"Timelike surfaces in Minkowski space with a canonical null direction"

Gabriel Ruiz Hernández

www.matem.unam.mx/gruiz

Instituto de Matemáticas, UNAM

IX International Meeting on Lorentzian Geometry

Banach Center

June 22, 2018. Warsaw Poland

BASED ON A JOINT WORK WITH: Victor Hugo Patty from Bolivia.

We consider $\mathbb{R}^{n,1}$ the (n + 1)-dimensional Minkowski space defined by \mathbb{R}^{n+1} endowed with the Lorentz metric

$$\langle \cdot, \cdot \rangle = -dx_1^2 + dx_2^2 + \ldots + dx_{n+1}^2.$$

An immersed surface $M^2 \subset \mathbb{R}^{n,1}$ is timelike

- if the metric $\langle \cdot, \cdot \rangle$ of $\mathbb{R}^{n,1}$ induces a Lorentzian metric on *M*.
- (equivalently) for every $p \in M$, T_pM is a timelike plane.
- (equivalently) for every *p* ∈ *M*, the two codimensional subspace (*T_pM*)[⊥] is spacelike.
- (equivalently) for every *p* ∈ *M*, *T_pM* is a plane that contains a timelike line.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Canonical null direction

Definition

We say that a timelike surface M immersed in $\mathbb{R}^{n,1}$ has a **canonical null direction** with respect to Z, if the tangent part Z^{\top} of Z is a lightlike vector field along M, i.e. Z^{\top} is nowhere zero and $\langle Z^{\top}, Z^{\top} \rangle = 0$. Here Z is a constant vector field in $\mathbb{R}^{n,1}$ with $|Z| := |\langle Z, Z \rangle|^{1/2} = 1$. We will say that Z induces a null direction on the surface.

We have the decomposition:

$$Z = Z^{ op} + Z^{\perp} \in TM + (TM)^{\perp}.$$

So,

$$\langle \boldsymbol{Z}, \boldsymbol{Z} \rangle = \langle \boldsymbol{Z}^{\top}, \boldsymbol{Z}^{\top} \rangle + \langle \boldsymbol{Z}^{\perp}, \boldsymbol{Z}^{\perp} \rangle = \langle \boldsymbol{Z}^{\perp}, \boldsymbol{Z}^{\perp} \rangle$$

and therefore Z is necessarily a space like vector:

$$\langle Z, Z \rangle = 1.$$

Let $M \subset \mathbb{R}^{n,1}$ be an timelike immersed surface with the induced metric. Let D (resp. ∇) be the Levi-Civita connection of $\mathbb{R}^{n,1}$ (resp. M), X, Y vector fields on M and ξ , ν sections of $(TM)^{\perp}$.

• Shape Operator and Normal Connection:

$$A_{\xi}(X) := -(D_X\xi)^{ op}, ext{ and }
abla_X^{\perp}\xi := (D_X\xi)^{\perp}.$$

• Second Fundamental Form:

$$II: TM \times TM \to (TM)^{\perp}$$
 is $II(X, Y) := D_X Y - \nabla_X Y$.

Lemma

In any codimension: Since Z is a parallel vector field and Z^{\top} is ligthlike on M

$$A_{Z^{\perp}}(Z^{\top}) = 0$$
 $\nabla_{Z^{\top}}Z^{\top} = 0, \ \langle II(Z^{\top}, Z^{\top}), Z^{\perp} \rangle = 0.$

The integral curves of Z^{\top} are light like geodesics of M.

PROOF:

Z is parallel:
$$\nabla_X Z^\top = A_{Z^\perp}(X)$$
 and $\nabla_X^\perp Z^\perp = -II(Z^\top, X)$, (1) for all $X \in TM$.

(문화)(문화)

3

If M is an immersed surface in $\mathbb{R}^{2,1}$ with a canonical null direction if and only if M is minimal and flat.

PROOF:

In this case $-II(Z^{\top}, X) = \nabla_X^{\perp} Z^{\perp} = 0$. By the Gauss Equation:

$$\langle R^{\nabla}(X,Z^{\top})X,Z^{\top}\rangle = \langle II(X,X),II(Z^{\top},Z^{\top})\rangle - \langle II(X,Z^{\top}),II(X,Z^{\top})\rangle.$$

Then K = 0. If W completes Z^{\top} into a null frame with $\langle Z^{\top}, W \rangle = -1$: The mean curvature vector on this basis with lightlike vectors

$$\vec{H} := -II(Z^{\top}, W) = 0.$$

ヘロン 人間 とくほ とくほ とう

Theorem

A timelike surface M in $\mathbb{R}^{2,1}$ with a canonical null direction Z can be locally parametrized by

$$\psi(\mathbf{x}, \mathbf{y}) = \alpha(\mathbf{x}) + \mathbf{y} \ T_0, \tag{2}$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

where $\alpha(x)$ is a light-like curve in $\mathbb{R}^{2,1}$, T_0 is some constant lightlike vector and the vectors $\alpha'(x)$ and T_0 are linearly independent for every x.

Remark: Any timelike minimal surface in $\mathbb{R}^{2,1}$ can be parametrized as: $\psi(x, y) = \alpha(x) + \beta(y)$, with α , β lightlike curves.

A surface in $\mathbb{R}^{2,1}$ with a canonical null direction

Figure:
$$\alpha(x) = (\sin(x), \cos(x), x), \ T_0 = (1, 0, 1)$$

Gabriel Ruiz Hernández www.matem.unam.mx/gruiz Surfaces with a canonical null direction

Surfaces in the four dimensional minkowski space $\mathbb{R}^{3,1}$

We complete Z^{\top} into a pseudo orthonormal frame on $M: \{Z^{\top}, W, \}$

• *W* a lightlike vector field tangent to *M*, $\langle W, W \rangle = 0$,

•
$$\langle Z^{\top}, W \rangle = -1.$$

In this frame

$$\vec{H} := \frac{1}{2} \operatorname{tr}_{\langle,\rangle} I = -II(Z^{\top}, W).$$

Proposition

$$|\vec{H}|^2 = -\langle \nabla_W^{\perp}\vec{H}, Z^{\perp} \rangle.$$

In particular, if the mean curvature vector \vec{H} is parallel then the surface M is minimal, i.e. $\vec{H} = 0$.

Gaussian and Normal Curvatures

We define the function $a := \langle II(W, W), Z^{\perp} \rangle$ Normal Curvature when n = 2: $K_N := \frac{\langle R^{\perp}(X, Y)\xi, \nu \rangle}{\langle X, X \rangle \langle Y, Y \rangle - \langle X, Y \rangle^2}$.

Corollary

Let us assume that $|II(Z^{\top}, Z^{\top})| \neq 0$ everywhere. Then

$$\mathcal{K} = rac{\langle R(Z^{ op}, W) Z^{ op}, W
angle}{|Z^{ op}|^2 |W|^2 - \langle Z^{ op}, W
angle^2} = Z^{ op} \cdot a,$$

and

$$K_N = a|II(Z^{\top}, Z^{\top})|.$$

In particular, if M has constant zero normal curvature then the Gauss curvature K is also constant zero.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Let $f, g: U \subset \mathbb{R}^2 \to \mathbb{R}$ be two smooth functions. Let

$$M:=\left\{(f(x,y),g(x,y),x,y)\in\mathbb{R}^{3,1}\mid x,y\in U
ight\}\ \subset\ \mathbb{R}^{3,1}$$

be a timelike surface given as a graph (image) of the function $\psi(x, y) = (f(x, y), g(x, y), x, y)$. We define $F := \langle \psi_x, \psi_y \rangle = -f_x f_y + g_x g_y$.

Proposition

Let M be a timelike surface given as a graph in $\mathbb{R}^{3,1}$. Then M has a canonical null direction with respect to e_4 (resp. e_3) if and only if ψ_x (resp. ψ_y) is a lightlike vector field along M. In that situation we have

$$e_{4}^{\top} = \frac{1}{F}\psi_{x} \qquad \left(resp. \ e_{3}^{\top} = \frac{1}{F}\psi_{y}\right).$$
$$\vec{H} = \psi_{xy}/F, \ K = -\frac{1}{F}\left(\frac{F_{x}}{F}\right)_{y}.$$

Example

Our following surface is a graph with two canonical null directions:

$$\psi(x, y) = (\sinh(x + y), \cosh(x + y), x, y).$$

The induced tangent vectors are $\psi_x = (\cosh(x + y), \sinh(x + y), 1, 0)$ and $\psi_y = (\cosh(x + y), \sinh(x + y), 0, 1)$ which are lightlike vector fields. Our surface has two canonical null directions with respect to both e_3 and e_4 . This surface is not minimal because $\psi_{xy} = (\sinh(x + y), \cosh(x + y), 0, 0) \neq 0$. This surface is also flat because $F = \langle \psi_x, \psi_y \rangle = -1$.

ヘロン 人間 とくほ とくほ とう

1

Let M be a minimal timelike surface in $\mathbb{R}^{3,1}$ not contained in a hyperplane. Then M has a canonical null direction with respect to e_4 if and only if M can be locally parametrized by

$$\psi(\mathbf{x}, \mathbf{y}) = \alpha(\mathbf{x}) + \beta(\mathbf{y}) \tag{3}$$

where α and β are two lightlike curves and either α or β is contained in a timelike hyperplane orthogonal to e_4 . A surface with a parametrization like this is called a translation surface.

Let M_0 be a Lorentzian surface in $\mathbb{R}^{2,1}$, $f : M_0 \to \mathbb{R}$ be a given smooth function. Let us consider the surface obtained as the graph of f, i.e.

$$M := \{ (p, f(p)) | p \in M_0 \} \subset \mathbb{R}^{3,1},$$

with the induced metric. Then M has a canonical null direction with respect to e_4 if and only if ∇f is a lightlike vector field on M_0 .

ъ

Corollary

Let *M* be an immersed surface in $\mathbb{R}^{3,1}$. The surface *M* has a canonical null direction with respect to e_4 if and only if locally it can be parametrized as in Proposition above.

イロト イポト イヨト イヨト 三日

Let *M* be a Lorentzian surface, $f : M \to \mathbb{R}$ be a given smooth function. If the gradient ∇f is a lightlike vector field then the integral curves of ∇f are geodesics and *f* is a harmonic function, i.e. $\Delta f = 0$.

イロト イポト イヨト イヨト 三日

Surface with a canonical null direction with respect to

*e*₄.

Example

Let us consider the timelike surface

 $M_0 := \{(x, \cos(y), \sin(y)) \mid x \in \mathbb{R}, y \in (0, 2\pi)\} \subset \mathbb{R}^{2,1},$

and

the function $f: M_0 \to \mathbb{R}$ given by $f(x, \cos(y), \sin(y)) = y - x$. The level curve $\gamma(y) = (y - c, \cos(y), \sin(y))$ is a lightlike geodesic in M_0 for all constant $c \in \mathbb{R}$. Remark: $\partial_x = e_1$ and $\partial_y = -\sin y \ e_2 + \cos y \ e_3$ are an orthonormal frame along M_0 . Indeed, we only have to remark that $\gamma'(y) = (1, -\sin(y), \cos(y)) = \partial_x + \partial_y$ is a lightlike vector field. $\nabla f = -(\partial_x f)\partial_x + (\partial_y f)\partial_y = \partial_x + \partial_y = \gamma'(y)$, which is a lightlike vector field on M_0 ; V. H. Patty Yujra, G. Ruiz-Hernández. Timelike surfaces in Minkowski space with a canonical null direction. Journal of Geometry 2018.

< 回 > < 回 > < 回 > .

ъ

Thank you for your attention!

Gabriel Ruiz Hernández www.matem.unam.mx/gruiz Surfaces with a canonical null direction

프 🖌 🛪 프 🛌

ъ