### Extending Calabi's duality

### José Antonio Sánchez Pelegrín

## Departamento de Geometría y Topología, Universidad de Granada

### IX International Meeting on Lorentzian Geometry

Supported by Spanish MINECO and EDRF project MTM2013-47828-C2-1-P.

In this conference we will show a correspondence between solutions of two second order nonlinear elliptic PDE as well as some geometric consequences. Namely, the minimal and maximal surface equation in the following ambiences:

- 1  $\mathbb{R}^3$  and  $\mathbb{L}^3$
- Riemannian and Lorentzian warped product spaces

Our first result is due to Calabi, who found a correspondence between local solutions to the minimal surface equation in  $\mathbb{R}^3$  and local solutions to the maximal surface equation in  $\mathbb{L}^3$ .

#### **Minimal surface**

A surface  $M \subset \mathbb{R}^3$  is minimal if its mean curvature is identically zero.

Minimal surfaces are critical points for the area functional for all compactly supported normal variations.

#### Minimal surface equation in $\mathbb{R}^3$

Given a smooth function *u* defined on a domain  $\Omega \subset \mathbb{R}^2$ , its graph

$$\Sigma_u = \{(\boldsymbol{p}, \boldsymbol{u}(\boldsymbol{p})) : \boldsymbol{p} \in \mathbb{R}^2\}$$

defines a minimal surface in  $\mathbb{R}^3$  if and only if *u* satisfies

$$\operatorname{div}\left(\frac{Du}{\sqrt{1+|Du|^2}}\right)=0.$$

#### **Spacelike surface**

An immersed surface M in the Lorentz-Minkowski spacetime  $\mathbb{L}^3$  is called spacelike if the induced metric on M is Riemannian.

A (1) > A (2) > A (2) > A

э

#### **Spacelike surface**

An immersed surface M in the Lorentz-Minkowski spacetime  $\mathbb{L}^3$  is called spacelike if the induced metric on M is Riemannian.

#### **Maximal surface**

A spacelike surface  $M \subset \mathbb{L}^3$  is maximal if its mean curvature is identically zero.

< 同 > < 三 > <

### Maximal surface equation in $\mathbb{L}^3$

Given a smooth function  $\omega$  defined on a domain  $\Omega \subset \mathbb{R}^2$ , its graph

$$\Sigma_{\omega} = \{ (\boldsymbol{p}, \omega(\boldsymbol{p})) : \boldsymbol{p} \in \mathbb{R}^2 \}$$

defines a maximal surface in  $\mathbb{L}^3$  if and only if  $\omega$  satisfies

$$\label{eq:div} \begin{split} \operatorname{div} \left( \frac{D\omega}{\sqrt{1-|D\omega|^2}} \right) &= 0, \\ |Du|^2 < 1. \end{split}$$

▲ 同 ▶ → 三 ▶

In 1970, Calabi<sup>1</sup> proved that there exists a one-to-one correspondence between solutions to the minimal surface equation in  $\mathbb{R}^3$  and solutions to the maximal surface equation in  $\mathbb{L}^3$ .

<sup>1</sup>E. Calabi, Examples of Bernstein problems for some nonlinear equations, *P. Symp. Pure Math.*, **15** (1970), 223–230.

In 1970, Calabi<sup>1</sup> proved that there exists a one-to-one correspondence between solutions to the minimal surface equation in  $\mathbb{R}^3$  and solutions to the maximal surface equation in  $\mathbb{L}^3$ .

In particular, given a minimal graph  $\Sigma_u$  over a simply connected domain  $\Omega \subseteq \mathbb{R}^2$ , we can find a maximal graph  $\Sigma_\omega$  over  $\Omega$  and vice versa

<sup>1</sup>E. Calabi, Examples of Bernstein problems for some nonlinear equations, *P. Symp. Pure Math.*, **15** (1970), 223–230.

## Calabi's duality

### **Examples of dual graphs**

This duality converts the helicoid in  $\mathbb{R}^3$ ,  $u = \arctan\left(\frac{y}{x}\right)$  to the Lorentzian catenoid  $\omega = \sinh^{-1}\left(\sqrt{x^2 + y^2}\right)$ .



▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

## Calabi's duality

### **Examples of dual graphs**

Conversely, the helicoid in  $\mathbb{L}^3$ ,  $\omega = \arctan\left(\frac{y}{x}\right)$  recovers the Euclidean catenoid  $u = \cosh^{-1}\left(\sqrt{x^2 + y^2}\right)$ .





### Bernstein Theorem<sup>2</sup>

The only entire solutions to the minimal surface equation in  $\mathbb{R}^3$  are the affine functions.

<sup>2</sup>S. Bernstein, Sur un théorème de géométrie et son aplication aux équations aux dérivées partielles du type elliptique, *Comm. de la Soc. Math. de Kharkow*, **15** (1915), 38–45.

<sup>1</sup>E. Calabi, Examples of Bernstein problems for some nonlinear equations, *P. Symp. Pure Math.*, **15** (1970), 223-230.0 + (2) (2)

### Bernstein Theorem<sup>2</sup>

The only entire solutions to the minimal surface equation in  $\mathbb{R}^3$  are the affine functions.

### Calabi-Bernstein Theorem <sup>1</sup>

The only entire solutions to the maximal surface equation in  $\mathbb{L}^3$  are the affine functions satisfying |Du| < 1.

<sup>2</sup>S. Bernstein, Sur un théorème de géométrie et son aplication aux équations aux dérivées partielles du type elliptique, *Comm. de la Soc. Math. de Kharkow*, **15** (1915), 38–45.

<sup>1</sup>E. Calabi, Examples of Bernstein problems for some nonlinear equations, *P. Symp. Pure Math.*, **15** (1970), 223–230.

This correspondence was also obtained using the local Enneper-Weierstrass representation of a minimal surface in  $\mathbb{R}^3$  and the local Enneper-Weierstrass representation of a maximal surface in  $\mathbb{L}^3$ , reproving with a very different approach the equivalence between Bernstein and Calabi-Bernstein theorems <sup>3</sup>.

<sup>3</sup>F.J.M. Estudillo and A. Romero, Generalized maximal surfaces in Lorentz-Minkowski space  $\mathbb{L}^3$ , *Math. Proc. Cambridge*, **111** (1992), 515–524.

Later, this duality was extended to product spaces <sup>4</sup>. Hence, it was found a local correspondence between solutions of the minimal surface equation in a 3-dimensional Riemannian product space  $M^2 \times \mathbb{R}$  and solutions of the maximal surface equation in a 3-dimensional Lorentzian product space  $M^2 \times (-\mathbb{R})$ .

<sup>4</sup>A.L. Albujer and L.J. Alías, Calabi-Bernstein results for maximal surfaces in Lorentzian product spaces, *J. Geom. Phys.*, **59** (2009), 620–631.

Later, this duality was extended to product spaces <sup>4</sup>. Hence, it was found a local correspondence between solutions of the minimal surface equation in a 3-dimensional Riemannian product space  $M^2 \times \mathbb{R}$  and solutions of the maximal surface equation in a 3-dimensional Lorentzian product space  $M^2 \times (-\mathbb{R})$ .

This correspondence was used to obtain non-trivial examples of entire maximal graphs in the Lorentzian product space  $\mathbb{H}^2 \times (-\mathbb{R})$ .

<sup>4</sup>A.L. Albujer and L.J. Alías, Calabi-Bernstein results for maximal surfaces in Lorentzian product spaces, *J. Geom. Phys.*, **59** (2009), 620–631.

Recently, we have been able to extend this duality to a wider class of ambient manifolds. Namely, we have found a correspondence between local solutions of the minimal surface equation in a 3-dimensional Riemannian warped product space and local solutions of the maximal surface equation in a related 3-dimensional standard static spacetime.

#### Riemannian warped product space

The Riemannian warped product  $B \times_{\frac{1}{\sqrt{\gamma}}} \mathbb{R}$  will denote the product manifold  $B \times \mathbb{R}$ , being  $(B, g_B)$  a connected Riemannian surface, endowed with the Riemannian metric

$$\overline{oldsymbol{g}}=\pi^*_{\mathcal{B}}(oldsymbol{g}_{\mathcal{B}})+rac{1}{\gamma(\pi_{\mathcal{B}})}\pi^*_{\mathbb{R}}(oldsymbol{d} t^2),$$

where  $\pi_B$  and  $\pi_{\mathbb{R}}$  denote, respectively, the projections on B and  $\mathbb{R}$  and  $\gamma$  is a smooth positive function on B.

Minimal surface equation in  $B \times \sqrt{\frac{1}{2}} \mathbb{R}$ 

The graph of a smooth function u defined on a domain  $\Omega \subset B$ ,

$$\Sigma_u = \{(p, u(p)) : p \in B\}$$

defines a minimal surface in  $B \times_{\sqrt{\frac{1}{\gamma}}} \mathbb{R}$  if and only if *u* satisfies

$$\operatorname{div}\left(\frac{Du}{\sqrt{\gamma+|Du|^2}}\right) = \frac{1}{2\gamma} \frac{g_B(D\gamma, Du)}{\sqrt{\gamma+|Du|^2}}.$$
 (R)

#### **Standard static spacetimes**

A 3-dimensional standard static spacetime  $B \times_{\sqrt{\gamma}} (-\mathbb{R})$  is defined as the product manifold  $B \times \mathbb{R}$ , being  $(B, g_B)$  a connected Riemannian surface, endowed with the Lorentzian metric

$$\overline{\boldsymbol{g}} = \pi_{\boldsymbol{B}}^*(\boldsymbol{g}_{\boldsymbol{B}}) - \gamma(\pi_{\boldsymbol{B}})\pi_{\mathbb{R}}^*(\boldsymbol{d}t^2),$$

where  $\pi_B$  and  $\pi_{\mathbb{R}}$  denote, respectively, the projections on B and  $\mathbb{R}$  and  $\gamma$  is a smooth positive function on B.

Physical relevance of standard static spacetimes

In these spacetimes there exists an irrotational timelike Killing vector field that defines a family of observers that measure a spatial universe that does not change with time.

Standard static spacetimes include some relevant models such as Einstein static universe and (exterior) Schwarzschild spacetime.

### Maximal surface equation in $B \times_{\sqrt{\gamma}} (-\mathbb{R})$

Given a smooth function  $\omega$  defined on a domain  $\Omega \subset B$ ,

$$\Sigma_\omega = \{(\pmb{
ho}, \omega(\pmb{
ho})) : \pmb{
ho} \in \pmb{B}\}$$

defines a maximal surface in  $B \times_{\sqrt{\gamma}} (-\mathbb{R})$  if and only if  $\omega$  satisfies

$$\operatorname{div}\left(\frac{D\omega}{\sqrt{\frac{1}{\gamma}-|D\omega|^2}}\right) = \frac{\gamma}{2} \frac{g_B\left(D\left(\frac{1}{\gamma}\right), D\omega\right)}{\sqrt{\frac{1}{\gamma}-|D\omega|^2}}, \qquad (L.1)$$
$$|D\omega|^2 < \frac{1}{\gamma}. \qquad (L.2)$$

### Theorem <sup>5</sup>

Let  $\Omega \subset B$  be a simply connected domain. Then, there exists a non-trivial (i.e., non-constant) solution of the minimal surface equation in  $B \times \frac{1}{\sqrt{\gamma}} \mathbb{R}$  on  $\Omega$  if and only if there exists a non-trivial solution of the maximal surface equation in  $B \times \sqrt{\gamma}$  ( $-\mathbb{R}$ ) on  $\Omega$ .

<sup>5</sup>J.A.S. Pelegrín, A. Romero and R.M. Rubio, An extension of Calabi's correspondence between the solutions of two Bernstein problems to more general elliptic nonlinear equations, *Math. Notes*, **5** (2018), to appear.

### Sketch of the proof

1. If we consider on *B* the conformal metric

$$\widetilde{g}=rac{1}{\sqrt{\gamma}}\ g_{B},$$

we can rewrite (R) as follows

$$\widetilde{\operatorname{div}}\left(\frac{Du}{\sqrt{\gamma+|Du|^2}}\right)=0.$$
 ( $\widetilde{\mathbb{R}}$ 

A (1) > A (2) > A (2) > A

#### Sketch of the proof

2. Analogously, with the conformal change of metric

$$\widehat{g} = \sqrt{\gamma} \ g_{B},$$

we can write (L) as

$$\begin{split} \widehat{\operatorname{div}} \left( \frac{D\omega}{\sqrt{\frac{1}{\gamma} - |D\omega|^2}} \right) &= 0, \quad (\widehat{\mathrm{L}}.1) \\ &|D\omega|^2 < \frac{1}{\gamma}. \quad (\widehat{\mathrm{L}}.2) \end{split}$$

▲冊▶ ▲臣▶ ▲臣▶

### Sketch of the proof

W

**3.** If we assume now the existence of a non-trivial solution *u* of  $(\widetilde{\mathbf{R}})$  on  $\Omega \subset B$ , we have

$$d*ig(U^{\widetilde{artheta}}ig)=$$
here  $U:=rac{Du}{\sqrt{\gamma+|Du|^2}}.$ 

0,

### Sketch of the proof

**3.** If we assume now the existence of a non-trivial solution *u* of  $(\widetilde{\mathbf{R}})$  on  $\Omega \subset B$ , we have

$$d*(U^{\widetilde{\flat}})=0,$$

where  $U := \frac{Du}{\sqrt{\gamma + |Du|^2}}$ .

4. Since  $\Omega$  is simply connected, classical Poincaré's lemma ensures the existence of  $\omega \in C^{\infty}(B)$  such that

$$\boldsymbol{d}\,\omega=*\big(\boldsymbol{U}^{\widetilde{\flat}}\big).$$

### Sketch of the proof

5. After several computations we obtain that  $\omega$  satisfies

$$*\left(\left(rac{D\omega}{\sqrt{rac{1}{\gamma}-|D\omega|^2}}
ight)^{\widehat{\flat}}
ight)=d(-u)$$

and

$$|\boldsymbol{D}\omega|^2 < \frac{1}{\gamma}.$$

Hence,  $\omega$  is a non-trivial solution of  $(\hat{L})$  on  $\Omega$ . The converse is proved in the same way.

As a consequence of this correspondence, we can obtain new Calabi-Bernstein type results from known Bernstein type results. For instance, knowing

### Theorem <sup>6</sup>

The only entire solutions of equation (R) on the 2-dimensional sphere  $\mathbb{S}^2$  endowed with a Riemannian metric are the constants.

<sup>6</sup>A. Romero and R.M. Rubio, Bernstein-type Theorems in a Riemannian Manifold with an Irrotational Killing Vector Field, *Mediterr. J. Math.*, **13** (2016), 1285–1290. Combining the previous result with our duality theorem in these ambiences we obtain

### **Corollary** <sup>5</sup>

The only entire solutions of equation (L) on the 2-dimensional sphere  $\mathbb{S}^2$  endowed with a Riemannian metric are the constants.

<sup>5</sup>J.A.S. Pelegrín, A. Romero and R.M. Rubio, An extension of Calabi's correspondence between the solutions of two Bernstein problems to more general elliptic nonlinear equations, *Math. Notes*, **5** (2018), to appear.

# Thank you

# for your attention!

José A. S. Pelegrín Extending Calabi's duality

æ