
Hopf Real Hypersurfaces in the
Indefinite Complex Projective Space

Miguel Ortega (University of Granada, Spain)

Partially financed by the Spanish Ministry of
Economy and Competitiveness and European
Regional Development Fund (ERDF), project
MTM2016-78807-C2-1-P.

Warsaw, June 22 - 2018



Table Of Contents

1 Overview

2 Introduction and preliminaries

3 Examples

4 A Ridigity Result

5 Further results

Miguel Ortega (Univ. Granada) Hopf Real Hypersurfaces in the Indefinite Complex Projective SpaceWarszawa, June 2018 2 / 38



Summary

1 Overview

2 Introduction and preliminaries

3 Examples

4 A Ridigity Result

5 Further results

Miguel Ortega (Univ. Granada) Hopf Real Hypersurfaces in the Indefinite Complex Projective SpaceWarszawa, June 2018 3 / 38



Overview

This talk is based on the following joint work with
Makoto Kimura (Ibaraki University, Japan)

M. Kimura, —, Hopf Real Hypersurfaces in the Indefinite Complex
Projective Space, https://arxiv.org/abs/1802.05556
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Overview

The theory of real hypersurfaces in complex space forms is very
well-developed.

J. Berdnt, T. Cecil, G. Kaimakamis, M. Kimura, S. Maeda, Y. Maeda,
S. Montiel, K. Panagiotidou, Juan de Dios Pérez, P. Ryan, Y. J. Suh,
R. Takagi...
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Overview

R. Takagi, On homogeneous real hypersurfaces in a complex projective
space. Osaka J. Math. 10 (1973), 495–506

Theorem 1
Let M be a extrinsically homogeneous real hypersurface in CPn, n ≥ 2.
Then, M is a tube of radius r over one of the following:
A) A totally geodesic CP k, 0 ≤ k ≤ n− 1, 0 < r < π/2;
B) A complex quadric Qn−1, 0 < r < π/4;
C) CP 1 × CP (n−1)/2, 0 < r < π/4, n ≥ 5, n odd;
D) Complex Grassmanian G2,5(C), 0 < r < π/4, n = 9;
E) Hermitian Symmetric Space SO(10)/U(5), 0 < r < π/4, n = 15.

If N is unit normal vector field to M in CPn, then ξ = −JN .
A: shape operator. All these examples satisfy Aξ = µξ.
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Overview

M. Kimura, Real hypersurfaces and complex submanifolds in complex
projective space, Trans. Amer. Math. Soc. 296 (1986) (1), 137-149.

Theorem 2
Let M be a real hypersurface in CPn, n ≥ 2, such that ξ is principal and
M has constant principal curvatures. Then, M is an open subset of one of
the real hypersurfaces in the Takagi’s list.

Miguel Ortega (Univ. Granada) Hopf Real Hypersurfaces in the Indefinite Complex Projective SpaceWarszawa, June 2018 7 / 38



Overview

J. Berndt, Real hypersurfaces with constant principal curvatures in
complex hyperbolic space, J. Reine Angew. Math. 395 (1989), 132?141.

Theorem 3
Let M be a real hypersurface in CHn, n ≥ 2, such that ξ is principal, and
M has constant principal curvatures. Then, M is an open subset of one of
the following:
A) A tube of radius r > 0 over a totally geodesic CHk, k = 0, . . . , n− 1;
B) a tube of radius r > 0 over a totally geodesic RPn;
C) a horosphere.
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Overview

Hundreds of works about real hypersurfaces in non-flat complex space forms
have appeared, also in

the quaternionic space forms,
the Grassmanian of 2-complex planes, and
the complex quadric.

T. E. Cecil and P. J. Ryan, Geometry of Hypersurfaces, Springer
Monographs in Mathematics, Springer, New York, NY (2015) DOI
10.1007/978-1-4939-3246-7
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Overview

The study of real hypersurfaces in indefinite complex projective space seems
to be initiated in

A. Bejancu, K. L. Duggal, Real hypersurfaces of indefinite Kaehler
manifolds, Internat. J. Math. Math. Sci. 16 (1993), no. 3, 545–556.

They paid attention to real hypersurfaces in (flat) complex space forms, by
considering the (ε)-Sasakian and (ε)-cosymplectic structures.
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Overview

H. Anciaux, K. Panagiotidou, Hopf Hypersurfaces in pseudo-Riemannian
complex and para-complex space forms, Diff. Geom. Appl. 42 (2015)
1-14 DOI: 10.1016/j.difgeo.2015.05.004

Anciaux and Panatiotidou studied the almost contact structure (g, ξ, η, φ)
on a real hypersurface in CPnp , and tubes over certain submanifolds.
A: shape operator.

Problems
P1) Are there any real hypersurface s.t. Aξ = µξ, |µ| ≤ 2?
P2) Classification of real hypersurfaces s.t. Aφ = φA.

When a real hypersurface had a timelike unit normal vector field, Anciaux
and Panagiotidou always changed the metric g by −g.
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Our aim

Further develop Anciaux and Panagiotidou’s ideas.
Attack the problems they posed.

We will just focus on the indefinite complex projective space CPnp of index
1 ≤ p ≤ n− 1,

Miguel Ortega (Univ. Granada) Hopf Real Hypersurfaces in the Indefinite Complex Projective SpaceWarszawa, June 2018 12 / 38



Overview

We allow the normal vector to have its own causal character, without
changing the metric.

We recover the almost contact metric structure.
Examples:

1 Families of non-degenerate real hypersurfaces whose shape operator is
diagonalisable,

2 A null example (with degenerate metric) and non-diagonalisable
shape operator.

A rigidity result.
Real hypersurfaces which are η-umbilical.
Real hypersurfaces whose ξ is Killing.
Further problems.
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Preliminaries

See [2] (Barros-Romero) for more details.
Cn+1
p the Euclidean complex space endowed with the following hermitian

product and pseudo-Riemannian metric of index 2p, z = (z1, . . . , zn+1),
w = (w1, . . . , wn+1) ∈ Cn+1,

gC(z, w) = −
p∑
j=1

zjw̄j +

n+1∑
j=p+1

zjw̄j , g = Re(gC), (1)

where w̄ is the complex conjugate of w ∈ C.
J the natural complex structure.

S1 = {a ∈ C : aā = 1} = {eiθ : θ ∈ R}.

S2n+1
2p = {z ∈ Cn+1

p : g(z, z) = 1},

Miguel Ortega (Univ. Granada) Hopf Real Hypersurfaces in the Indefinite Complex Projective SpaceWarszawa, June 2018 15 / 38



We define the action and its corresponding quotient

S1 × S2n+1
2p → S2n+1

2p , (a, (z1, . . . , zn+1)) 7→ (az1, . . . , azn+1),

π : S2n+1
2p → CPnp = S2n+1

2p / ∼ .

Let g be the metric on CPnp such that π becomes a semi-Riemannian
submersion. The manifold CPnp is called the Indefinite Complex Projective
Space.

Let ∇̄ be its Levi-Civita connection. Then, CPnp admits a complex structure
J induced by π, with Riemannian tensor

R̄(X,Y )Z = g(Y, Z)X − g(X,Z)Y

+g(JY, Z)JX − g(JX,Z)JY + 2g(X, JY )JZ,

for any X,Y, Z ∈ TM .
CPnp has constant holomorphic sectional curvature 4.
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Let M be a connected, non-degenerate, immersed real hypersurface in CPnp .
N : a local unit normal vector field such that ε = g(N,N) = ±1.
ξ = −JN : The structure vector field on M . Clearly, g(ξ, ξ) = ε.
Given X ∈ TM , the vector JX might not be tangent to M . Then, we
decompose it in its tangent and normal parts, namely

JX = φX + ε η(X)N,

where φX is the tangential part, and η is the 1-form on M . Given
X,Y ∈ TM ,

η(X) = g(X, ξ), φξ = 0, η(ξ) = ε,

φ2X = −X + εη(X)ξ, η(φX) = 0,

g(φX, φY ) = g(X,Y )− εη(X)η(Y ), g(φX, Y ) + g(X,φY ) = 0.

Thus, the set (g, φ, η, ξ) is called an almost contact structure on M .
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Next, if ∇ is the Levi-Civita connection of M , we have the Gauss and
Weingarten formulae:

∇̄XY = ∇XY + εg(AX,Y )N, ∇̄XN = −AX,

for any X,Y ∈ TM , where A is the shape operator associated with N .
Note that

∇Xξ = φAX.

The Codazzi equation is

(∇XA)Y − (∇YA)X = η(X)φY − η(Y )φX + 2g(X,φY )ξ,

for any X,Y ∈ TM . Let R be the curvature operator of M . Then, by using
the Gauss equation, we obtain

R(X,Y )Z =g(Y, Z)X − g(X,Z)Y + g(φY,Z)φX − g(φX,Z)φY

− 2g(φX, Y )φZ + εg(AY,Z)AX − εg(AX,Z)AY,

for any X,Y, Z ∈ TM .
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Definition 4
Let M be a real hypersurface in CPnp . We will say that M is Hopf when its
structure vector field ξ is everywhere principal, i. e., it is an eigenvector of A.

Its associated principal curvature can be defined as µ = εg(Aξ, ξ), and we
will call it the Hopf curvature. Therefore, it holds Aξ = µξ.

Theorem 5

[1] Let M be a non-degenerate Hopf real hypersurface in CPnp with
Aξ = µξ. Then, µ is (locally) constant.

(Anciaux-Panagiotidou)
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Next lemma is essentially included in [1].

Lemma 6

Let M be a non-degenerate Hopf real hypersurface in CPnp with Aξ = µξ.
Assume that X ∈ TM is a principal vector with associated principal
curvature λ. Then,

(2λ− µ)AφX = (λµ+ 2ε)φX.

If 2λ− µ 6= 0, then AφX =
λµ+ 2ε

2λ− µ
φX, X ∈ TM .

Corollary 7

If µ = 2λ, then ε = −1, |µ| = 2 and |λ| = 1.
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Since π : S2n+1
2p → CPnp is a semi-Riemannian submersion and a principal

fiber bundle with structure Lie group S1, we can call it the Hopf map.

Given a real hypersurface M2n−1 in CPnp , then we construct its lift M̃2n,
i.e., the following commutative diagram:

M̃2n −−−−→ S2n+1
2py y

M2n−1 −−−−→ CPnp

It is important to point out that a real hypersurface in CPnp is a
semi-Riemannian submanifold of arbitrary index, and therefore, its shape
operator A might not be diagonalisable
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Given 0 ≤ q ≤ p ≤ m ≤ n+ 2, m > q + 1, we define the following maps
q1, q2 : Cn+1

p → Cn+1
p . Given z ∈ Cn+1

p , the case q = 0 and m = n+ 2 is
not considered, and

if 1 ≤ q and m ≤ n+ 1, q1(z) = (z1, . . . , zq, 0, . . . , 0, zm, . . . , zn+1),
q2(z) = (0, . . . , 0, zq+1, . . . , zm−1, 0, . . . , 0);

if q = 0 and m ≤ n+ 1, q1(z) = (0, . . . , 0, zm, . . . , zn+1),
q2(z) = (z1, . . . , zm−1, 0, . . . , 0);
if 1 ≤ q and m = n+ 2, q1(z) = (z1, . . . , zq, 0, . . . , 0),
q2(z) = (0, . . . , 0, zq+1, . . . , zn+1).
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Example 8

Type A. Consider t ∈ R, t 6= 0, 1, and 0 ≤ q ≤ p ≤ m ≤ n+ 2,
m > q + 1. With this notation, we define

M̃m
q (t) =

{
z = (z1, . . . , zn) ∈ S2n+1

2p : g(q1(z), q1(z)) = t
}

=
{
z = (z1, . . . , zn) ∈ S2n+1

2p : g(q2(z), q2(z)) = 1− t
}
,

Mm
q (t) =π(M̃m

q (t)) ⊂ CPnp .

Aξ = µξ.

For a suitable r > 0,
(A+) ε = +1, 0 < t = cos2(r) < 1, µ = 2 cot(2r),

λ1 = − tan(r), λ2 = cot(r).
(A−) ε = −1, 1 < t = cosh2(r), µ = 2 coth(2r),

λ1 = − tanh(r), λ2 = coth(r).
dimVλ1 = 2(m− q − 2), dimVλ2 = 2(n+ q −m+ 1).
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Type B

Example 9

Given t > 0, t 6= 1, Q(z) = −
∑p

j=1 z
2
j +

∑n+1
j=p+1 z

2
j ,

M̃t =
{
z = (z1, . . . , zn+1) ∈ S2n+1

2p : Q(z)Q(z) = t
}
, Mt = π(M̃t).

ε = sign(t(1− t)) = ±1, Aξ = µξ, g(ξ, ξ) = ε.

(B+) ε = +1, 0 < t = sin2(2r) < 1, µ = 2 cot(2r), λ1 = cot(r),
m1 = n− 1, λ2 = tan(r), m2 = n− 1, φVλ1 = Vλ2 .

(B0) ε = −1, µ =
√

3, λ = 1/
√

3, dimVµ = n, dimVλ = n− 1,
φVµ = Vλ, ξ ∈ Vµ.

(B−) ε = −1, 1 < t = cosh2(2r), µ = 2 tanh(2r), λ1 = coth(r),
m1 = n− 1, λ2 = tanh(r), m2 = n− 1, φVλ1 = Vλ2 .
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Example 10

A degenerate example. Recall Q(z) = −
∑p

j=1 z
2
j +

∑n+1
j=p+1 z

2
j .

M̃1 =
{
z = (z1, . . . , zn+1) ∈ S2n+1

2p : Q(z)Q(z) = 1, z 6= Q(z)z̄
}
.

M1 = π(M̃1) is a real hypersurface in CPnp such that:
1 The normal vector N is lightlike, so that N ∈ TM1.

2 The induced metric g is degenerate, with {N, ξ} spanning its radical.
3 If AX = −∇̄XN , for any X ∈ TM , then M is Hopf: Aξ = 0.
4 The shape operator is not diagonalisable: Aξ = 0, dimV0 = n− 1,
AN = Re(Q(z)− 1)N − Im(Q(z))ξ, and there is another eigenvalue
λ2 = 2, dimV2 = n− 1. In addition, φV0 ⊂ V2.

5 It is the tube of radius s = π/4 over a totally complex submanifold.

This example does not contradict Lemma 6, since ξ is lightlike.
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3 If AX = −∇̄XN , for any X ∈ TM , then M is Hopf: Aξ = 0.
4 The shape operator is not diagonalisable: Aξ = 0, dimV0 = n− 1,
AN = Re(Q(z)− 1)N − Im(Q(z))ξ, and there is another eigenvalue
λ2 = 2, dimV2 = n− 1. In addition, φV0 ⊂ V2.

5 It is the tube of radius s = π/4 over a totally complex submanifold.

This example does not contradict Lemma 6, since ξ is lightlike.
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Example 11
Type C, the Horosphere: Given t > 0,

H̃(t) =
{
z = (z1, . . . , zn) ∈ S2n+1

2p : (z1 − zn+1)(z̄1 − z̄n+1) = t
}
,

H(t) = π(H̃(t)).

There exists a global normal vector field along H(t) , say N , which is a unit,
time-like. The index of H̃(t) and H(t) are 2p− 1.

Aξ = 2ξ, AX = X, ∀X ∈ TH(t), X ⊥ ξ.
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A Ridigity Result

Theorem 12

Let fi : M2n−1
q → CPnp , i = 1, 2 two isometric immersions of the same

connected manifold in CPnp , with Weingarten endomorphisms A1 and A2. If
for each point p ∈M , A1(p) = A2(p), there exists an isometry
Φ : CPnp → CPnp such that f2 = Φ ◦ f1.
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A Ridigity Result

Proof.

M̃2n f̃i−−−−→ S2n+1
2py yπ

M2n−1 fi−−−−→ CPnp

Ã, A.

S2n+1
2p is a space of constant curvature. By a similar way as in Riemannian

Space Forms, there exist an isometry Φ̂ of S2n+1
2p such that Φ̂ ◦ f̃1 = f̃2. Φ̂

can be chosen to be the restriction of an isometry of Cn+1
p .

We can project and obtain our result.
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Further results

Definition 13
Let M be a real hypersurface in CPnp , n ≥ 2. We say that M is η-umbilical
if its Weingarten endomorphism is of the form AX = λX + ρη(X)ξ for any
X ∈ TM , for some functions λ, ρ ∈ C∞(M).
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Theorem 14

Let M be a connected, non-degenerate, oriented real hypersurface in CPnp ,
n ≥ 2, such that it is η-umbilical. Then, M is locally congruent to one of
the following real hypersurfaces:

1 A real hypersurface of type A+, with m = q + 2, q ≤ p ≤ m = q + 2,
µ = 2 cot(2r) and λ = cot(r), r ∈ (0, π/2);

2 A real hypersurface of type A+, with m = n+ q + 1, 0 ≤ q ≤ 1,
µ = 2 cot(2r) and λ = − tan(r), r ∈ (0, π/2);

3 A real hypersurface of type A−, with m = q + 2, q ≤ p ≤ m = q + 2,
µ = 2 coth(2r), r > 0 and λ = coth(r);

4 A real hypersurface of type A−, with m = q + 2, q ≤ p ≤ m = q + 2,
µ = 2 coth(2r), r > 0 and λ = tanh(r);

5 A horosphere.
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Corollary 15

Let M be a non-degenerate real hypersurface in CPnp such that its
Weingarten endomorphism is diagonalisable. The following are equivalent:

1 ξ is a Killing vector field;
2 Aφ = φA;
3 M is an open subset of one of the following:

(a) A real hypersurface of type A+, with m = q + 2, q ≤ p ≤ m = q + 2,
µ = 2 cot(2r) and λ = cot(r), r ∈ (0, π/2);

(b) A real hypersurface of type A+, with m = n+ q + 1, 0 ≤ q ≤ 1,
µ = 2 cot(2r) and λ = − tan(r), r ∈ (0, π/2);

(c) A real hypersurface of type A−, with m = q + 2, q ≤ p ≤ m = q + 2,
µ = 2 coth(2r), r > 0 and λ = coth(r);

(d) A real hypersurface of type A−, with m = q + 2, q ≤ p ≤ m = q + 2,
µ = 2 coth(2r), r > 0 and λ = tanh(r);

(e) A horosphere.
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A Conjecture

We recall that J. Berndt in [4] and M. Kimura in [2] proved a very useful
result, namely, that a real hypersurface in a complex space form is Hopf and
has constant principal curvatures if, and only if, it is one of the examples in
Montiel’s list and Takagi’s list, respectively.

Conjecture
Let M be a non-degenerate real hypersurface in CPnp whose shape operator
is diagonalisable Then, M is Hopf and all its principal curvatures are
constant if, and only, if, M is locally congruent to one of the examples A+,
A−, B0, B+, B−, or C.
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Thank you very much
for your kind attention!
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