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Introduction

Why a synthetic approach to Lorentzian geometry?

need for low regularity (of the metric): PDE point-of-view, physically
relevant models (matched spacetimes, shock waves, impulsive
gravitational waves, etc.)
separate main concepts and derived notions of the causal structure
minimal framework for causality and (timelike/causal) curvature
bounds with continuous metrics
timelike/causal curvature bounds without a Lorentzian metric
possible applications to Quantum Gravity

Riemannian analogue: Length spaces . . . metric space (X , d) with
d(x, y) = inf{Ld(λ) : λ path connecting x and y} ; synthetic curvature
bounds via triangle comparison
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Lorentzian pre-length spaces

X set, ≤ preorder on X , � transitive relation contained in ≤, d metric on
X , τ : X ×X → [0,∞] lower semicontinuous (with respect to d)

Definition
(X , d,�,≤, τ) is a Lorentzian pre-length space if

τ(x, z) ≥ τ(x, y) + τ(y, z) (x ≤ y ≤ z) ,

and τ(x, y) = 0 if x � y and τ(x, y) > 0⇔ x � y;
τ is called time separation function

examples
smooth spacetimes (M , g) with usual time separation function
τ(p, q) := sup{Lg(γ) : γ f.d. causal from p to q}
finite directed graphs
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Causal curves (1/2)

Definition
I ⊆ R interval, γ : I → X non-constant is future directed causal (timelike)
if γ locally Lipschitz continuous (wrt. d) and for t1, t2 ∈ I , t1 < t2:
γ(t1) ≤ γ(t2) (γ(t1)� γ(t2)); analogously for null (γ(t1) ≤ γ(t2) and
γ(t1) 6� γ(t2)) and past directed curves

Lorentz cylinder S1
1 × R: every non-constant locally Lipschitz curve is

timelike and causal ; need causality conditions
Minkowski spacetime R3

1: t 7→ (t, cos(t), sin(t)) has null tangent but
is timelike

Proposition
continuous, strongly causal spacetimes: different notions of causal curves
agree
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Causal curves (2/2)

Definition
γ : [a, b]→ X f.d. causal, τ -length defined by

Lτ (γ) := inf{
N−1∑
i=0

τ(γ(ti), γ(ti+1)) : a = t0 < t1 < . . . < tN = b}

Proposition
(M , dh ,�,≤, τ) the Lorentzian pre-length space induced by a smooth and
strongly causal spacetime (M , g), then Lτ (γ) = Lg(γ)

intrinsic notion of geodesics? ; maximal causal curves

(X , d,�,≤, τ) Lorentzian pre-length space

Definition
γ : [a, b]→ X f.d. causal is maximal if Lτ (γ) = τ(γ(a), γ(b))
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Further structure

causality conditions (e.g. strong causality: topology generated by
I +(x) ∩ I −(y) = {x � z � y} agrees with the metric topology, etc.)
causal connectedness (x < y or x � y ⇒ ∃ f.d. causal/timelike curve
from x to y)
limit curve theorems
localizability (locally the geometry and causality of a (smooth)
Lorentzian manifold is better behaved than globally)

;

synthetic notion of regularity ⇒ maximal causal curves have causal
character
Lτ upper semicontinuous
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Lorentzian length spaces

Definition
(X , d,�,≤, τ) locally causally closed, causally path connected, localizable
Lorentzian pre-length space; for x, y ∈ X define

T (x, y) := sup{Lτ (γ) : γ f.d. causal from x to y} ,

if the set is not empty, otherwise T (x, y) := 0
X is a Lorentzian length space if T = τ ; if, in addition X is regularly
localizing, then X is a regular Lorentzian length space

(M , dh ,�,≤, τ) the Lorentzian pre-length space induced by a smooth and
strongly causal spacetime (M , g) (since Lτ = Lg) is a regular LLS

causal ladder for Lorentzian length spaces ; sufficient conditions
(analogous to the smooth spacetime case) for τ continuous and finite
(needed for triangle comparison)
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Timelike triangles

Definition
timelike geodesic triangle in Lorentzian pre-length space (X , d,�,≤, τ) is
triple (x, y, z) ∈ X3 with x � y � z, τ(x, z) <∞ and s.t. sides are
realized by f.d. causal curves

i.e., ∃ f.d. causal curves α, β, γ s.t. Lτ (α) = τ(x, y), Lτ (β) = τ(y, z) and
Lτ (γ) = τ(x, z)
; τ(x, y), τ(y, z) <∞ and α, β, γ maximal
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Timelike curvature bounds

Definition
Lorentzian pre-length space X has timelike curvature bounded below
(above) by K ∈ R if all points in X have nhd. U s.t.:

1 τ |U×U finite and continuous
2 x, y ∈ U with x � y ⇒ ∃ f.d. maximal causal curve in U from x to y
3 (x, y, z) small timelike geodesic triangle in U , (x̄, ȳ, z̄) comparison

triangle of (x, y, z) in MK , then for p, q points on the sides of
(x, y, z) and p̄, q̄ corresponding points (x̄, ȳ, z̄):

τ(p, q) ≤ τ̄(p̄, q̄) (respectively τ(p, q) ≥ τ̄(p̄, q̄))

Alexander, Bishop: smooth Lorentzian manifold with sectional curvature
bounds

Clemens Sämann, University of Vienna Int. Meeting on Lorentzian Geometry 9 / 14
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Branching of maximal curves

Alexandrov spaces with curvature bounded below: geodesics do not branch

Definition
X Lorentzian pre-length space, γ : [a, b]→ X maximal curve; x := γ(t),
t ∈ (a, b) is branching point of γ if ∃ maximal curves α, β : [a, c]→ X
with c > b and α|[a,t] = β|[a,t] = γ|[a,t], α([t, c]) ∩ β([t, c]) = {x}

Theorem
X strongly causal Lorentzian length space with timelike curvature bounded
below by some K ∈ R s.t. X regular and locally compact or timelike
locally uniquely geodesic, then maximal timelike curves do not have
timelike branching points
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Causal curvature bounds

causal geodesic triangles: x, y, z ∈ X s.t. x � y ≤ z or x ≤ y � z,
; one side possibly zero length (or collapsed)
causal curvature bounds analogously to timelike curvature bounds
except that one can only compare distances to the timelike sides
length increasing push-up for smooth spacetimes via the Gauss
Lemma; here new perspective

Proposition
X strongly causal Lorentzian pre-length space with causal curvature
bounded above, γ : [a, b]→ X f.d. causal curve with γ(a)� γ(b) and ∃
sub-interval [c, d] of [a, b] s.t. γ|[c,d] null ⇒ γ not maximal

Corollary
X strongly causal Lorentzian length space with causal curvature bounded
above, then X is regular
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Curvature singularities

Definition
Lorentzian pre-length space X has timelike (respectively causal) curvature
unbounded below/above if ∀p ∈ X ∃ nhd. U s.t. τ finite and continuous
on U and maximal timelike/causal curves exist in U but triangle
comparison fails for every K ∈ R ; X has curvature singularity
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Figure : Schwarzschild has timelike curvature unbounded below
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Inextendibility of spacetimes
joint work with M. Kunzinger, J.D.E. Grant, preprint arXiv:1804.10423
geodesics as locally maximizing causal curves

Theorem
X strongly causal Lorentzian length space s.t. all inextendible timelike
geodesics have infinite τ -length, then X is inextendible as a regular
Lorentzian length space

Corollary
(M , g) strongly causal, smooth and timelike geodesically complete
spacetime, then (M , g) is inextendible as a regular Lorentzian length space

Theorem
(M , g) strongly causal, smooth and timelike geodesically complete
spacetime, then every extension of (M , g) has causal curvature unbounded
above, i.e., has a curvature singularity
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