Lorentzian length spaces

Clemens Sämann

joint work with Michael Kunzinger preprint arXiv:1711.08990

> University of Vienna, Austria Faculty of Mathematics

IX International Meeting on Lorentzian Geometry, Warsaw June 22, 2018

- need for low regularity (of the metric): PDE point-of-view, physically relevant models (matched spacetimes, shock waves, impulsive gravitational waves, etc.)
- separate main concepts and derived notions of the causal structure
- minimal framework for causality and (timelike/causal) curvature bounds with continuous metrics
- timelike/causal curvature bounds without a Lorentzian metric
- possible applications to Quantum Gravity

- need for low regularity (of the metric): PDE point-of-view, physically relevant models (matched spacetimes, shock waves, impulsive gravitational waves, etc.)
- separate main concepts and derived notions of the causal structure
- minimal framework for causality and (timelike/causal) curvature bounds with continuous metrics
- timelike/causal curvature bounds without a Lorentzian metric
- possible applications to Quantum Gravity

- need for low regularity (of the metric): PDE point-of-view, physically relevant models (matched spacetimes, shock waves, impulsive gravitational waves, etc.)
- separate main concepts and derived notions of the causal structure
- minimal framework for causality and (timelike/causal) curvature bounds with continuous metrics
- timelike/causal curvature bounds without a Lorentzian metric
- possible applications to Quantum Gravity

- need for low regularity (of the metric): PDE point-of-view, physically relevant models (matched spacetimes, shock waves, impulsive gravitational waves, etc.)
- separate main concepts and derived notions of the causal structure
- minimal framework for causality and (timelike/causal) curvature bounds with continuous metrics
- timelike/causal curvature bounds without a Lorentzian metric
- possible applications to Quantum Gravity

- need for low regularity (of the metric): PDE point-of-view, physically relevant models (matched spacetimes, shock waves, impulsive gravitational waves, etc.)
- separate main concepts and derived notions of the causal structure
- minimal framework for causality and (timelike/causal) curvature bounds with continuous metrics
- timelike/causal curvature bounds without a Lorentzian metric
- possible applications to Quantum Gravity

- need for low regularity (of the metric): PDE point-of-view, physically relevant models (matched spacetimes, shock waves, impulsive gravitational waves, etc.)
- separate main concepts and derived notions of the causal structure
- minimal framework for causality and (timelike/causal) curvature bounds with continuous metrics
- timelike/causal curvature bounds without a Lorentzian metric
- possible applications to Quantum Gravity

- need for low regularity (of the metric): PDE point-of-view, physically relevant models (matched spacetimes, shock waves, impulsive gravitational waves, etc.)
- separate main concepts and derived notions of the causal structure
- minimal framework for causality and (timelike/causal) curvature bounds with continuous metrics
- timelike/causal curvature bounds without a Lorentzian metric
- possible applications to Quantum Gravity

 $X \text{ set}, \leq \text{preorder on } X, \ll \text{transitive relation contained in } \leq, d \text{ metric on } X, \tau \colon X \times X \to [0, \infty]$ lower semicontinuous (with respect to d)

Definition

 (X, d, \ll, \leq, τ) is a Lorentzian pre-length space if

 $\tau(x,z) \ge \tau(x,y) + \tau(y,z) \qquad (x \le y \le z),$

and $\tau(x, y) = 0$ if $x \leq y$ and $\tau(x, y) > 0 \Leftrightarrow x \ll y$; τ is called *time separation function*

examples

• smooth spacetimes (M, g) with usual time separation function $\tau(p, q) := \sup\{L_g(\gamma) : \gamma \text{ f.d. causal from } p \text{ to } q\}$

finite directed graphs

X set, \leq preorder on X, \ll transitive relation contained in \leq , d metric on X, $\tau: X \times X \to [0, \infty]$ lower semicontinuous (with respect to d)

Definition

 (X,d,\ll,\leq,τ) is a Lorentzian pre-length space if

$$\tau(x,z) \ge \tau(x,y) + \tau(y,z) \qquad (x \le y \le z),$$

and $\tau(x, y) = 0$ if $x \nleq y$ and $\tau(x, y) > 0 \Leftrightarrow x \ll y$; τ is called *time separation function*

examples

• smooth spacetimes (M, g) with usual time separation function $\tau(p, q) := \sup\{L_g(\gamma) : \gamma \text{ f.d. causal from } p \text{ to } q\}$

finite directed graphs

X set, \leq preorder on X, \ll transitive relation contained in \leq , d metric on X, $\tau: X \times X \to [0, \infty]$ lower semicontinuous (with respect to d)

Definition

 (X,d,\ll,\leq,τ) is a Lorentzian pre-length space if

$$\tau(x,z) \ge \tau(x,y) + \tau(y,z) \qquad (x \le y \le z),$$

and $\tau(x, y) = 0$ if $x \leq y$ and $\tau(x, y) > 0 \Leftrightarrow x \ll y$; τ is called *time separation function*

examples

- smooth spacetimes (M, g) with usual time separation function $\tau(p, q) := \sup\{L_g(\gamma) : \gamma \text{ f.d. causal from } p \text{ to } q\}$
- finite directed graphs

X set, \leq preorder on X, \ll transitive relation contained in \leq , d metric on X, $\tau: X \times X \to [0, \infty]$ lower semicontinuous (with respect to d)

Definition

 (X,d,\ll,\leq,τ) is a Lorentzian pre-length space if

$$\tau(x,z) \ge \tau(x,y) + \tau(y,z) \qquad (x \le y \le z),$$

and $\tau(x, y) = 0$ if $x \leq y$ and $\tau(x, y) > 0 \Leftrightarrow x \ll y$; τ is called *time separation function*

examples

- smooth spacetimes (M, g) with usual time separation function $\tau(p, q) := \sup\{L_g(\gamma) : \gamma \text{ f.d. causal from } p \text{ to } q\}$
- finite directed graphs

Definition

 $I \subseteq \mathbb{R}$ interval, $\gamma: I \to X$ non-constant is *future directed causal (timelike)* if γ locally Lipschitz continuous (wrt. d) and for $t_1, t_2 \in I$, $t_1 < t_2$: $\gamma(t_1) \leq \gamma(t_2) \ (\gamma(t_1) \ll \gamma(t_2))$; analogously for *null* $(\gamma(t_1) \leq \gamma(t_2)$ and $\gamma(t_1) \not\ll \gamma(t_2)$) and *past directed* curves

- Lorentz cylinder $S_1^1 \times \mathbb{R}$: every non-constant locally Lipschitz curve is timelike and causal \rightsquigarrow need causality conditions
- Minkowski spacetime $\mathbb{R}^3_1 : t \mapsto (t, \cos(t), \sin(t))$ has null tangent but is timelike

Proposition

Definition

 $I \subseteq \mathbb{R}$ interval, $\gamma: I \to X$ non-constant is *future directed causal (timelike)* if γ locally Lipschitz continuous (wrt. d) and for $t_1, t_2 \in I$, $t_1 < t_2$: $\gamma(t_1) \leq \gamma(t_2) \ (\gamma(t_1) \ll \gamma(t_2))$; analogously for *null* $(\gamma(t_1) \leq \gamma(t_2)$ and $\gamma(t_1) \not\ll \gamma(t_2)$) and *past directed* curves

- Lorentz cylinder $S_1^1 \times \mathbb{R}$: every non-constant locally Lipschitz curve is timelike and causal \rightsquigarrow need causality conditions
- Minkowski spacetime $\mathbb{R}^3_1 : t \mapsto (t, \cos(t), \sin(t))$ has null tangent but is timelike

Proposition

Definition

 $I \subseteq \mathbb{R}$ interval, $\gamma: I \to X$ non-constant is *future directed causal (timelike)* if γ locally Lipschitz continuous (wrt. d) and for $t_1, t_2 \in I$, $t_1 < t_2$: $\gamma(t_1) \leq \gamma(t_2) \ (\gamma(t_1) \ll \gamma(t_2))$; analogously for *null* $(\gamma(t_1) \leq \gamma(t_2)$ and $\gamma(t_1) \not\ll \gamma(t_2)$) and *past directed* curves

- Lorentz cylinder $S_1^1 \times \mathbb{R}$: every non-constant locally Lipschitz curve is timelike and causal \rightsquigarrow need causality conditions
- Minkowski spacetime $\mathbb{R}^3_1 : t \mapsto (t, \cos(t), \sin(t))$ has null tangent but is timelike

Proposition

Definition

 $I \subseteq \mathbb{R}$ interval, $\gamma: I \to X$ non-constant is *future directed causal (timelike)* if γ locally Lipschitz continuous (wrt. d) and for $t_1, t_2 \in I$, $t_1 < t_2$: $\gamma(t_1) \leq \gamma(t_2) \ (\gamma(t_1) \ll \gamma(t_2))$; analogously for *null* $(\gamma(t_1) \leq \gamma(t_2)$ and $\gamma(t_1) \not\ll \gamma(t_2)$) and *past directed* curves

- Lorentz cylinder $S_1^1 \times \mathbb{R}$: every non-constant locally Lipschitz curve is timelike and causal \rightsquigarrow need causality conditions
- Minkowski spacetime $\mathbb{R}^3_1 : t \mapsto (t, \cos(t), \sin(t))$ has null tangent but is timelike

Proposition

Definition

$\gamma \colon [a, b] \to X \text{ f.d. causal, } \tau \text{-length defined by}$ $L_{\tau}(\gamma) := \inf \{ \sum_{i=0}^{N-1} \tau(\gamma(t_i), \gamma(t_{i+1})) : a = t_0 < t_1 < \ldots < t_N = b \}$

Proposition

 (M,d^h,\ll,\leq,τ) the Lorentzian pre-length space induced by a smooth and strongly causal spacetime (M,g), then $L_\tau(\gamma)=L_g(\gamma)$

intrinsic notion of geodesics? ightarrow maximal causal curves

Definition

 $\gamma \colon [a, b] \to X$ f.d. causal is *maximal* if $L_{\tau}(\gamma) = \tau(\gamma(a), \gamma(b))$

Definition

$\gamma \colon [a, b] \to X \text{ f.d. causal, } \tau \text{-length defined by}$ $L_{\tau}(\gamma) := \inf \{ \sum_{i=0}^{N-1} \tau(\gamma(t_i), \gamma(t_{i+1})) : a = t_0 < t_1 < \ldots < t_N = b \}$

Proposition

 (M,d^h,\ll,\leq,τ) the Lorentzian pre-length space induced by a smooth and strongly causal spacetime (M,g), then $L_\tau(\gamma)=L_g(\gamma)$

intrinsic notion of geodesics? ightarrow maximal causal curves

Definition

 $\gamma \colon [a, b] \to X$ f.d. causal is *maximal* if $L_{\tau}(\gamma) = \tau(\gamma(a), \gamma(b))$

Definition

$\gamma \colon [a, b] \to X \text{ f.d. causal, } \tau \text{-length defined by}$ $L_{\tau}(\gamma) := \inf \{ \sum_{i=0}^{N-1} \tau(\gamma(t_i), \gamma(t_{i+1})) : a = t_0 < t_1 < \ldots < t_N = b \}$

Proposition

 (M,d^h,\ll,\leq,τ) the Lorentzian pre-length space induced by a smooth and strongly causal spacetime (M,g), then $L_\tau(\gamma)=L_g(\gamma)$

intrinsic notion of geodesics? $\sim maximal \ causal \ curves$

(X, d, \ll, \leq, τ) Lorentzian pre-length space

$\gamma: [a, b] \to X$ f.d. causal is *maximal* if $L_{\tau}(\gamma) = \tau(\gamma(a), \gamma(b))$

Definition

$\gamma \colon [a, b] \to X \text{ f.d. causal, } \tau \text{-length defined by}$ $L_{\tau}(\gamma) := \inf \{ \sum_{i=0}^{N-1} \tau(\gamma(t_i), \gamma(t_{i+1})) : a = t_0 < t_1 < \ldots < t_N = b \}$

Proposition

 (M,d^h,\ll,\leq,τ) the Lorentzian pre-length space induced by a smooth and strongly causal spacetime (M,g), then $L_\tau(\gamma)=L_g(\gamma)$

intrinsic notion of geodesics? $\sim maximal \ causal \ curves$

 (X,d,\ll,\leq,τ) Lorentzian pre-length space

Definition

 $\gamma \colon [a,b] \to X$ f.d. causal is *maximal* if $L_{\tau}(\gamma) = \tau(\gamma(a),\gamma(b))$

- causality conditions (e.g. strong causality: topology generated by $I^+(x) \cap I^-(y) = \{x \ll z \ll y\}$ agrees with the metric topology, etc.)
- causal connectedness (x < y or x ≪ y ⇒ ∃ f.d. causal/timelike curve from x to y)
- limit curve theorems
- localizability (locally the geometry and causality of a (smooth) Lorentzian manifold is better behaved than globally)
- $\sim \rightarrow$
 - synthetic notion of regularity \Rightarrow maximal causal curves have causal character
 - L_{τ} upper semicontinuous

- causality conditions (e.g. strong causality: topology generated by $I^+(x) \cap I^-(y) = \{x \ll z \ll y\}$ agrees with the metric topology, etc.)
- causal connectedness (x < y or $x \ll y \Rightarrow \exists$ f.d. causal/timelike curve from x to y)
- limit curve theorems
- localizability (locally the geometry and causality of a (smooth) Lorentzian manifold is better behaved than globally)
- $\bullet\,$ synthetic notion of regularity $\Rightarrow\,$ maximal causal curves have causal character
- L_{τ} upper semicontinuous

- causality conditions (e.g. strong causality: topology generated by $I^+(x) \cap I^-(y) = \{x \ll z \ll y\}$ agrees with the metric topology, etc.)
- causal connectedness (x < y or x ≪ y ⇒ ∃ f.d. causal/timelike curve from x to y)
- Iimit curve theorems
- localizability (locally the geometry and causality of a (smooth) Lorentzian manifold is better behaved than globally)
- $\bullet\,$ synthetic notion of regularity $\Rightarrow\,$ maximal causal curves have causal character
- L_{τ} upper semicontinuous

- causality conditions (e.g. strong causality: topology generated by $I^+(x) \cap I^-(y) = \{x \ll z \ll y\}$ agrees with the metric topology, etc.)
- causal connectedness (x < y or x ≪ y ⇒ ∃ f.d. causal/timelike curve from x to y)
- Iimit curve theorems
- localizability (locally the geometry and causality of a (smooth) Lorentzian manifold is better behaved than globally)
- \bullet synthetic notion of regularity \Rightarrow maximal causal curves have causal character
- L_{τ} upper semicontinuous

- causality conditions (e.g. strong causality: topology generated by $I^+(x) \cap I^-(y) = \{x \ll z \ll y\}$ agrees with the metric topology, etc.)
- causal connectedness (x < y or x ≪ y ⇒ ∃ f.d. causal/timelike curve from x to y)
- limit curve theorems
- localizability (locally the geometry and causality of a (smooth) Lorentzian manifold is better behaved than globally)
- $\sim \rightarrow$
 - $\bullet\,$ synthetic notion of regularity $\Rightarrow\,$ maximal causal curves have causal character
 - L_{τ} upper semicontinuous

 (X,d,\ll,\leq,τ) locally causally closed, causally path connected, localizable Lorentzian pre-length space; for $x,y\in X$ define

 $\mathcal{T}(x,y) := \sup\{L_{\tau}(\gamma) : \gamma \text{ f.d. causal from } x \text{ to } y\},\$

if the set is not empty, otherwise $\mathcal{T}(x,y):=0$

X is a Lorentzian length space if $\mathcal{T} = \tau$; if, in addition X is regularly localizing, then X is a regular Lorentzian length space

 $(M, d^h, \ll, \leq, \tau)$ the Lorentzian pre-length space induced by a smooth and strongly causal spacetime (M, g) (since $L_{\tau} = L_g$) is a regular LLS

 (X,d,\ll,\leq,τ) locally causally closed, causally path connected, localizable Lorentzian pre-length space; for $x,y\in X$ define

 $\mathcal{T}(x,y) := \sup\{L_{\tau}(\gamma) : \gamma \text{ f.d. causal from } x \text{ to } y\},\$

if the set is not empty, otherwise $\mathcal{T}(x, y) := 0$ X is a Lorentzian length space if $\mathcal{T} = \tau$; if, in addition X is regularly localizing, then X is a regular Lorentzian length space

 $(M, d^h, \ll, \leq, \tau)$ the Lorentzian pre-length space induced by a smooth and strongly causal spacetime (M, g) (since $L_{\tau} = L_g$) is a regular LLS

 (X,d,\ll,\leq,τ) locally causally closed, causally path connected, localizable Lorentzian pre-length space; for $x,y\in X$ define

 $\mathcal{T}(x,y) := \sup\{L_{\tau}(\gamma) : \gamma \text{ f.d. causal from } x \text{ to } y\},\$

if the set is not empty, otherwise $\mathcal{T}(x, y) := 0$ X is a Lorentzian length space if $\mathcal{T} = \tau$; if, in addition X is regularly localizing, then X is a regular Lorentzian length space

 $(M, d^h, \ll, \leq, \tau)$ the Lorentzian pre-length space induced by a smooth and strongly causal spacetime (M, g) (since $L_{\tau} = L_g$) is a regular LLS

 (X,d,\ll,\leq,τ) locally causally closed, causally path connected, localizable Lorentzian pre-length space; for $x,y\in X$ define

 $\mathcal{T}(x,y) := \sup\{L_{\tau}(\gamma) : \gamma \text{ f.d. causal from } x \text{ to } y\},\$

if the set is not empty, otherwise $\mathcal{T}(x, y) := 0$ X is a Lorentzian length space if $\mathcal{T} = \tau$; if, in addition X is regularly localizing, then X is a regular Lorentzian length space

 $(M, d^h, \ll, \leq, \tau)$ the Lorentzian pre-length space induced by a smooth and strongly causal spacetime (M, g) (since $L_{\tau} = L_g$) is a regular LLS

timelike geodesic triangle in Lorentzian pre-length space (X, d, \ll, \leq, τ) is triple $(x, y, z) \in X^3$ with $x \ll y \ll z$, $\tau(x, z) < \infty$ and s.t. sides are realized by f.d. causal curves

i.e., \exists f.d. causal curves α, β, γ s.t. $L_{\tau}(\alpha) = \tau(x, y)$, $L_{\tau}(\beta) = \tau(y, z)$ and $L_{\tau}(\gamma) = \tau(x, z)$ $\rightsquigarrow \tau(x, y), \tau(y, z) < \infty$ and α, β, γ maximal

timelike geodesic triangle in Lorentzian pre-length space (X, d, \ll, \leq, τ) is triple $(x, y, z) \in X^3$ with $x \ll y \ll z$, $\tau(x, z) < \infty$ and s.t. sides are realized by f.d. causal curves

i.e., \exists f.d. causal curves α, β, γ s.t. $L_{\tau}(\alpha) = \tau(x, y)$, $L_{\tau}(\beta) = \tau(y, z)$ and $L_{\tau}(\gamma) = \tau(x, z)$ $\rightsquigarrow \tau(x, y), \tau(y, z) < \infty$ and α, β, γ maximal

timelike geodesic triangle in Lorentzian pre-length space (X, d, \ll, \leq, τ) is triple $(x, y, z) \in X^3$ with $x \ll y \ll z$, $\tau(x, z) < \infty$ and s.t. sides are realized by f.d. causal curves

i.e., \exists f.d. causal curves α, β, γ s.t. $L_{\tau}(\alpha) = \tau(x, y)$, $L_{\tau}(\beta) = \tau(y, z)$ and $L_{\tau}(\gamma) = \tau(x, z)$ $\rightsquigarrow \tau(x, y), \tau(y, z) < \infty$ and α, β, γ maximal

Lorentzian pre-length space X has timelike curvature bounded below (above) by $K \in \mathbb{R}$ if all points in X have nhd. U s.t.:

$\ \, \bullet \ \, \tau|_{U\times U} \ \, {\rm finite \ and \ \, continuous}$

② $x,y \in U$ with $x \ll y \Rightarrow \exists$ f.d. maximal causal curve in U from x to y

(*x*, *y*, *z*) small timelike geodesic triangle in *U*, $(\bar{x}, \bar{y}, \bar{z})$ comparison triangle of (x, y, z) in M_K , then for *p*, *q* points on the sides of (x, y, z) and \bar{p}, \bar{q} corresponding points $(\bar{x}, \bar{y}, \bar{z})$:

 $\tau(p,q) \leq \bar{\tau}(\bar{p},\bar{q}) \quad (\text{respectively } \tau(p,q) \geq \bar{\tau}(\bar{p},\bar{q}))$

Lorentzian pre-length space X has *timelike curvature bounded below* (above) by $K \in \mathbb{R}$ if all points in X have nhd. U s.t.:

- $\ \, \bullet \ \, \tau|_{U\times U} \ \, {\rm finite \ and \ \, continuous}$
- $\textcircled{0} \quad x,y \in U \text{ with } x \ll y \Rightarrow \exists \text{ f.d. maximal causal curve in } U \text{ from } x \text{ to } y$

(x, y, z) small timelike geodesic triangle in U, $(\bar{x}, \bar{y}, \bar{z})$ comparison triangle of (x, y, z) in M_K , then for p, q points on the sides of (x, y, z) and \bar{p}, \bar{q} corresponding points $(\bar{x}, \bar{y}, \bar{z})$:

 $\tau(p,q) \leq \bar{\tau}(\bar{p},\bar{q}) \quad (\text{respectively } \tau(p,q) \geq \bar{\tau}(\bar{p},\bar{q}))$

Lorentzian pre-length space X has *timelike curvature bounded below* (above) by $K \in \mathbb{R}$ if all points in X have nhd. U s.t.:

- $\ \, \bullet \ \, \tau|_{U\times U} \ \, {\rm finite \ and \ \, continuous}$
- $\label{eq:constraint} \textbf{0} \ x,y \in U \ \text{with} \ x \ll y \Rightarrow \exists \ \text{f.d.} \ \text{maximal causal curve in} \ U \ \text{from} \ x \ \text{to} \ y$
- (x, y, z) small timelike geodesic triangle in U, $(\bar{x}, \bar{y}, \bar{z})$ comparison triangle of (x, y, z) in M_K , then for p, q points on the sides of (x, y, z) and \bar{p}, \bar{q} corresponding points $(\bar{x}, \bar{y}, \bar{z})$:

 $\tau(p,q) \leq \bar{\tau}(\bar{p},\bar{q}) \quad (\text{respectively } \tau(p,q) \geq \bar{\tau}(\bar{p},\bar{q}))$

Lorentzian pre-length space X has *timelike curvature bounded below* (above) by $K \in \mathbb{R}$ if all points in X have nhd. U s.t.:

- $\ \, \bullet \ \, \tau|_{U\times U} \ \, {\rm finite \ and \ \, continuous}$
- $\label{eq:constraint} \textbf{0} \ x,y \in U \ \text{with} \ x \ll y \Rightarrow \exists \ \text{f.d.} \ \text{maximal causal curve in} \ U \ \text{from} \ x \ \text{to} \ y$
- (x, y, z) small timelike geodesic triangle in U, $(\bar{x}, \bar{y}, \bar{z})$ comparison triangle of (x, y, z) in M_K , then for p, q points on the sides of (x, y, z) and \bar{p}, \bar{q} corresponding points $(\bar{x}, \bar{y}, \bar{z})$:

 $\tau(p,q) \leq \bar{\tau}(\bar{p},\bar{q}) \quad (\text{respectively } \tau(p,q) \geq \bar{\tau}(\bar{p},\bar{q}))$

Alexandrov spaces with curvature bounded below: geodesics do not branch

Definition

X Lorentzian pre-length space, $\gamma : [a, b] \to X$ maximal curve; $x := \gamma(t)$, $t \in (a, b)$ is branching point of γ if \exists maximal curves $\alpha, \beta : [a, c] \to X$ with c > b and $\alpha|_{[a,t]} = \beta|_{[a,t]} = \gamma|_{[a,t]}$, $\alpha([t, c]) \cap \beta([t, c]) = \{x\}$

Theorem

X strongly causal Lorentzian length space with timelike curvature bounded below by some $K \in \mathbb{R}$ s.t. X regular and locally compact or timelike locally uniquely geodesic, then maximal timelike curves do not have timelike branching points

Alexandrov spaces with curvature bounded below: geodesics do not branch

Definition

X Lorentzian pre-length space, $\gamma \colon [a, b] \to X$ maximal curve; $x := \gamma(t)$, $t \in (a, b)$ is *branching point* of γ if \exists maximal curves $\alpha, \beta \colon [a, c] \to X$ with c > b and $\alpha|_{[a,t]} = \beta|_{[a,t]} = \gamma|_{[a,t]}$, $\alpha([t, c]) \cap \beta([t, c]) = \{x\}$

Theorem

X strongly causal Lorentzian length space with timelike curvature bounded below by some $K \in \mathbb{R}$ s.t. X regular and locally compact or timelike locally uniquely geodesic, then maximal timelike curves do not have timelike branching points Alexandrov spaces with curvature bounded below: geodesics do not branch

Definition

X Lorentzian pre-length space, $\gamma \colon [a, b] \to X$ maximal curve; $x := \gamma(t)$, $t \in (a, b)$ is *branching point* of γ if \exists maximal curves $\alpha, \beta \colon [a, c] \to X$ with c > b and $\alpha|_{[a,t]} = \beta|_{[a,t]} = \gamma|_{[a,t]}$, $\alpha([t, c]) \cap \beta([t, c]) = \{x\}$

Theorem

X strongly causal Lorentzian length space with timelike curvature bounded below by some $K \in \mathbb{R}$ s.t. X regular and locally compact or timelike locally uniquely geodesic, then maximal timelike curves do not have timelike branching points

- causal geodesic triangles: $x, y, z \in X$ s.t. $x \ll y \leq z$ or $x \leq y \ll z$, \rightsquigarrow one side possibly zero length (or collapsed)
- causal curvature bounds analogously to timelike curvature bounds except that one can only compare distances to the timelike sides
- length increasing push-up for smooth spacetimes via the Gauss Lemma; here new perspective

Proposition

X strongly causal Lorentzian pre-length space with causal curvature bounded above, $\gamma \colon [a, b] \to X$ f.d. causal curve with $\gamma(a) \ll \gamma(b)$ and \exists sub-interval [c, d] of [a, b] s.t. $\gamma|_{[c, d]}$ null $\Rightarrow \gamma$ not maximal

Corollary

- causal geodesic triangles: $x, y, z \in X$ s.t. $x \ll y \leq z$ or $x \leq y \ll z$, \sim one side possibly zero length (or collapsed)
- causal curvature bounds analogously to timelike curvature bounds except that one can only compare distances to the timelike sides
- length increasing push-up for smooth spacetimes via the Gauss Lemma; here new perspective

Proposition

X strongly causal Lorentzian pre-length space with causal curvature bounded above, $\gamma \colon [a, b] \to X$ f.d. causal curve with $\gamma(a) \ll \gamma(b)$ and \exists sub-interval [c, d] of [a, b] s.t. $\gamma|_{[c, d]}$ null $\Rightarrow \gamma$ not maximal

Corollary

- causal geodesic triangles: $x, y, z \in X$ s.t. $x \ll y \leq z$ or $x \leq y \ll z$, \rightsquigarrow one side possibly zero length (or collapsed)
- causal curvature bounds analogously to timelike curvature bounds except that one can only compare distances to the timelike sides
- length increasing push-up for smooth spacetimes via the Gauss Lemma; here new perspective

Proposition

X strongly causal Lorentzian pre-length space with causal curvature bounded above, $\gamma \colon [a, b] \to X$ f.d. causal curve with $\gamma(a) \ll \gamma(b)$ and \exists sub-interval [c, d] of [a, b] s.t. $\gamma|_{[c, d]}$ null $\Rightarrow \gamma$ not maximal

Corollary

- causal geodesic triangles: $x, y, z \in X$ s.t. $x \ll y \leq z$ or $x \leq y \ll z$, \rightsquigarrow one side possibly zero length (or collapsed)
- causal curvature bounds analogously to timelike curvature bounds except that one can only compare distances to the timelike sides
- length increasing push-up for smooth spacetimes via the Gauss Lemma; here new perspective

Proposition

X strongly causal Lorentzian pre-length space with causal curvature bounded above, $\gamma \colon [a, b] \to X$ f.d. causal curve with $\gamma(a) \ll \gamma(b)$ and \exists sub-interval [c, d] of [a, b] s.t. $\gamma|_{[c, d]}$ null $\Rightarrow \gamma$ not maximal

Corollary

- causal geodesic triangles: $x, y, z \in X$ s.t. $x \ll y \leq z$ or $x \leq y \ll z$, \rightsquigarrow one side possibly zero length (or collapsed)
- causal curvature bounds analogously to timelike curvature bounds except that one can only compare distances to the timelike sides
- length increasing push-up for smooth spacetimes via the Gauss Lemma; here new perspective

Proposition

X strongly causal Lorentzian pre-length space with causal curvature bounded above, $\gamma \colon [a, b] \to X$ f.d. causal curve with $\gamma(a) \ll \gamma(b)$ and \exists sub-interval [c, d] of [a, b] s.t. $\gamma|_{[c, d]}$ null $\Rightarrow \gamma$ not maximal

Corollary

- causal geodesic triangles: $x, y, z \in X$ s.t. $x \ll y \leq z$ or $x \leq y \ll z$, \rightsquigarrow one side possibly zero length (or collapsed)
- causal curvature bounds analogously to timelike curvature bounds except that one can only compare distances to the timelike sides
- length increasing push-up for smooth spacetimes via the Gauss Lemma; here new perspective

Proposition

X strongly causal Lorentzian pre-length space with causal curvature bounded above, $\gamma \colon [a, b] \to X$ f.d. causal curve with $\gamma(a) \ll \gamma(b)$ and \exists sub-interval [c, d] of [a, b] s.t. $\gamma|_{[c, d]}$ null $\Rightarrow \gamma$ not maximal

Corollary

Definition

Lorentzian pre-length space X has timelike (respectively causal) curvature unbounded below/above if $\forall p \in X \exists$ nhd. U s.t. τ finite and continuous on U and maximal timelike/causal curves exist in U but triangle comparison fails for every $K \in \mathbb{R} \rightsquigarrow X$ has curvature singularity

Curvature singularities

Definition

Lorentzian pre-length space X has timelike (respectively causal) curvature unbounded below/above if $\forall p \in X \exists$ nhd. U s.t. τ finite and continuous on U and maximal timelike/causal curves exist in U but triangle comparison fails for every $K \in \mathbb{R} \rightsquigarrow X$ has curvature singularity

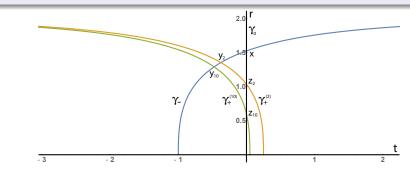


Figure : Schwarzschild has timelike curvature unbounded below

joint work with M. Kunzinger, J.D.E. Grant, preprint arXiv:1804.10423

geodesics as locally maximizing causal curves

Theorem

X strongly causal Lorentzian length space s.t. all inextendible timelike geodesics have infinite τ -length, then X is inextendible as a regular Lorentzian length space

Corollary

(M,g) strongly causal, smooth and timelike geodesically complete spacetime, then (M,g) is inextendible as a regular Lorentzian length space

Theorem

joint work with M. Kunzinger, J.D.E. Grant, preprint arXiv:1804.10423 *geodesics* as locally maximizing causal curves

Theorem

X strongly causal Lorentzian length space s.t. all inextendible timelike geodesics have infinite τ -length, then X is inextendible as a regular Lorentzian length space

Corollary

(M,g) strongly causal, smooth and timelike geodesically complete spacetime, then (M,g) is inextendible as a regular Lorentzian length space

Theorem

joint work with M. Kunzinger, J.D.E. Grant, preprint arXiv:1804.10423 *geodesics* as locally maximizing causal curves

Theorem

X strongly causal Lorentzian length space s.t. all inextendible timelike geodesics have infinite τ -length, then X is inextendible as a regular Lorentzian length space

Corollary

(M,g) strongly causal, smooth and timelike geodesically complete spacetime, then (M,g) is inextendible as a regular Lorentzian length space

Theorem

joint work with M. Kunzinger, J.D.E. Grant, preprint arXiv:1804.10423 *geodesics* as locally maximizing causal curves

Theorem

X strongly causal Lorentzian length space s.t. all inextendible timelike geodesics have infinite τ -length, then X is inextendible as a regular Lorentzian length space

Corollary

(M,g) strongly causal, smooth and timelike geodesically complete spacetime, then (M,g) is inextendible as a regular Lorentzian length space

Theorem

joint work with M. Kunzinger, J.D.E. Grant, preprint arXiv:1804.10423 *geodesics* as locally maximizing causal curves

Theorem

X strongly causal Lorentzian length space s.t. all inextendible timelike geodesics have infinite τ -length, then X is inextendible as a regular Lorentzian length space

Corollary

(M,g) strongly causal, smooth and timelike geodesically complete spacetime, then (M,g) is inextendible as a regular Lorentzian length space

Theorem

joint work with M. Kunzinger, J.D.E. Grant, preprint arXiv:1804.10423 *geodesics* as locally maximizing causal curves

Theorem

X strongly causal Lorentzian length space s.t. all inextendible timelike geodesics have infinite τ -length, then X is inextendible as a regular Lorentzian length space

Corollary

(M,g) strongly causal, smooth and timelike geodesically complete spacetime, then (M,g) is inextendible as a regular Lorentzian length space

Theorem

References

S. B. Alexander and R. L. Bishop.

Lorentz and semi-Riemannian spaces with Alexandrov curvature bounds. Comm. Anal. Geom., 16(2):251-282, 2008.

J. D. E. Grant, M. Kunzinger and C.S.

Inextendibility of spacetimes and Lorentzian length spaces. preprint arXiv:1804.10423, 2018.

S. G. Harris.

A triangle comparison theorem for Lorentz manifolds. Indiana Univ. Math. J., 31(3):289-308, 1982.

E. H. Kronheimer and R. Penrose.

On the structure of causal spaces. Proc. Cambridge Philos. Soc., 63:481–501, 1967

M. Kunzinger and C.S.

Lorentzian length spaces. preprint arXiv:1711.08990, 2017.

E. Minguzzi

Causality theory for closed cone structures with applications. preprint arXiv:1709.06494, 2017.