Towards a new proof of the positive mass theorem

István Rácz
istvan.racz@fuw.edu.pl \& racz.istvan@wigner.mta.hu

Research fellow of the National Science Centre, Poland

Faculty of Physics, University of Warsaw, Warsaw, Poland Wigner Research Center for Physics, Budapest, Hungary

> IX International Meeting on Lorentzian Geometry, Warsaw, 20 June 2018

The positive mass theorems:

- as GR is a metric theory of gravity
- it is highly non-trivial to talk about, for instance, the mass-combining the gravitational and matter contributions-of bounded spatial regions
- asymptotically flat spacetimes: sensible notion of total mass
- the proof of the positivity of this global or ADM mass
- the first attempt to prove by Geroch was quasi-local in its basic character
- neither of the known generic proofs are so
- the first complete proof of the positive mass theorem by Schoen and Yau (1979-1981):
- minimal surface theory and global existence of solutions to Jang's eqn.
- Witten's proof (1981):
- inspired by positivity of energy in the context of supergravity, reduces the problem to proving solubility of the Dirac equation in asymptotically flat configurations

Motivations:

The exiting proofs:

- though they are generic the involved technicalities are considerable

The aims:

- outline a relatively simple alternative proof of the positive mass theorem
- try to restore its original quasi-local character
- demonstrating that to a hypersurface with non-negative scalar curvature flows can be constructed such that the (quasi-local) Geroch mass-that can be evaluated on the leaves of the generated foliations-is non-decreasing with respect to these flows
- the proposed procedure does not require asymptotic flatness: applies to any subregion admitting non-negative scalar curvature (and suitable quasi-convex foliations)
- the ultimate aim is to show-in case of an asymptotically flat time-slices with non-negative scalar curvature-that the desired flows exist globally

Foliations by topological two-spheres:

- consider a smooth 3-dimensional manifold Σ with a Riemannian metric $h_{i j}$
- assume

$$
\Sigma \approx \mathbb{R} \times \mathscr{S}
$$

i.e. Σ is smoothly foliated by a one-parameter family of two-surfaces \mathscr{S}_{ρ} : $\rho=$ const level surfaces of a smooth real function $\rho: \Sigma \rightarrow \mathbb{R}$ with $\partial_{i} \rho \neq 0$

$$
\text { - } \quad \Longrightarrow \partial_{i} \rho \& h^{i j} \longrightarrow \widehat{n}_{i}, \widehat{n}^{i}=h^{i j} \widehat{n}_{j} \ldots \widehat{\gamma}_{j}^{i}=\delta^{i}{ }_{j}-\widehat{n}^{i} \widehat{n}_{j}
$$

Quasi-convex foliations:

- the induced Riemannian metric on the \mathscr{S}_{ρ} level sets

$$
\widehat{\gamma}_{i j}=\widehat{\gamma}^{k}{ }_{i} \hat{\gamma}^{l}{ }_{j} h_{k l}
$$

- the extrinsic curvature given by the symmetric tensor field

$$
\widehat{K}_{i j}=\widehat{\gamma}_{i}^{l} D_{l} \widehat{n}_{j}=\frac{1}{2} \mathscr{L}_{\widehat{n}} \widehat{\gamma}_{i j}, \quad D_{i}, \mathscr{L}_{\widehat{n}}
$$

- a $\rho=$ const level surface is called to be quasi-convex if its mean curvature, $\widehat{K}^{l}{ }_{l}=\widehat{\gamma}^{i j} \widehat{K}_{i j}$, is positive on \mathscr{S}_{ρ}

Flows:

- a smooth vector field ρ^{i} on Σ is a flow, w.r.t. \mathscr{S}_{ρ}
- if the integral curves of ρ^{i} intersect each leaves precisely once, and
- if ρ^{i} is scaled such that $\rho^{i} \partial_{i} \rho=1$ holds throughout Σ
- any smooth flow can be decomposed in terms of its 'lapse' and 'shift' as

$$
\rho^{i}=\widehat{N} \widehat{n}^{i}+\widehat{N}^{i} \quad \widehat{N}=\rho^{i} \widehat{n}_{i}, \quad \widehat{N}^{i}=\widehat{\gamma}_{j}{ }_{j} \rho^{j}
$$

- the lapse measures the normal separation of the surfaces \mathscr{S}_{ρ}

The variation of the area:

- to any quasi-convex foliation \exists a (quasi-local) orientation of the leaves \mathscr{S}_{ρ}
- a flow ρ^{i} is called outward pointing if the area is increasing w.r.t. it
- variation of the area $\mathscr{A}_{\rho}=\int_{\mathscr{S}_{\rho}} \widehat{\boldsymbol{\epsilon}}$ of the $\rho=$ const level surfaces, w.r.t. ρ^{i}

$$
\mathscr{L}_{\rho} \mathscr{A}_{\rho}=\int_{\mathscr{S}_{\rho}} \mathscr{L}_{\rho} \widehat{\boldsymbol{\epsilon}}=\int_{\mathscr{S}_{\rho}}\left\{\widehat{N}\left(\widehat{K}_{l}^{l}\right)+\left(\widehat{D}_{i} \widehat{N}^{i}\right)\right\} \widehat{\boldsymbol{\epsilon}}=\int_{\mathscr{S}_{\rho}} \widehat{N}\left(\widehat{K}_{l}^{l}\right) \widehat{\boldsymbol{\epsilon}}
$$

the relations $\mathscr{L}_{\widehat{n}} \widehat{\boldsymbol{\epsilon}}=\left(\widehat{K}^{l}{ }_{l}\right) \widehat{\boldsymbol{\epsilon}}$ and $\mathscr{L}_{\widehat{N}} \widehat{\boldsymbol{\epsilon}}=\frac{1}{2} \widehat{\gamma}^{i j} \mathscr{L}_{\widehat{N}} \widehat{\gamma}_{i j} \widehat{\boldsymbol{\epsilon}}=\left(\widehat{D}_{i} \widehat{N}^{i}\right) \widehat{\boldsymbol{\epsilon}}$, along with the vanishing of the integral of the total divergence $\widehat{D}_{i} \widehat{N}^{i}$, were applied.

- \widehat{N} does not vanish on Σ unless the Riemannian three-metric

$$
h^{i j}=\widehat{\gamma}^{i j}+\widehat{N}^{-2}\left(\rho^{i}-\widehat{N}^{i}\right)\left(\rho^{j}-\widehat{N}^{j}\right)
$$

gets to be singular

- for quasi-convex foliations $\widehat{N} \widehat{K}^{l}{ }_{l}>0 \Longrightarrow$ the area is increasing w.r.t. ρ^{i}
- the orientations by \widehat{n}^{i} and ρ^{i} coincide

Attempts to provide a quasi-local proof of the PMT:

- attempts all using the Geroch or the Hawking mass (are equal if $K^{i}{ }_{i}=0$)
- Geroch (1973)
- Wald \& Jang (1977)
- Jang (1978)
- Kijowski (1986)
- Jezieski \& Kijowski (1987)
- Huisken \& Ilmanen $(1997,2001)$
- Frauendiener (2001)
- Bray (2001), Bray \& Lee (2009)

The Geroch mass:

- the (quasi-local) Geroch mass

$$
m_{\mathcal{G}}=\frac{\mathscr{A}_{\rho}^{1 / 2}}{64 \pi^{3 / 2}} \int_{\mathscr{S}_{\rho}}\left[2 \widehat{R}-\left(\widehat{K}_{l}^{l}\right)^{2}\right] \widehat{\boldsymbol{\epsilon}}
$$

where \widehat{R} is the scalar curvature of the metric $\widehat{\gamma}_{i j}$ on the leaves

- for quasi-convex foliations the area \mathscr{A}_{ρ} is monotonously increasing
- it suffices to investigate

$$
W(\rho)=\int_{\mathscr{S}_{\rho}}\left[2 \widehat{R}-\left(\widehat{K}_{l}^{l}\right)^{2}\right] \widehat{\boldsymbol{\epsilon}}
$$

- if $W(\rho)$ was non-decreasing, and for some specific ρ_{*} value, $W\left(\rho_{*}\right)$ was zero or positive then $m_{\mathcal{G}} \geq 0$ would hold to the exterior of $\mathscr{S}_{\rho_{*}}$ in Σ

The variation of $W(\rho)$:

- the key equation we shall use relates the scalar curvatures of $h_{i j}$ and $\widehat{\gamma}_{i j}$

$$
\begin{equation*}
{ }^{(3)} R=\widehat{R}-\left\{2 \mathscr{L}_{\widehat{n}}\left(\widehat{K}^{l}{ }_{l}\right)+\left(\widehat{K}^{l}{ }_{l}\right)^{2}+\widehat{K}_{k l} \widehat{K}^{k l}+2 \widehat{N}^{-1} \widehat{D}^{l} \widehat{D}_{l} \widehat{N}\right\} \tag{*}
\end{equation*}
$$

$$
\begin{aligned}
\mathscr{L}_{\rho} W & =-\int_{\mathscr{S}_{\rho}} \mathscr{L}_{\rho}\left[\left(\widehat{K}_{l}^{l}\right)^{2} \widehat{\epsilon}\right]=-\int_{\mathscr{S}_{\rho}}\left\{\widehat{N} \mathscr{L}_{\widehat{n}}\left[\left(\widehat{K}_{l}^{l}\right)^{2} \widehat{\epsilon}\right]+\mathscr{L}_{\widehat{N}}\left[\left(\widehat{K}_{l}^{l}\right)^{2} \widehat{\boldsymbol{\epsilon}}\right]\right\} \\
& =-\int_{\mathscr{S}_{\rho}}\left(\widehat{N} \widehat{K}^{l}{ }_{l}\right)\left[2 \mathscr{L}_{\widehat{n}}\left(\widehat{K}_{l}^{l}\right)+\left(\widehat{K}_{l}^{l}\right)^{2}\right] \widehat{\epsilon}-\int_{\mathscr{S}_{\rho}} \widehat{D}_{i}\left[\left(\widehat{K}_{l}^{l}\right)^{2} \widehat{N}^{i}\right] \widehat{\boldsymbol{\epsilon}} \\
& =-\int_{\mathscr{S}_{\rho}}\left(\widehat{N} \widehat{K}^{l}{ }_{l}\right)\left[\left(\widehat{R}-{ }^{(3)} R\right)-\widehat{K}_{k l} \widehat{K}^{k l}-2 \widehat{N}^{-1} \widehat{D}^{l} \widehat{D}_{l} \widehat{N}\right] \widehat{\boldsymbol{\epsilon}}
\end{aligned}
$$

- where on $1^{\text {st }}$ line $\rho^{i}=\widehat{N} \widehat{n}^{i}+\widehat{N}^{i}$ and the Gauss-Bonnet theorem
- on $2^{\text {nd }}$ line the relations $\mathscr{L}_{\widehat{n}} \widehat{\boldsymbol{\epsilon}}=\left(\widehat{K}^{l}{ }_{l}\right) \widehat{\boldsymbol{\epsilon}}$ and $\mathscr{L}_{\widehat{N}} \widehat{\boldsymbol{\epsilon}}=\left(\widehat{D}_{i} \widehat{N}^{i}\right) \widehat{\boldsymbol{\epsilon}}$
- on $3^{r d}$ line $\left(^{*}\right)$ and the vanishing of the integral of $\widehat{D}_{i}\left[\left(\widehat{K}_{l}^{l}\right)^{2} \widehat{N}^{i}\right]$ were used

The variation of $W(\rho)$:

- by the Leibniz rule

$$
\widehat{N}^{-1} \widehat{D}^{l} \widehat{D}_{l} \widehat{N}=\widehat{D}^{l}\left(\widehat{N}^{-1} \widehat{D}_{l} \widehat{N}\right)+\widehat{N}^{-2} \widehat{\gamma}^{k l}\left(\widehat{D}_{k} \widehat{N}\right)\left(\widehat{D}_{l} \widehat{N}\right)
$$

- and by using the trace-free part of $\widehat{K}_{i j}$

$$
\stackrel{\circ}{K}_{i j}=\widehat{K}_{i j}-\frac{1}{2} \widehat{\gamma}_{i j}\left(\widehat{K}_{l}^{l}\right), \quad \widehat{K}_{k l} \widehat{K}^{k l}=\stackrel{\circ}{K}_{k l} \stackrel{\circ}{K}^{k l}+\frac{1}{2}\left(\widehat{K}_{l}^{l}\right)^{2}
$$

- and using the vanishing of the integral of the total divergence $\widehat{D}^{l}\left(\widehat{N}^{-1} \widehat{D}_{l} \widehat{N}\right)$

$$
\begin{aligned}
\mathscr{L}_{\rho} W= & -\frac{1}{2} \int_{\mathscr{S}_{\rho}}\left(\widehat{N} \widehat{K}_{l}^{l}\right)\left[2 \widehat{R}-\left(\widehat{K}_{l}^{l}\right)^{2}\right] \widehat{\boldsymbol{\epsilon}} \\
& +\int_{\mathscr{S}_{\rho}}\left(\widehat{N} \widehat{K}^{l}{ }_{l}\right)\left[{ }^{(3)} R+\stackrel{\circ}{K}_{k l} \stackrel{\circ}{K}^{k l}+2 \widehat{N}^{-2} \widehat{\gamma}^{k l}\left(\widehat{D}_{k} \widehat{N}\right)\left(\widehat{D}_{l} \widehat{N}\right)\right] \widehat{\boldsymbol{\epsilon}}
\end{aligned}
$$

A desired type flow:

- once a foliation is fixed, by specifying the function $\rho: \Sigma \rightarrow \mathbb{R}$, not only the mean curvature, $\widehat{K}^{l}{ }_{l}$, but the lapse \widehat{N}, as well, gets to be fixed

$$
\widehat{n}_{i}=\widehat{N}\left(\partial_{i} \rho\right)
$$

- the inverse mean curvature flow

$$
\rho^{i}=\left(\widehat{K}_{l}^{l}\right)^{-1} \widehat{n}^{i}
$$

if this flow existed globally the Geroch mass would be non-decreasing w.r.t it

- but what is if only the product $\widehat{N} \widehat{K}_{l}{ }_{l}$ is replaced by its mean value

$$
\widehat{\widehat{N} \widehat{K}^{l}{ }_{l}}=\frac{\int_{\mathscr{S}_{\rho}} \widehat{N} \widehat{K}_{l}^{l}{ }_{l} \hat{\epsilon}}{\int_{\mathscr{S}_{\rho}} \hat{\epsilon}} \quad \widehat{\hat{N} \widehat{K}^{l}{ }_{l}}=\mathscr{L}_{\rho} \log \left[\mathscr{A}_{\rho}\right]
$$

$$
\left[\left(64 \pi^{3 / 2}\right) /\left(\mathscr{A}_{\rho}\right)^{1 / 2}\right] \cdot \mathscr{L}_{\rho} m_{\mathcal{G}}=\mathscr{L}_{\rho} W+\frac{1}{2}\left(\mathscr{L}_{\rho} \log \left[\mathscr{A}_{\rho}\right]\right) W \geq 0
$$

We can also adjust the shift

- $\rho^{i}=\widehat{N} \widehat{n}^{i}+\widehat{N}^{i}$: we have a freedom in choosing the shift \widehat{N}^{i}

$$
\widehat{N} \widehat{K}^{l}{ }_{l}=\frac{1}{2} \widehat{\gamma}^{i j} \mathscr{L}_{\rho} \widehat{\gamma}_{i j}-\widehat{D}_{i} \widehat{N}^{i}
$$

- or equivalently, once $\widehat{N} \widehat{K}^{l}{ }_{l}=\widehat{\widehat{N} \widehat{K}^{l}}{ }_{l}=\mathscr{L}_{\rho} \log \left[\mathscr{A}_{\rho}\right]$ is guaranteed to hold

$$
\begin{equation*}
\widehat{D}_{A} \widehat{N}^{A}=\mathscr{L}_{\rho} \sqrt{\operatorname{det}\left(\widehat{\gamma}_{i j}\right)}-\mathscr{L}_{\rho} \log \left[\mathscr{A}_{\rho}\right] \tag{**}
\end{equation*}
$$

- on topological two-spheres using then the Hodge decomposition of the shift $\widehat{N}^{A}=\widehat{D}^{A} \chi+\widehat{\epsilon}^{A B} \widehat{D}_{B} \eta, \chi$ and η are some smooth functions on $\mathscr{S},\left({ }^{* *}\right)$

$$
\widehat{D}^{A} \widehat{D}_{A} \chi=\mathscr{L}_{\rho} \sqrt{\operatorname{det}\left(\widehat{\gamma}_{i j}\right)}-\mathscr{L}_{\rho} \log \left[\mathscr{A}_{\rho}\right]
$$

- solubility in terms of spherical harmonics presumes that some standard polar coordinates (ϑ, φ) given on the unit sphere \mathbb{S}^{2} are transfered to \mathscr{S}

The construction of a flow:

the desired flow on the given Riemannian three-surface Σ, with the metric $h_{i j}$
(1) start by choosing a topological two-sphere \mathscr{S} in Σ, with induced metric $\widehat{\gamma}_{i j}$, such that it is quasi-convex, $\widehat{K}^{l}{ }_{l}>0$, and also $W \geq 0$ holds on \mathscr{S}
(2) choose a small positive real number $A>0$ and set $\widehat{N}=A \cdot\left(\widehat{K}^{l}{ }_{l}\right)^{-1}$ on \mathscr{S}
(3) construct an infinitesimally close two-surface \mathscr{S}^{\prime} simply by Lie dragging the points of \mathscr{S} along the (auxiliary) flow $\rho^{i}=\widehat{N} \widehat{n}^{i}$ in Σ
(1) by comparing the metric induced on \mathscr{S} and \mathscr{S}^{\prime}, respectively, both terms $\mathscr{L}_{\rho} \sqrt{\operatorname{det}\left(\hat{\gamma}_{i j}\right)}$ and $\mathscr{L}_{\rho} \log \left[\mathscr{A}_{\rho}\right]$ can be evaluated on \mathscr{S}^{\prime}

The construction of a flow:

in the succeeding steps we have to update both the lapse and the shift such that the relation $\widehat{N} \widehat{K}^{l}{ }_{l}=\widehat{\widehat{N} \widehat{K}^{l}}{ }_{l}$ gets to be maintained in each of these steps
(0) update first lapse on \mathscr{S}^{\prime} by setting $\widehat{N}=\mathscr{L}_{\rho} \log \left[\mathscr{A}_{\rho}\right] \cdot\left(\widehat{K}^{l}{ }_{l}\right)^{-1}$, where $\mathscr{L}_{\rho} \log \left[\mathscr{A}_{\rho}\right]>0$ is determined in the previous infinitesimal step
(0) the key point here is that the shift can also be updated on \mathscr{S}^{\prime}-such that $\widehat{N} \widehat{K}^{l}{ }_{l}=\widehat{N} \widehat{K}^{l}{ }_{l}$ holds there-simply by solving $\left({ }^{* *}\right)$ for $\widehat{N}{ }^{A}$
© the succeeding infinitesimal step: by Lie dragging the points of \mathscr{S}^{\prime} to $\mathscr{S}^{\prime \prime} \ldots$

Limits and global existence:

- by performing analogous sequences of infinitesimal steps ultimately we get a one-parameter family of two-surfaces \mathscr{S}_{ρ} foliating (at least) a one-sided neighborhood of \mathscr{S} in Σ such that the product $\widehat{N} \widehat{K}_{l}^{l}$ is guaranteed to be positive and constant on each of the individual leaves
- the vanishing of $\mathscr{L}_{\rho} \log \left[\mathscr{A}_{\rho}\right]$ could get on the way of the applicability, i.e. minimal or maximal surfaces represent natural limits of applicability
- the bifurcation surface of the Schwarzschild spacetime is a minimal surface on the $t_{S c h w}=$ const time-slices, the Kerr-Schild $t_{K S}=$ const time-slices of the same spacetime can be foliated by metric spheres with area radius ranging from zero to infinity, and they do not contain any minimal surface
- it is also of obvious interest to know if the desired type of foliation would exist or could be constructed globally
- by inspecting the proposed construction it gets clear that all the steps are "safe" as far as the lapse \widehat{N} is bounded and it is regular throughout Σ
- in clearing up the picture let us have a glance again of the key equation

$$
\begin{equation*}
{ }^{(3)} R=\widehat{R}-\left\{2 \mathscr{L}_{\widehat{n}}\left(\widehat{K}_{l}^{l}\right)+\left(\widehat{K}_{l}^{l}\right)^{2}+\widehat{K}_{k l} \widehat{K}^{k l}+2 \widehat{N}^{-1} \widehat{D}^{l} \widehat{D}_{l} \widehat{N}\right\} \tag{*}
\end{equation*}
$$

The parabolic equation governing the evolution of \widehat{N} :

- as noticed first by Bartnik (1993), while applying quasi-spherical foliations, $\left(^{*}\right)$ can be viewed as a parabolic equation for \widehat{N}
- remarkably, (*) can always be put to be a parabolic equation for the lapse provided that ${ }^{(3)} R \geq 0, \widehat{\gamma}_{i j}$ and \widehat{N}^{i} can be treated as prescribed fields
- with applying the notation $K_{i j}^{*}=\widehat{N} \widehat{K}_{i j}$ and ${ }_{K}^{\star}=\frac{1}{2} \widehat{\gamma}^{i j} \mathscr{L}_{\rho} \widehat{\gamma}_{i j}-\widehat{D}_{i} \widehat{N}^{i}$ we can eliminate hidden presence of the lapse in $\left(^{*}\right)$ and get

$$
\stackrel{\star}{K}\left[\left(\partial_{\rho} \widehat{N}\right)-\widehat{N}^{l}\left(\hat{D}_{l} \widehat{N}\right)\right]=\widehat{N}^{2}\left(\widehat{D}^{l} \widehat{N}_{l} \widehat{N}\right)+\mathcal{A} \widehat{N}-\frac{1}{2}\left(\widehat{R}-{ }^{(3)} R\right) \widehat{N}^{3}
$$

where

$$
\mathcal{A}=\partial_{\rho} \stackrel{\star}{K}^{K}+\frac{1}{2}\left[\stackrel{\star}{K}^{2}+\stackrel{\star}{K}_{k l} \stackrel{\star}{K}^{k l}\right] \text {, with }
$$

$$
\stackrel{\star}{K}=\widehat{\hat{N} \widehat{K}^{l}}{ }_{l}=\mathscr{L}_{\rho} \log \left[\mathscr{A}_{\rho}\right]>0
$$

- it is standard to obtain existence of unique solutions to this uniformly parabolic PDE in a sufficiently small one-sided neighborhood of \mathscr{S} in Σ

The global existence of solutions to this parabolic equation:

- our main concern is global existence (!)
- it should not be a surprise that an analogous parabolic equation came up in deriving the evolutionary form of the Hamiltonian constraints in [Rácz I: Constrains as evolutionary systems, Class. Quant. Grav. 33015014 (2016)]
- (slightly generalizing Bartnik's results) global existence of solutions to the parabolic PDEs $\hat{K}_{[}\left[\left(\partial_{\rho} \widehat{N}\right)-\widehat{N}^{l}\left(\hat{D}_{l} \widehat{N}\right)\right]=\widehat{N}^{2}\left(\widehat{D}^{l} \widehat{N}_{l} \widehat{N}\right)+\mathcal{A} \widehat{N}-\frac{1}{2}\left(\widehat{R}-{ }^{(3)} R_{R}\right) \widehat{N}^{3}$ could be derived
- assume now that ρ is the area radius such that $\mathscr{A}_{\rho}=4 \pi \rho^{2}$
- the condition guaranteeing that for some positive and bounded initial data for ${ }_{0} \widehat{N}$ on \mathscr{S} the solution \widehat{N} remains positive and bounded away from infinity for all $\rho \geq \rho_{0}$ ultimately can be given by referring to

$$
\mathcal{K}=\sup _{\rho \in\left[\rho_{0}, \infty\right)}\left\{\frac{1}{4 \sqrt{\rho_{0}}} \int_{\rho_{0}}^{\rho} \rho^{\prime 3 / 2} \cdot\left[\max _{\mathscr{S}_{\rho^{\prime}}}\left({ }^{(3)} R-\widehat{R}\right)\right] \mathrm{d} \rho^{\prime}\right\}
$$

(1) if $\mathcal{K} \leq 0$ then any smooth positive bounded initial data ${ }_{0} \widehat{N}$ is fine
(2) if $\mathcal{K}>0$ then ${ }_{0} \widehat{N}$ has to be chosen such that ${ }_{0} \widehat{N}<1 / \sqrt{\mathcal{K}}$ [but choosing $A>0$ small (!)]

Summary:

A relatively simple method is proposed to generate a flow on any three-dimensional Riemannian hypersurface, with non-negative scalar curvature in a four-dimensional ambient space.
(1) it is far more flexible than the inverse mean curvature flow
(2) this flow can be used to construct quasi-convex foliations
(3) the (quasi-local) Geroch mass-associated with the foliating level surfaces-is non-decreasing w.r.t the proposed flow

- hints on the global existence and regularity were provided
(0) the construction applies to wide range of geometrized theories of gravity
- no use of Einstein's equations or any other field equation on the metric of the ambient space had been applied anywhere in our construction
- as only the Riemannian character of the metric on Σ was used the signature of the metric on the ambient space could be either Lor. or Euc.

