$\mathcal{J}^- = \{x \in \mathbb{S}_1^{n+2} : \langle \mathbf{a}, x \rangle = 0\}$$

The past infinity of the steady state space

Past infinity of steady state space

Fix a **null vector a** $\in \mathbb{L}^{n+3}$, $a \neq 0$, and consider the null hypersurface in \mathbb{S}_1^{n+2} given by

$$\mathcal{J}^- = \{x \in \mathbb{S}_1^{n+2} : \langle \mathbf{a}, x \rangle = 0\}$$

• Without loss of generality we may assume that **a** is **past-pointing**, $\langle \mathbf{a}, e_0 \rangle > 0$. The open region

$$\mathcal{H}^{n+2} = \{ x \in \mathbb{S}_1^{n+2} : \langle x, \mathbf{a} \rangle > 0 \}.$$

is the steady state model of the universe.

The past infinity of the steady state space

Past infinity of steady state space

Fix a **null vector a** $\in \mathbb{L}^{n+3}$, $a \neq 0$, and consider the null hypersurface in \mathbb{S}_1^{n+2} given by

$$\mathcal{J}^- = \{x \in \mathbb{S}_1^{n+2} : \langle \mathbf{a}, x \rangle = 0\}$$

• Without loss of generality we may assume that **a** is **past-pointing**, $\langle \mathbf{a}, e_0 \rangle > 0$. The open region

$$\mathcal{H}^{n+2} = \{ x \in \mathbb{S}_1^{n+2} : \langle x, \mathbf{a} \rangle > 0 \}.$$

is the steady state model of the universe.

 The steady state space is a non-complete manifold, being only half of the de Sitter space and having as boundary the null hypersurface *J*⁻, which represents the past infinity of *H*ⁿ⁺².

Marginally trapped submanifolds into \mathcal{J}^-

• Let $\psi: \Sigma^n \to \mathbb{S}_1^{n+2}$ be a codimension-two spacelike submanifold.

▶ ★ E ▶ E

Marginally trapped submanifolds into \mathcal{J}^{-1}

- Let $\psi: \Sigma^n \to \mathbb{S}_1^{n+2}$ be a codimension-two spacelike submanifold.
- Assume that $\psi(\Sigma)$ is contained in the **past infinite of the steady** state space,

$$\psi(\Sigma) \subset \mathcal{J}^- = \{x \in \mathbb{S}_1^{n+2} : \langle \mathbf{a}, x \rangle = 0\},$$

where $\mathbf{a} \neq \mathbf{0}$ is a fixed past pointing null vector.

< 臣 ▶

Marginally trapped submanifolds into \mathcal{J}^-

- Let $\psi: \Sigma^n \to \mathbb{S}_1^{n+2}$ be a codimension-two spacelike submanifold.
- Assume that ψ(Σ) is contained in the past infinite of the steady state space,

$$\psi(\Sigma) \subset \mathcal{J}^- = \{x \in \mathbb{S}_1^{n+2} : \langle \mathbf{a}, x \rangle = 0\},$$

where $\mathbf{a} \neq \mathbf{0}$ is a fixed past pointing null vector.

• Define the function $u: \Sigma \to \mathbb{R}$ as

$$u = -\langle \psi, e_0 \rangle = \psi_0.$$

Marginally trapped submanifolds into \mathcal{J}^-

- Let $\psi: \Sigma^n \to \mathbb{S}_1^{n+2}$ be a codimension-two spacelike submanifold.
- Assume that ψ(Σ) is contained in the past infinite of the steady state space,

$$\psi(\boldsymbol{\Sigma}) \subset \mathcal{J}^{-} = \{ x \in \mathbb{S}_{1}^{n+2} : \langle \mathbf{a}, x \rangle = \mathbf{0} \},$$

where $\mathbf{a} \neq \mathbf{0}$ is a fixed past pointing null vector.

• Define the function $u: \Sigma \to \mathbb{R}$ as

$$u = -\langle \psi, e_0 \rangle = \psi_0.$$

Future-pointing normal null frame

In these conditions

$$\xi = -\mathbf{a} \quad ext{and} \quad \eta = -rac{1+\|
abla u\|^2+u^2}{2\langle \mathbf{a}, e_0
angle^2}\xi + rac{1}{\langle \mathbf{a}, e_0
angle}e_0^\perp$$

gives two future-pointing null normal vector fields globally defined on Σ with $\langle \xi, \eta \rangle = -1$.

The corresponding null second forms associated to the global null frame $\{\xi,\eta\}$ are given by

$$A_{\xi}=0$$
 and $A_{\eta}=rac{1}{\langle \mathbf{a},\mathbf{e}_0
angle}(
abla^2u+uI).$

< ∃→

э

The corresponding null second forms associated to the global null frame $\{\xi,\eta\}$ are given by

$$A_{\xi} = 0$$
 and $A_{\eta} = rac{1}{\langle \mathbf{a}, e_0
angle} (
abla^2 u + u l).$

• In particular, the null expansions are $\theta_{\xi} = \frac{1}{n} tr(A_{\xi}) = 0$ and

$$heta_\eta = rac{1}{n} \mathrm{tr}(A_\eta) = rac{1}{n \langle \mathbf{a}, \mathbf{e}_0
angle} (\Delta u + n u).$$

< ∃→

The corresponding null second forms associated to the global null frame $\{\xi,\eta\}$ are given by

$$A_{\xi} = 0$$
 and $A_{\eta} = rac{1}{\langle \mathbf{a}, \mathbf{e}_0
angle} (
abla^2 u + u l).$

• In particular, the null expansions are $\theta_{\xi} = \frac{1}{n} tr(A_{\xi}) = 0$ and

$$heta_\eta = rac{1}{n} \mathrm{tr}(A_\eta) = rac{1}{n \langle \mathbf{a}, \mathbf{e}_0
angle} (\Delta u + n u).$$

• Therefore,

$$\mathbf{H} = -rac{1}{n\langle \mathbf{a}, e_0
angle} (\Delta u + nu) \xi$$

and Σ is always marginally trapped except at points where $\Delta u + nu = 0$ (if any), where it is minimal.

< ≣ →

The corresponding null second forms associated to the global null frame $\{\xi,\eta\}$ are given by

$$A_{\xi}=0 \qquad ext{and} \qquad A_{\eta}=rac{1}{\langle \mathbf{a},e_0
angle}(
abla^2u+uI).$$

• In particular, the null expansions are $\theta_{\xi} = \frac{1}{n} tr(A_{\xi}) = 0$ and

$$heta_\eta = rac{1}{n} \mathrm{tr}(A_\eta) = rac{1}{n \langle \mathbf{a}, \mathbf{e}_0
angle} (\Delta u + n u).$$

• Therefore,

$$\mathbf{H} = -rac{1}{n\langle \mathbf{a}, e_0
angle}(\Delta u + nu)\xi$$

and Σ is always marginally trapped except at points where $\Delta u + nu = 0$ (if any), where it is minimal.

Proposition 2

Let $\psi: \Sigma^n \to \mathcal{J}^- \subset \mathbb{S}_1^{n+2}$ be a codimension-two spacelike submanifold which is contained in the **past infinite** of the steady state space. Then Σ is **always marginally trapped**, except at points where $\Delta u + nu = 0$ (if any), $u = -\langle \psi, e_0 \rangle$, where it is **minimal**.

Example 3

• For each smooth function $f: \mathbb{S}^n \to \mathbb{R}$, consider the embedding $\phi_f: \mathbb{S}^n \to \mathcal{J}^- \subset \mathbb{S}_1^{n+2}$ given by

 $\phi_f(p) = (f(p), p, f(p)).$

(《 문 》 문

Example 3

- For each smooth function $f : \mathbb{S}^n \to \mathbb{R}$, consider the embedding $\phi_f : \mathbb{S}^n \to \mathcal{J}^- \subset \mathbb{S}_1^{n+2}$ given by $\phi_f(p) = (f(p), p, f(p)).$
- It is not difficult to see that for every $\mathbf{v}, \mathbf{w} \in \mathcal{T}_p \mathbb{S}^n$

$$\langle d(\phi_f)_{\rho}(\mathbf{v}), d(\phi_f)_{\rho}(\mathbf{w}) \rangle = \langle \mathbf{v}, \mathbf{w} \rangle_0,$$

 \langle,\rangle_0 the standard metric of the round sphere.

Example 3

• For each smooth function $f : \mathbb{S}^n \to \mathbb{R}$, consider the embedding $\phi_f : \mathbb{S}^n \to \mathcal{J}^- \subset \mathbb{S}_1^{n+2}$ given by

 $\phi_f(p) = (f(p), p, f(p)).$

• It is not difficult to see that for every $\mathbf{v}, \mathbf{w} \in \mathcal{T}_{p}\mathbb{S}^{n}$

$$\langle d(\phi_f)_{\rho}(\mathbf{v}), d(\phi_f)_{\rho}(\mathbf{w}) \rangle = \langle \mathbf{v}, \mathbf{w} \rangle_0,$$

 \langle,\rangle_0 the standard metric of the round sphere.

That is φ^{*}_f(⟨, ⟩) = ⟨, ⟩₀, which means that φ_f defines a spacelike isometric immersion of the round sphere into J⁻.
Example 3

• For each smooth function $f : \mathbb{S}^n \to \mathbb{R}$, consider the embedding $\phi_f : \mathbb{S}^n \to \mathcal{J}^- \subset \mathbb{S}_1^{n+2}$ given by

 $\phi_f(p) = (f(p), p, f(p)).$

• It is not difficult to see that for every $\mathbf{v}, \mathbf{w} \in \mathcal{T}_{p}\mathbb{S}^{n}$

$$\langle d(\phi_f)_{\rho}(\mathbf{v}), d(\phi_f)_{\rho}(\mathbf{w}) \rangle = \langle \mathbf{v}, \mathbf{w} \rangle_0,$$

 \langle,\rangle_0 the standard metric of the round sphere.

- That is $\phi_f^*(\langle,\rangle) = \langle,\rangle_0$, which means that ϕ_f defines a spacelike isometric immersion of the round sphere into \mathcal{J}^- .
- Moreover, ϕ_f is marginally trapped except at points (if any) where

$$\Delta_0 f + nf = 0.$$

< ≣ →

э

Proposition 3

• Let $\psi: \Sigma^n \to \mathcal{J}^- \subset \mathbb{S}^{n+2}_1$ be a codimension-two complete spacelike submanifold contained in \mathcal{J}^- .

Proposition 3

- Let ψ : Σⁿ → J⁻ ⊂ S₁ⁿ⁺² be a codimension-two complete spacelike submanifold contained in J⁻.
- Then Σ is **compact** and there exists an **isometry**

$$\Psi: (\Sigma^n, \langle, \rangle) \to (\mathbb{S}^n, \langle, \rangle_0)$$

such that $\psi = \phi_f \circ \Psi$ where $f = u \circ \Psi^{-1}$ with $u = -\langle \psi, e_0 \rangle = \psi_0$.

Proposition 3

- Let ψ : Σⁿ → J⁻ ⊂ S₁ⁿ⁺² be a codimension-two complete spacelike submanifold contained in J⁻.
- Then Σ is **compact** and there exists an **isometry**

$$\Psi: (\Sigma^n, \langle, \rangle) \to (\mathbb{S}^n, \langle, \rangle_0)$$

such that $\psi = \phi_f \circ \Psi$ where $f = u \circ \Psi^{-1}$ with $u = -\langle \psi, e_0 \rangle = \psi_0$.

• In particular, the immersion ψ is an **embedding** and it is always **marginally trapped** except at points where $\Delta u + nu = 0$ (if any), where it is minimal.

 Let ψ : Σⁿ → J⁻ ⊂ S₁ⁿ⁺² be a codimension-two spacelike submanifold contained in J⁻.

★ Ξ → Ξ

- Let ψ : Σⁿ → J⁻ ⊂ S₁ⁿ⁺² be a codimension-two spacelike submanifold contained in J⁻.
- Assume without loss of generality that $\mathbf{a} = (-1, 0 \dots, 0, -1)$.

< 注 ▶

- Let ψ : Σⁿ → J⁻ ⊂ S₁ⁿ⁺² be a codimension-two spacelike submanifold contained in J⁻.
- Assume without loss of generality that $\mathbf{a} = (-1, 0 \dots, 0, -1)$.
- Then $\psi(p) = (u(p), \psi_1(p), \dots, \psi_{n+1}(p), u(p))$ with $\sum_{j=1}^{n+1} \psi_j(p) = (u(p), \psi_1(p), \dots, \psi_{n+1}(p), u(p))$

$$\sum_{i=1}^{n}\psi_i^2(p)=1.$$

(本) 臣(下)

- Let ψ : Σⁿ → J⁻ ⊂ S₁ⁿ⁺² be a codimension-two spacelike submanifold contained in J⁻.
- Assume without loss of generality that $\mathbf{a} = (-1, 0 \dots, 0, -1)$.
- Then $\psi(p) = (u(p), \psi_1(p), \dots, \psi_{n+1}(p), u(p))$ with $\sum_{i=1}^{n+1} \psi_i^2(p) = 1.$
- Define the function $\Psi: \Sigma^n \to \mathbb{S}^n$ by $\Psi(p) = (\psi_1(p), \dots, \psi_{n+1}(p)).$

< ∃ →

- Let ψ : Σⁿ → J⁻ ⊂ S₁ⁿ⁺² be a codimension-two spacelike submanifold contained in J⁻.
- Assume without loss of generality that $\mathbf{a} = (-1, 0 \dots, 0, -1)$.
- Then $\psi(p) = (u(p), \psi_1(p), \dots, \psi_{n+1}(p), u(p))$ with $\sum_{i=1}^{n+1} \psi_i^2(p) = 1.$
- Define the function $\Psi: \Sigma^n \to \mathbb{S}^n$ by $\Psi(p) = (\psi_1(p), \dots, \psi_{n+1}(p)).$
- A straightforward computation yields

$$\langle d\Psi_{p}(\mathbf{v}), d\Psi_{p}(\mathbf{w}) \rangle_{0} = \langle \mathbf{v}, \mathbf{w} \rangle$$

for every $p \in \Sigma$ and $\mathbf{v}, \mathbf{w} \in \mathcal{T}_p \Sigma$.

< ∃ >

- Let ψ : Σⁿ → J⁻ ⊂ S₁ⁿ⁺² be a codimension-two spacelike submanifold contained in J⁻.
- Assume without loss of generality that $\mathbf{a} = (-1, 0 \dots, 0, -1)$.
- Then $\psi(p) = (u(p), \psi_1(p), \dots, \psi_{n+1}(p), u(p))$ with $\sum_{i=1}^{n+1} \psi_i^2(p) = 1.$
- Define the function $\Psi: \Sigma^n \to \mathbb{S}^n$ by $\Psi(p) = (\psi_1(p), \dots, \psi_{n+1}(p)).$

• A straightforward computation yields

$$\left\langle d\Psi_{p}(\mathbf{v}),d\Psi_{p}(\mathbf{w})
ight
angle _{0}=\left\langle \mathbf{v},\mathbf{w}
ight
angle$$

for every $p \in \Sigma$ and $\mathbf{v}, \mathbf{w} \in T_p \Sigma$.

That is, the map

$$\Psi: (\Sigma^n, \langle, \rangle) \to (\mathbb{S}^n, \langle, \rangle_0)$$

is a local isometry.

< ∃→

- Let ψ : Σⁿ → J⁻ ⊂ S₁ⁿ⁺² be a codimension-two spacelike submanifold contained in J⁻.
- Assume without loss of generality that $\mathbf{a} = (-1, 0 \dots, 0, -1)$.
- Then $\psi(p) = (u(p), \psi_1(p), \dots, \psi_{n+1}(p), u(p))$ with $\sum_{i=1}^{n+1} \psi_i^2(p) = 1.$
- Define the function $\Psi: \Sigma^n \to \mathbb{S}^n$ by $\Psi(p) = (\psi_1(p), \dots, \psi_{n+1}(p)).$
- A straightforward computation yields

$$\left\langle d\Psi_{p}(\mathbf{v}),d\Psi_{p}(\mathbf{w})
ight
angle _{0}=\left\langle \mathbf{v},\mathbf{w}
ight
angle$$

for every $p \in \Sigma$ and $\mathbf{v}, \mathbf{w} \in T_p \Sigma$.

That is, the map

$$\Psi: (\Sigma^n, \langle, \rangle) \to (\mathbb{S}^n, \langle, \rangle_0)$$

is a local isometry.

 Therefore, is we assume Σ to be complete, Sⁿ being simply connected, we conclude that Ψ is in fact a global isometry.

• Let $\psi: \Sigma^n \to \mathcal{J}^- \subset \mathbb{S}^{n+2}_1$ be a codimension-two complete spacelike submanifold contained in \mathcal{J}^- and having parallel mean curvature vector.

- Let $\psi: \Sigma^n \to \mathcal{J}^- \subset \mathbb{S}^{n+2}_1$ be a codimension-two complete spacelike submanifold contained in \mathcal{J}^- and having parallel mean curvature vector.
- Then Σ is **compact** and there exists an **isometry**

$$\Psi: (\Sigma^n, \langle, \rangle) \to (\mathbb{S}^n, \langle, \rangle_0)$$

such that $\psi = \phi_{\mathbf{b},c} \circ \Psi$, where $\phi_{\mathbf{b},c} : \mathbb{S}^n \rightarrow \mathcal{J}^- \subset \mathbb{S}_1^{n+2}$ is the embedding

$$\phi_{\mathbf{b},c}(\mathbf{p}) = (\langle \mathbf{p}, \mathbf{b} \rangle_0 + c, \mathbf{p}, \langle \mathbf{p}, \mathbf{b} \rangle_0 + c).$$

for any $\mathbf{b} \in \mathbb{R}^{n+1}$ and $c \in \mathbb{R}$.

- Let $\psi: \Sigma^n \to \mathcal{J}^- \subset \mathbb{S}^{n+2}_1$ be a codimension-two complete spacelike submanifold contained in \mathcal{J}^- and having parallel mean curvature vector.
- Then Σ is **compact** and there exists an **isometry**

$$\Psi: (\Sigma^n, \langle, \rangle) \to (\mathbb{S}^n, \langle, \rangle_0)$$

such that $\psi = \phi_{\mathbf{b},c} \circ \Psi$, where $\phi_{\mathbf{b},c} : \mathbb{S}^n \rightarrow \mathcal{J}^- \subset \mathbb{S}_1^{n+2}$ is the embedding

$$\phi_{\mathbf{b},c}(p) = (\langle p, \mathbf{b} \rangle_0 + c, p, \langle p, \mathbf{b} \rangle_0 + c).$$

for any $\mathbf{b} \in \mathbb{R}^{n+1}$ and $c \in \mathbb{R}$.

- Moreover:
 - (I) Σ is minimal if and only if c = 0.
 - (II) Σ is future marginally trapped if and only if c < 0.
 - (III) Σ is past marginally trapped if and only if c > 0.

• Since $\langle {f a}, e_0
angle = 1$, it follows that

$$\mathbf{H} = \frac{1}{n} (\Delta u + nu) \mathbf{a}. \tag{1}$$

< ≣ >

э

• Since $\langle {f a}, e_0
angle = 1$, it follows that

$$\mathbf{H} = \frac{1}{n} (\Delta u + nu) \mathbf{a}. \tag{1}$$

Then, H is parallel if and only if Δu + nu = constant on (Σ, ⟨, ⟩).

★ Ξ → Ξ

• Since $\langle \mathbf{a}, e_0
angle = 1$, it follows that

$$\mathbf{H} = \frac{1}{n} (\Delta u + nu) \mathbf{a}. \tag{1}$$

- Then, **H** is parallel if and only if $\Delta u + nu = \text{constant on } (\Sigma, \langle, \rangle)$.
- Equivalently, **H** is parallel if and only if $\Delta_0 f + nf = \text{constant}$ on $(\mathbb{S}^n, \langle, \rangle_0)$.

< 三→ -

• Since $\langle \mathbf{a}, e_0
angle = 1$, it follows that

$$\mathbf{H} = \frac{1}{n} (\Delta u + nu) \mathbf{a}. \tag{1}$$

- Then, **H** is parallel if and only if $\Delta u + nu = \text{constant on } (\Sigma, \langle, \rangle).$
- Equivalently, **H** is parallel if and only if $\Delta_0 f + nf = \text{constant on}$ $(\mathbb{S}^n, \langle, \rangle_0).$
- Therefore, the Laplacian of f satisfies $\Delta_0 f = -n(f c)$ for a certain constant c.

< ∃ >

• Since $\langle \mathbf{a}, e_0
angle = 1$, it follows that

$$\mathbf{H} = \frac{1}{n} (\Delta u + nu) \mathbf{a}. \tag{1}$$

- Then, **H** is parallel if and only if $\Delta u + nu = \text{constant on } (\Sigma, \langle, \rangle).$
- Equivalently, **H** is parallel if and only if $\Delta_0 f + nf = \text{constant on}$ $(\mathbb{S}^n, \langle, \rangle_0).$
- Therefore, the Laplacian of f satisfies $\Delta_0 f = -n(f c)$ for a certain constant c.
- That is,

$$\Delta_0 \varrho + n \varrho = 0$$

where $\rho = f - c$.

< ∃ >

• Since $\langle \mathbf{a}, e_0
angle = 1$, it follows that

$$\mathbf{H} = \frac{1}{n} (\Delta u + nu) \mathbf{a}. \tag{1}$$

- Then, **H** is parallel if and only if $\Delta u + nu = \text{constant on } (\Sigma, \langle, \rangle).$
- Equivalently, **H** is parallel if and only if $\Delta_0 f + nf = \text{constant on}$ $(\mathbb{S}^n, \langle, \rangle_0).$
- Therefore, the Laplacian of f satisfies $\Delta_0 f = -n(f c)$ for a certain constant c.
- That is,

$$\Delta_0 \varrho + n \varrho = 0$$

where $\rho = f - c$.

This implies that either *Q* ≡ 0 or *Q* ∈ Spec(Sⁿ, ⟨, ⟩₀) is a first eigenfunction of the round sphere.

医下颌 医下颌

• Since $\langle \mathbf{a}, e_0
angle = 1$, it follows that

$$\mathbf{H} = \frac{1}{n} (\Delta u + nu) \mathbf{a}. \tag{1}$$

- Then, **H** is parallel if and only if $\Delta u + nu = \text{constant on } (\Sigma, \langle, \rangle).$
- Equivalently, **H** is parallel if and only if $\Delta_0 f + nf = \text{constant on}$ $(\mathbb{S}^n, \langle, \rangle_0).$
- Therefore, the Laplacian of f satisfies $\Delta_0 f = -n(f c)$ for a certain constant c.
- That is,

$$\Delta_0 \varrho + n \varrho = 0$$

where $\rho = f - c$.

- This implies that either *ρ* ≡ 0 or *ρ* ∈ Spec(Sⁿ, ⟨, ⟩₀) is a first eigenfunction of the round sphere.
- In the first case $f \equiv c$ is constant (which corresponds to $\mathbf{b} = 0$).

프 🖌 🖌 프 🛌 프

• Since $\langle \mathbf{a}, e_0
angle = 1$, it follows that

$$\mathbf{H} = \frac{1}{n} (\Delta u + nu) \mathbf{a}. \tag{1}$$

- Then, **H** is parallel if and only if $\Delta u + nu = \text{constant on } (\Sigma, \langle, \rangle).$
- Equivalently, **H** is parallel if and only if $\Delta_0 f + nf = \text{constant on}$ $(\mathbb{S}^n, \langle, \rangle_0).$
- Therefore, the Laplacian of f satisfies $\Delta_0 f = -n(f c)$ for a certain constant c.
- That is,

$$\Delta_0 \varrho + n \varrho = 0$$

where $\rho = f - c$.

- This implies that either *ρ* ≡ 0 or *ρ* ∈ Spec(Sⁿ, ⟨, ⟩₀) is a first eigenfunction of the round sphere.
- In the first case $f \equiv c$ is constant (which corresponds to $\mathbf{b} = 0$).
- In the second case, $\varrho(p) = \langle p, \mathbf{b} \rangle_0$ for some fixed vector $\mathbf{b} \in \mathbb{R}^{n+1}$, $\mathbf{b} \neq 0$, and $f(p) = \langle p, \mathbf{b} \rangle_0 + c$.

• Since $\langle {f a}, e_0
angle = 1$, it follows that

$$\mathbf{H} = \frac{1}{n} (\Delta u + nu) \mathbf{a}. \tag{1}$$

- Then, **H** is parallel if and only if $\Delta u + nu = \text{constant on } (\Sigma, \langle, \rangle).$
- Equivalently, **H** is parallel if and only if $\Delta_0 f + nf = \text{constant on}$ $(\mathbb{S}^n, \langle, \rangle_0).$
- Therefore, the Laplacian of f satisfies $\Delta_0 f = -n(f c)$ for a certain constant c.
- That is,

$$\Delta_0 \varrho + n \varrho = 0$$

where $\rho = f - c$.

- This implies that either *Q* ≡ 0 or *Q* ∈ Spec(Sⁿ, ⟨, ⟩₀) is a first eigenfunction of the round sphere.
- In the first case $f \equiv c$ is constant (which corresponds to $\mathbf{b} = 0$).
- In the second case, $\varrho(p) = \langle p, \mathbf{b} \rangle_0$ for some fixed vector $\mathbf{b} \in \mathbb{R}^{n+1}$, $\mathbf{b} \neq 0$, and $f(p) = \langle p, \mathbf{b} \rangle_0 + c$.
- The last assertions follow from (1) since **H** = c**a**, with **a** past-pointing.

• Let $\psi: \Sigma^n \to \mathcal{J}^- \subset \mathbb{S}^{n+2}_1$ be a codimension-two complete spacelike submanifold contained in \mathcal{J}^- .

< E → E

- Let ψ : Σⁿ → J⁻ ⊂ S₁ⁿ⁺² be a codimension-two complete spacelike submanifold contained in J⁻.
- Σ is minimal if and only if there exists an isometry

$$\Psi: \left(\Sigma^n, \langle, \rangle\right) \to \left(\mathbb{S}^n, \langle, \rangle_0\right)$$

such that $\psi = \phi_{\mathbf{b}} \circ \Psi$, where $\phi_{\mathbf{b}} : \mathbb{S}^n \rightarrow \mathcal{J}^- \subset \mathbb{S}_1^{n+2}$ is the embedding

$$\phi_{\mathbf{b}}(\mathbf{p}) = (\langle \mathbf{p}, \mathbf{b} \rangle_0, \mathbf{p}, \langle \mathbf{p}, \mathbf{b} \rangle_0).$$

for any $\mathbf{b} \in \mathbb{R}^{n+1}$.

E → < E → E</p>

A uniqueness result for the marginally trapped type equation on compact manifolds

• Motivated by the geometric meaning of the solutions to the partial differential equation $2u\Delta u - n(1 + ||\nabla u||^2 - u^2) = 0$, we establish the following intrinsic uniqueness result for this equation.

A uniqueness result for the marginally trapped type equation on compact manifolds

• Motivated by the geometric meaning of the solutions to the partial differential equation $2u\Delta u - n(1 + ||\nabla u||^2 - u^2) = 0$, we establish the following intrinsic uniqueness result for this equation.

Theorem 2

 Let (Σ, ⟨, ⟩) be a compact, Riemannian manifold of dimension n ≥ 2 and Ricci curvature satisfying

$$\mathsf{Ric} \geq K$$

for some constant K > (n-1).

< ∃⇒

A uniqueness result for the marginally trapped type equation on compact manifolds

• Motivated by the geometric meaning of the solutions to the partial differential equation $2u\Delta u - n(1 + ||\nabla u||^2 - u^2) = 0$, we establish the following intrinsic uniqueness result for this equation.

Theorem 2

 Let (Σ, ⟨, ⟩) be a compact, Riemannian manifold of dimension n ≥ 2 and Ricci curvature satisfying

$$\mathsf{Ric} \geq K$$

for some constant K > (n-1).

• The only positive solution to the partial differential equation

$$2u\Delta u - n(1 + \|\nabla u\|^2 - u^2) = 0$$
 (MT)

< ∃→

on Σ is the constant function $u \equiv 1$.

• Consider the vector field

$$V = u^{-(n-1)} \left(\frac{1}{2} \nabla \| \nabla u \|^2 - \frac{\Delta u}{n} \nabla u \right).$$

토 M K 토 M - -

• Consider the vector field

$$V = u^{-(n-1)} \left(\frac{1}{2} \nabla \| \nabla u \|^2 - \frac{\Delta u}{n} \nabla u \right).$$

• The divergence of V is given by

$$\operatorname{div}(V) = u^{-(n-1)} \left(\frac{1}{2} \Delta \|\nabla u\|^2 - \frac{1}{n} ((\Delta u)^2 + \langle \nabla \Delta u, \nabla u \rangle) \right) - \frac{n-1}{2} u^{-n} \langle \nabla \|\nabla u\|^2, \nabla u \rangle - \frac{n-1}{n} u^{-n} \Delta u \|\nabla u\|^2.$$
(2)

< ≣ >

э

• Consider the vector field

$$V = u^{-(n-1)} \left(\frac{1}{2} \nabla \| \nabla u \|^2 - \frac{\Delta u}{n} \nabla u \right).$$

• The divergence of V is given by

$$\operatorname{div}(V) = u^{-(n-1)} \left(\frac{1}{2} \Delta \|\nabla u\|^2 - \frac{1}{n} ((\Delta u)^2 + \langle \nabla \Delta u, \nabla u \rangle) \right) - \frac{n-1}{2} u^{-n} \langle \nabla \|\nabla u\|^2, \nabla u \rangle - \frac{n-1}{n} u^{-n} \Delta u \|\nabla u\|^2.$$
(2)

• Bochner-Lichnerowicz formula states that

$$\frac{1}{2}\Delta \|\nabla u\|^2 = \|\nabla^2 u\|^2 + \langle \nabla \Delta u, \nabla u \rangle + \operatorname{Ric}(\nabla u, \nabla u).$$

∢ 臣 ▶

• Consider the vector field

$$V = u^{-(n-1)} \left(\frac{1}{2} \nabla \| \nabla u \|^2 - \frac{\Delta u}{n} \nabla u \right).$$

• The divergence of V is given by

$$\operatorname{div}(V) = u^{-(n-1)} \left(\frac{1}{2} \Delta \|\nabla u\|^2 - \frac{1}{n} ((\Delta u)^2 + \langle \nabla \Delta u, \nabla u \rangle) \right) - \frac{n-1}{2} u^{-n} \langle \nabla \|\nabla u\|^2, \nabla u \rangle - \frac{n-1}{n} u^{-n} \Delta u \|\nabla u\|^2.$$
(2)

Bochner-Lichnerowicz formula states that

$$\frac{1}{2}\Delta \|\nabla u\|^2 = \|\nabla^2 u\|^2 + \langle \nabla \Delta u, \nabla u \rangle + \operatorname{Ric}(\nabla u, \nabla u).$$

• Using this into (2) jointly with (MT) we obtain

$$div(V) = u^{-(n-1)} \left(\|\nabla^2 u\|^2 - \frac{(\Delta u)^2}{n} \right) + u^{-(n-1)} \left(\text{Ric}(\nabla u, \nabla u) - (n-1) \|\nabla u\|^2 \right).$$

< ∃ →

• Integrating this and using the divergence theorem we obtain

$$\int_{\Sigma} u^{-(n-1)} \left(\|\nabla^2 u\|^2 - \frac{(\Delta u)^2}{n} + \operatorname{Ric}(\nabla u, \nabla u) - (n-1)\|\nabla u\|^2 \right) = 0.$$
(3)

글에 세금에 드릴

• Integrating this and using the divergence theorem we obtain

$$\int_{\Sigma} u^{-(n-1)} \left(\|\nabla^2 u\|^2 - \frac{(\Delta u)^2}{n} + \operatorname{Ric}(\nabla u, \nabla u) - (n-1)\|\nabla u\|^2 \right) = 0.$$
(3)

• We know from Cauchy-Schwarz inequality that

$$\|\nabla^2 u\|^2 - \frac{(\Delta u)^2}{n} \ge 0,$$

with equality if and only if ∇u is a conformal vector field on Σ .

• Integrating this and using the divergence theorem we obtain

$$\int_{\Sigma} u^{-(n-1)} \left(\|\nabla^2 u\|^2 - \frac{(\Delta u)^2}{n} + \operatorname{Ric}(\nabla u, \nabla u) - (n-1)\|\nabla u\|^2 \right) = 0.$$
(3)

• We know from Cauchy-Schwarz inequality that

$$\|\nabla^2 u\|^2 - \frac{(\Delta u)^2}{n} \ge 0,$$

with equality if and only if ∇u is a conformal vector field on Σ .

• On the other hand, from $\operatorname{Ric} \geq K$ we also have

$$\operatorname{Ric}(\nabla u, \nabla u) - (n-1) \|\nabla u\|^2 \ge (K - (n-1)) \|\nabla u\|^2 \ge 0$$
• Integrating this and using the divergence theorem we obtain

$$\int_{\Sigma} u^{-(n-1)} \left(\|\nabla^2 u\|^2 - \frac{(\Delta u)^2}{n} + \operatorname{Ric}(\nabla u, \nabla u) - (n-1)\|\nabla u\|^2 \right) = 0.$$
(3)

• We know from Cauchy-Schwarz inequality that

$$\|\nabla^2 u\|^2 - \frac{(\Delta u)^2}{n} \ge 0,$$

with equality if and only if ∇u is a conformal vector field on Σ .

• On the other hand, from $\operatorname{Ric} \geq K$ we also have

$$\operatorname{Ric}(\nabla u, \nabla u) - (n-1) \|\nabla u\|^2 \ge (K - (n-1)) \|\nabla u\|^2 \ge 0$$

• Therefore, from (3) we conclude that $\|\nabla^2 u\|^2 - \frac{(\Delta u)^2}{n} = 0$, and

$$\operatorname{Ric}(\nabla u, \nabla u) - (n-1) \|\nabla u\|^2 = (K - (n-1)) \|\nabla u\|^2 = 0.$$

Integrating this and using the divergence theorem we obtain

$$\int_{\Sigma} u^{-(n-1)} \left(\|\nabla^2 u\|^2 - \frac{(\Delta u)^2}{n} + \operatorname{Ric}(\nabla u, \nabla u) - (n-1)\|\nabla u\|^2 \right) = 0.$$
(3)

• We know from Cauchy-Schwarz inequality that

$$\|\nabla^2 u\|^2 - \frac{(\Delta u)^2}{n} \ge 0,$$

with equality if and only if ∇u is a conformal vector field on Σ .

• On the other hand, from $\operatorname{Ric} \geq K$ we also have

$$\operatorname{Ric}(\nabla u, \nabla u) - (n-1) \|\nabla u\|^2 \ge (K - (n-1)) \|\nabla u\|^2 \ge 0$$

• Therefore, from (3) we conclude that $\|\nabla^2 u\|^2 - \frac{(\Delta u)^2}{n} = 0$, and

$$\operatorname{Ric}(\nabla u, \nabla u) - (n-1) \|\nabla u\|^2 = (K - (n-1)) \|\nabla u\|^2 = 0.$$

 Since K > (n − 1), this last equation implies that u is constant and, by (MT) it must be u ≡ 1.

< ⇒ →

Remark: Theorem 2 is not true if K = n - 1

 When K = n − 1, if u is non-constant we conclude from the reasoning above that ∇u is a conformal vector field on Σ which is a direction of least Ricci curvature at points where ∇u(p) ≠ 0.

< ≣ >

Remark: Theorem 2 is not true if K = n - 1

- When K = n − 1, if u is non-constant we conclude from the reasoning above that ∇u is a conformal vector field on Σ which is a direction of least Ricci curvature at points where ∇u(p) ≠ 0.
- This is in fact what happens with the non-constant solutions given in Example 2, where

$$u(p) = f(p) = \frac{1}{\langle p, \mathbf{b} \rangle_0 + \sqrt{1 + \|\mathbf{b}\|_0^2}}$$

and $\Sigma = \mathbb{S}^n$ with the metric $\langle, \rangle = f^2 \langle, \rangle_0$.

Trapped submanifolds in the Lorentz-Minkowski space

Light cone of the Lorentz-Minkowski space

The **light cone** in \mathbb{L}^{n+2} is the subset

$$\Lambda = \{x \in \mathbb{L}^{n+2} : \langle x, x \rangle = 0, x \neq \mathbf{0}\}, \quad x = (x_1, \dots, x_{n+2}).$$

Trapped submanifolds in the Lorentz-Minkowski space

Light cone of the Lorentz-Minkowski space

The **light cone** in \mathbb{L}^{n+2} is the subset

$$\Lambda = \{x \in \mathbb{L}^{n+2} : \langle x, x \rangle = 0, x \neq \mathbf{0}\}, \quad x = (x_1, \dots, x_{n+2}).$$

 Geometrically, Λ corresponds to the subset of all points of the Lorentz-Minkowski space which can be reached from the origin 0 through a null geodesic starting at 0.

Trapped submanifolds in the Lorentz-Minkowski space

Light cone of the Lorentz-Minkowski space

The **light cone** in \mathbb{L}^{n+2} is the subset

$$\Lambda = \{x \in \mathbb{L}^{n+2} : \langle x, x \rangle = 0, x \neq \mathbf{0}\}, \quad x = (x_1, \dots, x_{n+2}).$$

- Geometrically, Λ corresponds to the subset of all points of the Lorentz-Minkowski space which can be reached from the origin 0 through a null geodesic starting at 0.
- The **future** component of Λ is

$$\Lambda^+ = \{x \in \mathbb{L}^{n+2} : \langle x, x \rangle = 0, x_1 > 0\}.$$

• Let $\psi: \Sigma^n \to \mathbb{L}^{n+2}$ be a codimension-two spacelike submanifold.

<20 € > 20 €

- Let $\psi: \Sigma^n \to \mathbb{L}^{n+2}$ be a codimension-two spacelike submanifold.
- Assume that ψ(Σ) is contained into the future connected component of the light cone

$$\psi(\Sigma) \subset \Lambda^+ = \{x \in \mathbb{L}^{n+2} : \langle x, x \rangle = 0, x_1 > 0\}.$$

< ≣ →

- Let $\psi: \Sigma^n \to \mathbb{L}^{n+2}$ be a codimension-two spacelike submanifold.
- Assume that ψ(Σ) is contained into the future connected component of the light cone

$$\psi(\Sigma) \subset \Lambda^+ = \{x \in \mathbb{L}^{n+2} : \langle x, x \rangle = 0, x_1 > 0\}.$$

• Define the function $u:\Sigma
ightarrow(0,+\infty)$ by

$$u = -\langle \psi, e_1 \rangle = \psi_1 > 0.$$

- Let $\psi: \Sigma^n \to \mathbb{L}^{n+2}$ be a codimension-two spacelike submanifold.
- Assume that ψ(Σ) is contained into the future connected component of the light cone

$$\psi(\Sigma) \subset \Lambda^+ = \{x \in \mathbb{L}^{n+2} : \langle x, x \rangle = 0, x_1 > 0\}.$$

• Define the function $u:\Sigma
ightarrow(0,+\infty)$ by

$$u=-\langle\psi,e_1\rangle=\psi_1>0.$$

Future-pointing normal null frame

In these conditions

$$\xi = \psi$$
 and $\eta = -\frac{1 + \|\nabla u\|^2}{2u^2}\xi + \frac{1}{u}e_1^{\perp}$

gives two future-pointing null normal vector fields globally defined on Σ with $\langle \xi, \eta \rangle = -1$, where we are denoting

$$e_1=e_1^{ op}(p)+e_1^{ot}(p), \quad p\in \Sigma.$$

The corresponding null second forms associated to the global null frame $\{\xi,\eta\}$ are given by

$$A_{\xi} = I$$
 and $A_{\eta} = -\frac{1 + \|\nabla u\|^2}{2u^2}I + \frac{1}{u}\nabla^2 u$,

where $\nabla^2 u$ is the Hessian operator of u.

∢ ≣ ≯

The corresponding null second forms associated to the global null frame $\{\xi,\eta\}$ are given by

$$A_{\xi} = I$$
 and $A_{\eta} = -rac{1+\|
abla u\|^2}{2u^2}I + rac{1}{u}
abla^2 u,$

where $\nabla^2 u$ is the Hessian operator of u.

• In particular, the null expansions are

$$\theta_{\xi} = \frac{1}{n} \operatorname{tr}(A_{\xi}) = 1 > 0$$

and

$$\theta_{\eta} = \frac{1}{n} \operatorname{tr}(A_{\eta}) = \frac{2u\Delta u - n(1 + \|\nabla u\|^2)}{2nu^2},$$

where Δu is the Laplacian of u.

The corresponding null second forms associated to the global null frame $\{\xi,\eta\}$ are given by

$$A_{\xi} = I$$
 and $A_{\eta} = -rac{1+\|
abla u\|^2}{2u^2}I + rac{1}{u}
abla^2 u,$

where $\nabla^2 u$ is the Hessian operator of u.

• In particular, the null expansions are

$$\theta_{\xi} = \frac{1}{n} \operatorname{tr}(A_{\xi}) = 1 > 0$$

and

$$\theta_{\eta} = \frac{1}{n} \operatorname{tr}(A_{\eta}) = \frac{2u\Delta u - n(1 + \|\nabla u\|^2)}{2nu^2},$$

where Δu is the Laplacian of u.

• Therefore, Σ is marginally trapped if and only if $\theta_{\eta} = 0$, that is,

$$2u\Delta u - n(1 + \|\nabla u\|^2) = 0 \quad \text{on} \quad \Sigma.$$

The corresponding null second forms associated to the global null frame $\{\xi,\eta\}$ are given by

$$A_{\xi} = I$$
 and $A_{\eta} = -rac{1+\|
abla u\|^2}{2u^2}I + rac{1}{u}
abla^2 u,$

where $\nabla^2 u$ is the Hessian operator of u.

• In particular, the null expansions are

$$\theta_{\xi} = \frac{1}{n} \operatorname{tr}(A_{\xi}) = 1 > 0$$

and

$$\theta_{\eta} = \frac{1}{n} \operatorname{tr}(A_{\eta}) = \frac{2u\Delta u - n(1 + \|\nabla u\|^2)}{2nu^2},$$

where Δu is the Laplacian of u.

• Therefore, Σ is marginally trapped if and only if $\theta_{\eta} = 0$, that is,

$$2u\Delta u - n(1 + \|\nabla u\|^2) = 0$$
 on Σ .

• In that case, it is necessarily past marginally trapped since $\theta_{\xi} = 1 > 0.$

$$\operatorname{Ric}(X,Y) = (n-1)\langle \mathbf{H}, \mathbf{H} \rangle \langle X, Y \rangle + \frac{n-2}{nu} (\Delta u \langle X, Y \rangle - n\operatorname{Hess} u(X,Y)),$$

and

$$Scal = n(n-1)\langle \mathbf{H}, \mathbf{H} \rangle.$$

프 > 프

$$\operatorname{Ric}(X,Y) = (n-1)\langle \mathbf{H},\mathbf{H}\rangle\langle X,Y\rangle + \frac{n-2}{nu}(\Delta u\langle X,Y\rangle - n\operatorname{Hess} u(X,Y)),$$

and

$$\mathsf{Scal} = n(n-1)\langle \mathbf{H}, \mathbf{H} \rangle.$$

Corollary 4

Let $\psi: \Sigma^n \to \Lambda^+ \subset \mathbb{L}^{n+2}$ be a codimension-two spacelike submanifold which is contained in the future component of the light cone of the Lorentz-Minkowski space.

$$\operatorname{Ric}(X,Y) = (n-1)\langle \mathbf{H},\mathbf{H}\rangle\langle X,Y\rangle + \frac{n-2}{nu}(\Delta u\langle X,Y\rangle - n\operatorname{Hess} u(X,Y)),$$

and

$$\mathsf{Scal} = n(n-1)\langle \mathbf{H}, \mathbf{H} \rangle.$$

Corollary 4

Let $\psi: \Sigma^n \to \Lambda^+ \subset \mathbb{L}^{n+2}$ be a codimension-two spacelike submanifold which is contained in the future component of the light cone of the Lorentz-Minkowski space.

• Σ is (necessarily past) marginally trapped if and only if $u = -\langle \psi, e_0 \rangle$ satisfies the differential equation

$$2u\Delta u - n(1 + \|\nabla u\|^2) = 0 \quad \text{on } \Sigma.$$

$$\operatorname{Ric}(X,Y) = (n-1)\langle \mathbf{H},\mathbf{H}\rangle\langle X,Y\rangle + \frac{n-2}{nu}(\Delta u\langle X,Y\rangle - n\operatorname{Hess} u(X,Y)),$$

and

$$\mathsf{Scal} = n(n-1)\langle \mathbf{H}, \mathbf{H} \rangle.$$

Corollary 4

Let $\psi: \Sigma^n \to \Lambda^+ \subset \mathbb{L}^{n+2}$ be a codimension-two spacelike submanifold which is contained in the future component of the light cone of the Lorentz-Minkowski space.

• Σ is (necessarily past) marginally trapped if and only if $u = -\langle \psi, e_0 \rangle$ satisfies the differential equation

$$2u\Delta u - n(1 + \|\nabla u\|^2) = 0 \quad \text{on } \Sigma.$$

• Σ is (necessarily past) weakly trapped if and only if $u = -\langle \psi, e_0 \rangle$ satisfies the differential inequality

$$2u\Delta u - n(1 + \|\nabla u\|^2) \ge 0$$
 on Σ .

Example 4

• Let
$$\psi: \mathbb{R}^n \to \Lambda^+ \subset \mathbb{L}^{n+2}$$
 be the map given by

$$\psi(p) = \left(\frac{\|p\|^2+1}{2}, \frac{\|p\|^2-1}{2}, p\right), \quad u(p) = \frac{\|p\|^2+1}{2}.$$

Luis J. Alías Trapped submanifolds in de Sitter space

Example 4

• Let $\psi: \mathbb{R}^n \to \Lambda^+ \subset \mathbb{L}^{n+2}$ be the map given by

$$\psi(p) = \left(\frac{\|p\|^2+1}{2}, \frac{\|p\|^2-1}{2}, p\right), \quad u(p) = \frac{\|p\|^2+1}{2}.$$

• Is is not difficult to see that for every $\mathbf{v}, \mathbf{w} \in \mathcal{T}_{\rho}\mathbb{R}^n$,

$$\langle d\psi_{
ho}(\mathbf{v}), d\psi_{
ho}(\mathbf{w})
angle = \langle \mathbf{v}, \mathbf{w}
angle_{\mathbb{R}^n}.$$

< ≣⇒

Example 4

• Let $\psi: \mathbb{R}^n \to \Lambda^+ \subset \mathbb{L}^{n+2}$ be the map given by

$$\psi(p) = \left(\frac{\|p\|^2+1}{2}, \frac{\|p\|^2-1}{2}, p\right), \quad u(p) = \frac{\|p\|^2+1}{2}.$$

• Is is not difficult to see that for every $\mathbf{v}, \mathbf{w} \in T_p \mathbb{R}^n$,

$$\langle d\psi_{p}(\mathbf{v}), d\psi_{p}(\mathbf{w})
angle = \langle \mathbf{v}, \mathbf{w}
angle_{\mathbb{R}^{n}}.$$

That is ψ^{*}(⟨, ⟩) = ⟨, ⟩_{ℝⁿ}, which means that ψ is an isometric immersion of (ℝⁿ, ⟨, ⟩_{ℝⁿ}) into Λ⁺ ⊂ Lⁿ⁺².

Example 4

• Let $\psi: \mathbb{R}^n \to \Lambda^+ \subset \mathbb{L}^{n+2}$ be the map given by

$$\psi(p) = \left(\frac{\|p\|^2+1}{2}, \frac{\|p\|^2-1}{2}, p\right), \quad u(p) = \frac{\|p\|^2+1}{2}.$$

• Is is not difficult to see that for every $\mathbf{v}, \mathbf{w} \in \mathcal{T}_{\rho}\mathbb{R}^n$,

$$\langle d\psi_{
m p}({f v}), d\psi_{
m p}({f w})
angle = \langle {f v}, {f w}
angle_{{\mathbb R}^n}.$$

- That is ψ*(⟨, ⟩) = ⟨, ⟩_{ℝⁿ}, which means that ψ is an isometric immersion of (ℝⁿ, ⟨, ⟩_{ℝⁿ}) into Λ⁺ ⊂ Lⁿ⁺².
- In particular, $\nabla u(p) = \nabla^{\mathbb{R}^n} u(p) = p$ and $\Delta u(p) = \Delta_{\mathbb{R}^n} u(p) = n$, and u satisfies

$$2u\Delta u - n(1 + \|\nabla u\|^2) = n(\|p\|^2 + 1) - n(1 + \|p\|^2) = 0$$

which means ψ is a marginally trapped immersion of \mathbb{R}^n into Λ^+ .

B ► < B ►</p>

Example 5

• Let
$$\phi: (0,+\infty) imes \mathbb{H}^{n-1} o \Lambda^+ \subset \mathbb{L}^{n+2}$$
 be the map given by

 $\psi(t,p) = (p,\cos(t),\sin(t)), \quad u(p) = p_1.$

(不)語(を)(不)語(を)

< 🗇 ▶

æ

Example 5

• Let $\phi:(0,+\infty) imes \mathbb{H}^{n-1} o \Lambda^+ \subset \mathbb{L}^{n+2}$ be the map given by

$$\psi(t,p) = (p,\cos(t),\sin(t)), \quad u(p) = p_1.$$

Is is not difficult to see that φ^{*}(⟨, ⟩) = dt² + ⟨, ⟩_{ℍn-1}, which means that φ gives an isometric immersion of the Riemannian product manifold (0, +∞) × ℍⁿ⁻¹ into Λ⁺ ⊂ Lⁿ⁺².

< ∃→

Example 5

• Let $\phi:(0,+\infty) imes \mathbb{H}^{n-1} o \Lambda^+ \subset \mathbb{L}^{n+2}$ be the map given by

$$\psi(t,p) = (p,\cos(t),\sin(t)), \quad u(p) = p_1.$$

- Is is not difficult to see that φ^{*}(⟨, ⟩) = dt² + ⟨, ⟩_{ℍn-1}, which means that φ gives an isometric immersion of the Riemannian product manifold (0, +∞) × ℍⁿ⁻¹ into Λ⁺ ⊂ Lⁿ⁺².
- In particular, and after some computations, we have

$$\|
abla u\|^2 = -1 + u^2$$
 and $\Delta u = (n-1)u$,

which implies that

$$2u\Delta u - n(1 + \|\nabla u\|^2) = (n-2)u^2 \ge 0.$$

Example 5

• Let $\phi:(0,+\infty) imes \mathbb{H}^{n-1} o \Lambda^+ \subset \mathbb{L}^{n+2}$ be the map given by

$$\psi(t,p) = (p,\cos(t),\sin(t)), \quad u(p) = p_1.$$

- Is is not difficult to see that φ^{*}(⟨, ⟩) = dt² + ⟨, ⟩_{ℍn-1}, which means that φ gives an isometric immersion of the Riemannian product manifold (0, +∞) × ℍⁿ⁻¹ into Λ⁺ ⊂ Lⁿ⁺².
- In particular, and after some computations, we have

$$\|
abla u\|^2 = -1 + u^2$$
 and $\Delta u = (n-1)u$,

which implies that

$$2u\Delta u - n(1 + \|\nabla u\|^2) = (n-2)u^2 \ge 0.$$

 Therefore, Σ is a weakly trapped submanifold, and it is marginally trapped if, and only if n = 2.

Non-existence of weakly marginally trapped submanifolds into the light cone

Our first result establishes the non-existence of compact weakly trapped submanifolds into \mathbb{L}^{n+2}

Proposition 4

There exists no codimension two compact weakly trapped submanifold in $\mathbb{L}^{n+2}.$

Non-existence of weakly marginally trapped submanifolds into the light cone

Our first result establishes the non-existence of compact weakly trapped submanifolds into \mathbb{L}^{n+2}

Proposition 4

There exists no codimension two compact weakly trapped submanifold in $\mathbb{L}^{n+2}.$

• The proof of Proposition 4 follows from that fact that

$$\Delta u = -n \langle \mathbf{H}, \mathbf{e}_1 \rangle$$

and that the mean curvature vector field **H** satisfies $\langle \mathbf{H}, \mathbf{e}_1 \rangle < 0$ or $\langle \mathbf{H}, \mathbf{e}_1 \rangle > 0$ since **H** is not spacelike.

< ≣ >

Non-existence of weakly marginally trapped submanifolds into the light cone

Our first result establishes the non-existence of compact weakly trapped submanifolds into \mathbb{L}^{n+2}

Proposition 4

There exists no codimension two compact weakly trapped submanifold in $\mathbb{L}^{n+2}.$

• The proof of Proposition 4 follows from that fact that

$$\Delta u = -n \langle \mathbf{H}, \mathbf{e}_1 \rangle$$

and that the mean curvature vector field ${\bf H}$ satisfies $\langle {\bf H}, {\bf e}_1 \rangle < 0$ or $\langle {\bf H}, {\bf e}_1 \rangle > 0$ since ${\bf H}$ is not spacelike.

• Therefore $\Delta u > 0$ (or $\Delta u < 0$) on Σ and from the divergence theorem we have

$$\int_{\Sigma} \Delta u \mathrm{d}\Sigma = 0$$

what implies $\Delta u \equiv 0$ and gives us a contradiction.

< ∃→

э

Corollary 5

There is no codimension two complete weakly trapped immersed submanifold in $\Lambda^+ \subset \mathbb{L}^{n+2}$ for which the positive function $u = -\langle \psi, \mathbf{e}_1 \rangle$ satisfies

$$u \leq Cr \log r, \qquad r >> 1.$$

In particular, there is no codimension two complete weakly trapped immersed submanifold in $\Lambda^+ \subset \mathbb{L}^{n+2}$ for which the positive function u is bounded from above.

Corollary 5

There is no codimension two complete weakly trapped immersed submanifold in $\Lambda^+ \subset \mathbb{L}^{n+2}$ for which the positive function $u = -\langle \psi, \mathbf{e}_1 \rangle$ satisfies

$$u \leq Cr \log r, \qquad r >> 1.$$

In particular, there is no codimension two complete weakly trapped immersed submanifold in $\Lambda^+ \subset \mathbb{L}^{n+2}$ for which the positive function u is bounded from above.

More generally, with the aid of the weak maximum principle we can extend this non-existence result to stochastically complete submanifolds as follows

< ∃ >

Corollary 5

There is no codimension two complete weakly trapped immersed submanifold in $\Lambda^+ \subset \mathbb{L}^{n+2}$ for which the positive function $u = -\langle \psi, \mathbf{e}_1 \rangle$ satisfies

$$u \leq Cr \log r, \qquad r >> 1.$$

In particular, there is no codimension two complete weakly trapped immersed submanifold in $\Lambda^+ \subset \mathbb{L}^{n+2}$ for which the positive function u is bounded from above.

More generally, with the aid of the weak maximum principle we can extend this non-existence result to stochastically complete submanifolds as follows

Theorem 3

There is no codimension two stochastically complete weakly trapped immersed submanifold in $\Lambda^+ \subset \mathbb{L}^{n+2}$ for which the positive function u is bounded from above.

医外球 医外口

э

Stochastic completeness and the weak maximum principle

• The weak maximum principle is said to hold on Σ if, for any $u \in C^2(\Sigma)$ with $u^* < +\infty$ there is a sequence $\{p_k\}_{k \in \mathbb{N}}$ in Σ with

(i)
$$u(p_k) > u^* - \frac{1}{k}$$
, and (ii) $\Delta u(p_k) < \frac{1}{k}$.

Stochastic completeness and the weak maximum principle

• The weak maximum principle is said to hold on Σ if, for any $u \in C^2(\Sigma)$ with $u^* < +\infty$ there is a sequence $\{p_k\}_{k \in \mathbb{N}}$ in Σ with

(i)
$$u(p_k) > u^* - \frac{1}{k}$$
, and (ii) $\Delta u(p_k) < \frac{1}{k}$

 Pigola, Rigoli and Setti (2003) proved that the weak maximum principle holds on a (non-necessarily complete) Riemannian manifold Σ if and only if Σ is stochastically complete.
Stochastic completeness and the weak maximum principle

• The weak maximum principle is said to hold on Σ if, for any $u \in C^2(\Sigma)$ with $u^* < +\infty$ there is a sequence $\{p_k\}_{k \in \mathbb{N}}$ in Σ with

(i)
$$u(p_k) > u^* - \frac{1}{k}$$
, and (ii) $\Delta u(p_k) < \frac{1}{k}$

- Pigola, Rigoli and Setti (2003) proved that the weak maximum principle holds on a (non-necessarily complete) Riemannian manifold Σ if and only if Σ is stochastically complete.
- Recall that Σ is said to be stochastically complete if its Brownian motion is stochastically complete, i.e, the probability of a particle to be found in the state space is constantly equal to 1.

Stochastic completeness and the weak maximum principle

• The weak maximum principle is said to hold on Σ if, for any $u \in C^2(\Sigma)$ with $u^* < +\infty$ there is a sequence $\{p_k\}_{k \in \mathbb{N}}$ in Σ with

(i)
$$u(p_k) > u^* - \frac{1}{k}$$
, and (ii) $\Delta u(p_k) < \frac{1}{k}$

- Pigola, Rigoli and Setti (2003) proved that the weak maximum principle holds on a (non-necessarily complete) Riemannian manifold Σ if and only if Σ is stochastically complete.
- Recall that Σ is said to be stochastically complete if its Brownian motion is stochastically complete, i.e, the probability of a particle to be found in the state space is constantly equal to 1.
- This is equivalent (among other conditions) to the fact that for every $\lambda > 0$, the only non-negative bounded smooth solution u of $\Delta u \ge \lambda u$ on Σ is the constant u = 0.

< ∃→

Stochastic completeness and the weak maximum principle

• The weak maximum principle is said to hold on Σ if, for any $u \in C^2(\Sigma)$ with $u^* < +\infty$ there is a sequence $\{p_k\}_{k \in \mathbb{N}}$ in Σ with

(i)
$$u(p_k) > u^* - \frac{1}{k}$$
, and (ii) $\Delta u(p_k) < \frac{1}{k}$

- Pigola, Rigoli and Setti (2003) proved that the weak maximum principle holds on a (non-necessarily complete) Riemannian manifold Σ if and only if Σ is stochastically complete.
- Recall that Σ is said to be stochastically complete if its Brownian motion is stochastically complete, i.e, the probability of a particle to be found in the state space is constantly equal to 1.
- This is equivalent (among other conditions) to the fact that for every λ > 0, the only non-negative bounded smooth solution u of Δu ≥ λu on Σ is the constant u = 0.
- In particular, every **parabolic** manifold is stochastically complete. Hence, the weak max principle holds on every parabolic manifold.

- ∢ ≣ ▶

 Let ψ : Σⁿ → Λ⁺ ⊂ Lⁿ⁺² be an *n*-dimensional stochastically complete weakly trapped submanifold such as ψ(Σ) ⊂ Λ⁺.

- Let ψ : Σⁿ → Λ⁺ ⊂ Lⁿ⁺² be an *n*-dimensional stochastically complete weakly trapped submanifold such as ψ(Σ) ⊂ Λ⁺.
- Consider $u=-\langle\psi,{f e}_1
 angle$ as usual, which satisfies

$$2u\Delta u - n(1 + \|\nabla u\|^2) \ge 0.$$
 (4)

★ 프 ▶ - 프

- Let ψ : Σⁿ → Λ⁺ ⊂ Lⁿ⁺² be an *n*-dimensional stochastically complete weakly trapped submanifold such as ψ(Σ) ⊂ Λ⁺.
- Consider $u=-\langle\psi,{f e}_1
 angle$ as usual, which satisfies

$$2u\Delta u - n(1 + \|\nabla u\|^2) \ge 0.$$
 (4)

Supose that u^{*} = sup_Σ u < +∞. Since Σ is stochastically complete, by the weak maximum principle there exists a sequence {p_k}_{k∈ℕ} ⊂ Σ with

$$\Delta u(p_k) < rac{1}{k}$$
 for every $k \in \mathbb{N}$

- Let ψ : Σⁿ → Λ⁺ ⊂ Lⁿ⁺² be an *n*-dimensional stochastically complete weakly trapped submanifold such as ψ(Σ) ⊂ Λ⁺.
- Consider $u=-\langle\psi,{f e}_1
 angle$ as usual, which satisfies

$$2u\Delta u - n(1 + \|\nabla u\|^2) \ge 0.$$
 (4)

Supose that u^{*} = sup_Σ u < +∞. Since Σ is stochastically complete, by the weak maximum principle there exists a sequence {p_k}_{k∈ℕ} ⊂ Σ with

$$\Delta u(p_k) < rac{1}{k} \quad ext{for every} \ \ k \in \mathbb{N}$$

• Putting this into (4) we obtain

$$n \leq n(1+\|
abla u(p_k)\|^2) \leq 2u(p_k)\Delta u(p_k) < 2rac{u(p_k)}{k},$$

and making $k \to +\infty$ we get

$$n \leq 0$$

which is not possible.

That's all !!

Thank you very much for your attention

∢ 臣 ▶

э