## Extending Calabi's duality

## José Antonio Sánchez Pelegrín

Departamento de Geometría y Topología, Universidad de Granada

## IX International Meeting on Lorentzian Geometry

Supported by Spanish MINECO and EDRF project MTM2013-47828-C2-1-P.

## Contents

In this conference we will show a correspondence between solutions of two second order nonlinear elliptic PDE as well as some geometric consequences. Namely, the minimal and maximal surface equation in the following ambiences:
(1) $\mathbb{R}^{3}$ and $\mathbb{L}^{3}$
(2) Riemannian and Lorentzian warped product spaces

## Calabi's duality

Our first result is due to Calabi, who found a correspondence between local solutions to the minimal surface equation in $\mathbb{R}^{3}$ and local solutions to the maximal surface equation in $\mathbb{L}^{3}$.

## Calabi's duality

## Minimal surface

A surface $M \subset \mathbb{R}^{3}$ is minimal if its mean curvature is identically zero.

Minimal surfaces are critical points for the area functional for all compactly supported normal variations.

## Calabi's duality

## Minimal surface equation in $\mathbb{R}^{3}$

Given a smooth function $u$ defined on a domain $\Omega \subset \mathbb{R}^{2}$, its graph

$$
\Sigma_{u}=\left\{(p, u(p)): p \in \mathbb{R}^{2}\right\}
$$

defines a minimal surface in $\mathbb{R}^{3}$ if and only if $u$ satisfies

$$
\operatorname{div}\left(\frac{D u}{\sqrt{1+|D u|^{2}}}\right)=0 .
$$

## Calabi's duality

## Spacelike surface

An immersed surface $M$ in the Lorentz-Minkowski spacetime $\mathbb{L}^{3}$ is called spacelike if the induced metric on $M$ is Riemannian.

## Calabi's duality

## Spacelike surface

An immersed surface $M$ in the Lorentz-Minkowski spacetime $\mathbb{L}^{3}$ is called spacelike if the induced metric on $M$ is Riemannian.

## Maximal surface

A spacelike surface $M \subset \mathbb{L}^{3}$ is maximal if its mean curvature is identically zero.

## Calabi's duality

## Maximal surface equation in $\mathbb{L}^{3}$

Given a smooth function $\omega$ defined on a domain $\Omega \subset \mathbb{R}^{2}$, its graph

$$
\Sigma_{\omega}=\left\{(p, \omega(p)): p \in \mathbb{R}^{2}\right\}
$$

defines a maximal surface in $\mathbb{L}^{3}$ if and only if $\omega$ satisfies

$$
\begin{gathered}
\operatorname{div}\left(\frac{D \omega}{\sqrt{1-|D \omega|^{2}}}\right)=0, \\
|D u|^{2}<1 .
\end{gathered}
$$

## Calabi's duality

In 1970, Calabi ${ }^{1}$ proved that there exists a one-to-one correspondence between solutions to the minimal surface equation in $\mathbb{R}^{3}$ and solutions to the maximal surface equation in $\mathbb{L}^{3}$.

[^0]
## Calabi's duality

In 1970, Calabi ${ }^{1}$ proved that there exists a one-to-one correspondence between solutions to the minimal surface equation in $\mathbb{R}^{3}$ and solutions to the maximal surface equation in $\mathbb{L}^{3}$.

In particular, given a minimal graph $\Sigma_{u}$ over a simply connected domain $\Omega \subseteq \mathbb{R}^{2}$, we can find a maximal graph $\Sigma_{\omega}$ over $\Omega$ and vice versa

[^1]
## Calabi's duality

## Examples of dual graphs

This duality converts the helicoid in $\mathbb{R}^{3}, u=\arctan \left(\frac{y}{x}\right)$ to the Lorentzian catenoid $\omega=\sinh ^{-1}\left(\sqrt{x^{2}+y^{2}}\right)$.


## Calabi's duality

## Examples of dual graphs

Conversely, the helicoid in $\mathbb{L}^{3}, \omega=\arctan \left(\frac{y}{x}\right)$ recovers the Euclidean catenoid $u=\cosh ^{-1}\left(\sqrt{x^{2}+y^{2}}\right)$.


## Calabi's duality

## Bernstein Theorem ${ }^{2}$

The only entire solutions to the minimal surface equation in $\mathbb{R}^{3}$ are the affine functions.
${ }^{2}$ S. Bernstein, Sur un théorème de géométrie et son aplication aux équations aux dérivées partielles du type elliptique, Comm. de la Soc. Math. de Kharkow, 15 (1915), 38-45.

## Calabi's duality

## Bernstein Theorem ${ }^{2}$

The only entire solutions to the minimal surface equation in $\mathbb{R}^{3}$ are the affine functions.

## Calabi-Bernstein Theorem ${ }^{1}$

The only entire solutions to the maximal surface equation in $\mathbb{L}^{3}$ are the affine functions satisfying $|D u|<1$.
${ }^{2}$ S. Bernstein, Sur un théorème de géométrie et son aplication aux équations aux dérivées partielles du type elliptique, Comm. de la Soc. Math. de Kharkow, 15 (1915), 38-45.
${ }^{1}$ E. Calabi, Examples of Bernstein problems for some nonlinear equations, P. Symp. Pure Math., 15 (1970), 223-230.

## Calabi's duality

This correspondence was also obtained using the local Enneper-Weierstrass representation of a minimal surface in $\mathbb{R}^{3}$ and the local Enneper-Weierstrass representation of a maximal surface in $\mathbb{L}^{3}$, reproving with a very different approach the equivalence between Bernstein and Calabi-Bernstein theorems ${ }^{3}$.

[^2]
## Calabi's duality

Later, this duality was extended to product spaces ${ }^{4}$. Hence, it was found a local correspondence between solutions of the minimal surface equation in a 3-dimensional Riemannian product space $M^{2} \times \mathbb{R}$ and solutions of the maximal surface equation in a 3-dimensional Lorentzian product space $M^{2} \times(-\mathbb{R})$.

[^3]
## Calabi's duality

Later, this duality was extended to product spaces ${ }^{4}$. Hence, it was found a local correspondence between solutions of the minimal surface equation in a 3-dimensional Riemannian product space $M^{2} \times \mathbb{R}$ and solutions of the maximal surface equation in a 3-dimensional Lorentzian product space $M^{2} \times(-\mathbb{R})$.

This correspondence was used to obtain non-trivial examples of entire maximal graphs in the Lorentzian product space $\mathbb{H}^{2} \times(-\mathbb{R})$.
${ }^{4}$ A.L. Albujer and L.J. Alías, Calabi-Bernstein results for maximal surfaces in Lorentzian product spaces, J. Geom. Phys., 59 (2009), 620-631.

## Duality in warped product spaces

Recently, we have been able to extend this duality to a wider class of ambient manifolds. Namely, we have found a correspondence between local solutions of the minimal surface equation in a 3 -dimensional Riemannian warped product space and local solutions of the maximal surface equation in a related 3-dimensional standard static spacetime.

## Duality in warped product spaces

## Riemannian warped product space

The Riemannian warped product $B \times_{\frac{1}{\sqrt{\gamma}}} \mathbb{R}$ will denote the product manifold $B \times \mathbb{R}$, being ( $B, g_{B}$ ) a connected Riemannian surface, endowed with the Riemannian metric

$$
\bar{g}=\pi_{B}^{*}\left(g_{B}\right)+\frac{1}{\gamma\left(\pi_{B}\right)} \pi_{\mathbb{R}}^{*}\left(d t^{2}\right),
$$

where $\pi_{B}$ and $\pi_{\mathbb{R}}$ denote, respectively, the projections on $B$ and $\mathbb{R}$ and $\gamma$ is a smooth positive function on $B$.

## Duality in warped product spaces

## Minimal surface equation in $B \times_{\sqrt{\frac{1}{\gamma}}} \mathbb{R}$

The graph of a smooth function $u$ defined on a domain $\Omega \subset B$,

$$
\Sigma_{u}=\{(p, u(p)): p \in B\}
$$

defines a minimal surface in $B \times{ }_{\sqrt{\frac{1}{\gamma}}} \mathbb{R}$ if and only if $u$ satisfies

$$
\begin{equation*}
\operatorname{div}\left(\frac{D u}{\sqrt{\gamma+|D u|^{2}}}\right)=\frac{1}{2 \gamma} \frac{g_{B}(D \gamma, D u)}{\sqrt{\gamma+|D u|^{2}}} . \tag{R}
\end{equation*}
$$

## Duality in warped product spaces

## Standard static spacetimes

A 3-dimensional standard static spacetime $B \times_{\sqrt{\gamma}}(-\mathbb{R})$ is defined as the product manifold $B \times \mathbb{R}$, being ( $B, g_{B}$ ) a connected Riemannian surface, endowed with the Lorentzian metric

$$
\bar{g}=\pi_{B}^{*}\left(g_{B}\right)-\gamma\left(\pi_{B}\right) \pi_{\mathbb{R}}^{*}\left(d t^{2}\right),
$$

where $\pi_{B}$ and $\pi_{\mathbb{R}}$ denote, respectively, the projections on $B$ and $\mathbb{R}$ and $\gamma$ is a smooth positive function on $B$.

## Duality in warped product spaces

## Physical relevance of standard static spacetimes

In these spacetimes there exists an irrotational timelike Killing vector field that defines a family of observers that measure a spatial universe that does not change with time.

Standard static spacetimes include some relevant models such as Einstein static universe and (exterior) Schwarzschild spacetime.

## Duality in warped product spaces

## Maximal surface equation in $B \times_{\sqrt{\gamma}}(-\mathbb{R})$

Given a smooth function $\omega$ defined on a domain $\Omega \subset B$,

$$
\Sigma_{\omega}=\{(p, \omega(p)): p \in B\}
$$

defines a maximal surface in $B \times_{\sqrt{\gamma}}(-\mathbb{R})$ if and only if $\omega$ satisfies

$$
\begin{gather*}
\operatorname{div}\left(\frac{D \omega}{\sqrt{\frac{1}{\gamma}-|D \omega|^{2}}}\right)=\frac{\gamma}{2} \frac{g_{B}\left(D\left(\frac{1}{\gamma}\right), D \omega\right)}{\sqrt{\frac{1}{\gamma}-|D \omega|^{2}}},  \tag{L.1}\\
|D \omega|^{2}<\frac{1}{\gamma} . \tag{L.2}
\end{gather*}
$$

## Duality in warped product spaces

## Theorem ${ }^{5}$

Let $\Omega \subset B$ be a simply connected domain. Then, there exists a non-trivial (i.e., non-constant) solution of the minimal surface equation in $B \times \frac{1}{\sqrt{\gamma}} \mathbb{R}$ on $\Omega$ if and only if there exists a non-trivial solution of the maximal surface equation in $B \times_{\sqrt{\gamma}}(-\mathbb{R})$ on $\Omega$.
${ }^{5}$ J.A.S. Pelegrín, A. Romero and R.M. Rubio, An extension of Calabi's correspondence between the solutions of two Bernstein problems to more general elliptic nonlinear equations, Math. Notes, 5 (2018), to appear.

## Duality in warped product spaces

## Sketch of the proof

1. If we consider on $B$ the conformal metric

$$
\widetilde{g}=\frac{1}{\sqrt{\gamma}} g_{B}
$$

we can rewrite ( R ) as follows

$$
\begin{equation*}
\widetilde{\operatorname{div}}\left(\frac{D u}{\sqrt{\gamma+|D u|^{2}}}\right)=0 . \tag{R}
\end{equation*}
$$

## Duality in warped product spaces

## Sketch of the proof

2. Analogously, with the conformal change of metric

$$
\widehat{g}=\sqrt{\gamma} g_{B},
$$

we can write (L) as

$$
\begin{gather*}
\widehat{\operatorname{div}}\left(\frac{D \omega}{\sqrt{\frac{1}{\gamma}-|D \omega|^{2}}}\right)=0,  \tag{L.1}\\
|D \omega|^{2}<\frac{1}{\gamma} . \tag{L.2}
\end{gather*}
$$

## Duality in warped product spaces

## Sketch of the proof

3. If we assume now the existence of a non-trivial solution $u$ of $(\widetilde{R})$ on $\Omega \subset B$, we have

$$
d *\left(\tilde{U^{\prime}}\right)=0,
$$

where $U:=\frac{D u}{\sqrt{\gamma+|D u|^{2}}}$.

## Duality in warped product spaces

## Sketch of the proof

3. If we assume now the existence of a non-trivial solution $u$ of $(\widetilde{R})$ on $\Omega \subset B$, we have

$$
d *\left(\tilde{U^{p}}\right)=0,
$$

where $U:=\frac{D u}{\sqrt{\gamma+|D u|^{2}}}$.
4. Since $\Omega$ is simply connected, classical Poincaré's lemma ensures the existence of $\omega \in C^{\infty}(B)$ such that

$$
d \omega=*\left(\tilde{U^{5}}\right)
$$

## Duality in warped product spaces

## Sketch of the proof

5. After several computations we obtain that $\omega$ satisfies

$$
*\left(\left(\frac{D \omega}{\sqrt{\frac{1}{\gamma}-|D \omega|^{2}}}\right)^{\hat{b}}\right)=d(-u)
$$

and

$$
|D \omega|^{2}<\frac{1}{\gamma} .
$$

Hence, $\omega$ is a non-trivial solution of ( $\widehat{\mathrm{L}}$ ) on $\Omega$. The converse is proved in the same way.

## Duality in warped product spaces

As a consequence of this correspondence, we can obtain new Calabi-Bernstein type results from known Bernstein type results. For instance, knowing

## Theorem ${ }^{6}$

The only entire solutions of equation (R) on the 2-dimensional sphere $\mathbb{S}^{2}$ endowed with a Riemannian metric are the constants.
${ }^{6}$ A. Romero and R.M. Rubio, Bernstein-type Theorems in a Riemannian Manifold with an Irrotational Killing Vector Field, Mediterr. J. Math., 13 (2016), 1285-1290.

## Duality in warped product spaces

Combining the previous result with our duality theorem in these ambiences we obtain

## Corollary ${ }^{5}$

The only entire solutions of equation ( L ) on the 2-dimensional sphere $\mathbb{S}^{2}$ endowed with a Riemannian metric are the constants.
${ }^{5}$ J.A.S. Pelegrín, A. Romero and R.M. Rubio, An extension of Calabi's correspondence between the solutions of two Bernstein problems to more general elliptic nonlinear equations, Math. Notes, 5 (2018), to appear.

## Thank you

## for your attention!


[^0]:    ${ }^{1}$ E. Calabi, Examples of Bernstein problems for some nonlinear equations, P. Symp. Pure Math., 15 (1970), 223-230.

[^1]:    ${ }^{1}$ E. Calabi, Examples of Bernstein problems for some nonlinear equations, P. Symp. Pure Math., 15 (1970), 223-230.

[^2]:    ${ }^{3}$ F.J.M. Estudillo and A. Romero, Generalized maximal surfaces in Lorentz-Minkowski space $\mathbb{L}^{3}$, Math. Proc. Cambridge, 111 (1992), 515-524.

[^3]:    ${ }^{4}$ A.L. Albujer and L.J. Alías, Calabi-Bernstein results for maximal surfaces in Lorentzian product spaces, J. Geom. Phys., 59 (2009), 620-631.

