Causal evolution of probability measures

Tomasz Miller

Joint project with Michał Eckstein (UG & CC, Cracow, Poland)

Warsaw University of Technology & Copernicus Center (Cracow)

IX IMLG, Warsaw, 19th June 2018

 $p \preceq q$ if \exists a piecewise smooth fut-dir causal curve from p to q (or p = q).

Question: How would one extend \leq onto **probability measures** on a given spacetime?

- Besnard, Franco, Eckstein: causal relation between the states on a (possibly noncommutative) algebra *A*.
- If $\mathcal{A} = C_0^{\infty}(\mathcal{M})$, then:
 - States on $\mathcal{A} \iff$ Borel probability measures on $\mathcal{M} \iff$ included
 - Pure states on $\mathcal{A} \iff$ Dirac measures δ_p for $p \in \mathcal{M} \iff$ events.

 $p \leq q$ if \exists a piecewise smooth fut-dir causal curve from p to q (or p = q).

Question: How would one extend \leq onto probability measures on a given spacetime?

- Besnard, Franco, Eckstein: causal relation between the states on a (possibly noncommutative) algebra *A*.
- If $\mathcal{A} = C_0^{\infty}(\mathcal{M})$, then:
 - States on $\mathcal{A} \leftrightarrow \mathsf{P}$ Borel probability measures on $\mathcal{M} \circ \mathsf{P}$ included
 - Pure states on $\mathcal{A} \iff$ Dirac measures δ_p for $p \in \mathcal{M} \iff$ events.

 $p \leq q$ if \exists a piecewise smooth fut-dir causal curve from p to q (or p = q).

Question: How would one extend \leq onto probability measures on a given spacetime?

- Besnard, Franco, Eckstein: causal relation between the states on a (possibly noncommutative) algebra *A*.
- If $\mathcal{A} = C_0^{\infty}(\mathcal{M})$, then:
 - States on $\mathcal{A} \iff$ Borel probability measures on $\mathcal{M} \iff$ included
 - Pure states on $\mathcal{A} \iff$ Dirac measures δ_p for $p \in \mathcal{M} \iff$ events.

 $p \leq q$ if \exists a piecewise smooth fut-dir causal curve from p to q (or p = q).

Question: How would one extend \leq onto probability measures on a given spacetime?

- Besnard, Franco, Eckstein: causal relation between the states on a (possibly noncommutative) algebra *A*.
- If $\mathcal{A} = C_0^{\infty}(\mathcal{M})$, then:
 - States on $\mathcal{A} \iff$ Borel probability measures on $\mathcal{M}_{\cdot} \iff$ "nonlocal
 - Pure states on $\mathcal{A} \leftrightarrow \mathsf{Dirac}$ measures δ_p for $p \in \mathcal{M} \leftrightarrow \mathsf{events}$.

 $p \leq q$ if \exists a piecewise smooth fut-dir causal curve from p to q (or p = q).

Question: How would one extend \leq onto probability measures on a given spacetime?

- Besnard, Franco, Eckstein: causal relation between the states on a (possibly noncommutative) algebra *A*.
- If $\mathcal{A} = C_0^\infty(\mathcal{M})$, then:
 - States on A ↔ Borel probability measures on M. ↔ "nonlocal events".
 - Pure states on $\mathcal{A} \iff$ Dirac measures δ_p for $p \in \mathcal{M} \iff$ events.

 $p \preceq q$ if \exists a piecewise smooth fut-dir causal curve from p to q (or p = q).

Question: How would one extend \leq onto probability measures on a given spacetime?

- Besnard, Franco, Eckstein: causal relation between the states on a (possibly noncommutative) algebra *A*.
- If $\mathcal{A} = C_0^{\infty}(\mathcal{M})$, then:
 - States on $\mathcal{A} \iff$ Borel probability measures on $\mathcal{M} \iff$ "nonlocal events".
 - Pure states on $\mathcal{A} \iff$ Dirac measures δ_p for $p \in \mathcal{M} \iff$ events.

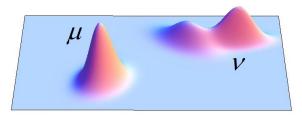
 $p \leq q$ if \exists a piecewise smooth fut-dir causal curve from p to q (or p = q).

Question: How would one extend \leq onto probability measures on a given spacetime?

- Besnard, Franco, Eckstein: causal relation between the states on a (possibly noncommutative) algebra *A*.
- If $\mathcal{A} = C_0^{\infty}(\mathcal{M})$, then:
 - States on $\mathcal{A} \iff$ Borel probability measures on $\mathcal{M} \iff$ "nonlocal events".
 - Pure states on $\mathcal{A} \iff$ Dirac measures δ_p for $p \in \mathcal{M} \iff$ events.

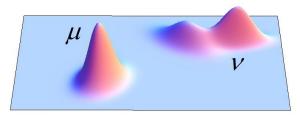
Tomasz Miller (WUT & CC)

• Question: What does it mean that $\mu \leq \nu$ for $\mu, \nu \in \mathscr{P}(\mathcal{M})$?



• Measures can be spread also in the timelike direction.

• Question: What does it mean that $\mu \leq \nu$ for $\mu, \nu \in \mathscr{P}(\mathcal{M})$?



• Measures can be spread also in the timelike direction.

Tomasz Miller (WUT & CC) Causal evolution of prob. measures

What does it mean that $\mu \leq \nu$? [M. Eckstein, TM '17]

Let $\mathcal M$ be a spacetime. Then for any $\mu,\nu\in\mathscr{P}(\mathcal M)$

$$\begin{split} \mu \preceq \nu & \stackrel{\text{def}}{\iff} \exists \, \omega \in \mathscr{P}(\mathcal{M}^2) \text{ such that:} \\ \bullet \, \forall_{B - \text{ Borel}} \quad \omega(B \times \mathcal{M}) = \mu(B), \quad \omega(\mathcal{M} \times B) = \nu(B), \\ \bullet \, \omega(J^+) = 1, \end{split}$$

- ω can be called a causal coupling or a causal transference plan.
- For $\mu = \delta_p$, $\nu = \delta_q$, the only coupling is $\omega = \delta_{(p,q)}$ and so $\delta_p \preceq \delta_q$ iff $p \preceq q$.
- $\bullet \preceq$ is reflexive and transitive. It is antisymmetric for $\mathcal M$ past/future distinguishing.

What does it mean that $\mu \leq \nu$? [M. Eckstein, TM '17]

Let $\mathcal M$ be a spacetime. Then for any $\mu,\nu\in\mathscr{P}(\mathcal M)$

$$\begin{split} \mu \preceq \nu & \stackrel{\text{def}}{\iff} \exists \, \omega \in \mathscr{P}(\mathcal{M}^2) \text{ such that:} \\ \bullet \, \forall_{B \text{ - Borel}} \quad \omega(B \times \mathcal{M}) = \mu(B), \quad \omega(\mathcal{M} \times B) = \nu(B), \\ \bullet \, \omega(J^+) = 1, \end{split}$$

- ω can be called a causal coupling or a causal transference plan.
- For $\mu = \delta_p$, $\nu = \delta_q$, the only coupling is $\omega = \delta_{(p,q)}$ and so $\delta_p \preceq \delta_q$ iff $p \preceq q$.
- $\bullet \preceq$ is reflexive and transitive. It is antisymmetric for $\mathcal M$ past/future distinguishing.

What does it mean that $\mu \leq \nu$? [M. Eckstein, TM '17]

Let $\mathcal M$ be a spacetime. Then for any $\mu,\nu\in\mathscr{P}(\mathcal M)$

$$\begin{split} \mu \preceq \nu & \stackrel{\text{def}}{\iff} \exists \, \omega \in \mathscr{P}(\mathcal{M}^2) \text{ such that:} \\ \bullet \, \forall_{B - \text{ Borel}} \quad \omega(B \times \mathcal{M}) = \mu(B), \quad \omega(\mathcal{M} \times B) = \nu(B), \\ \bullet \, \omega(J^+) = 1, \end{split}$$

- ω can be called a causal coupling or a causal transference plan.
- For $\mu = \delta_p$, $\nu = \delta_q$, the only coupling is $\omega = \delta_{(p,q)}$ and so $\delta_p \preceq \delta_q$ iff $p \preceq q$.
- $\bullet \preceq$ is reflexive and transitive. It is antisymmetric for $\mathcal M$ past/future distinguishing.

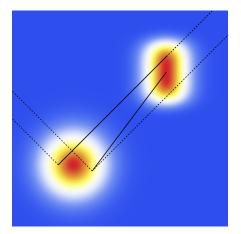
What does it mean that $\mu \leq \nu$? [M. Eckstein, TM '17]

Let $\mathcal M$ be a spacetime. Then for any $\mu,\nu\in\mathscr{P}(\mathcal M)$

$$\begin{split} \mu \preceq \nu & \stackrel{\text{def}}{\iff} \exists \, \omega \in \mathscr{P}(\mathcal{M}^2) \text{ such that:} \\ \bullet \, \forall_{B - \text{ Borel}} \quad \omega(B \times \mathcal{M}) = \mu(B), \quad \omega(\mathcal{M} \times B) = \nu(B), \\ \bullet \, \omega(J^+) = 1, \end{split}$$

- ω can be called a causal coupling or a causal transference plan.
- For $\mu = \delta_p$, $\nu = \delta_q$, the only coupling is $\omega = \delta_{(p,q)}$ and so $\delta_p \preceq \delta_q$ iff $p \preceq q$.
- $\bullet \preceq$ is reflexive and transitive. It is antisymmetric for $\mathcal M$ past/future distinguishing.

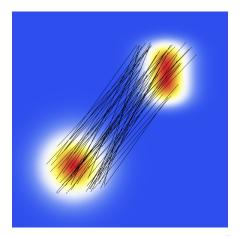
Each infinitesimal part of the probability measure should travel along a future-directed causal curve.



Tomasz Miller (WUT & CC)

Causal evolution of prob. measures

Each infinitesimal part of the probability measure should travel along a future-directed causal curve.

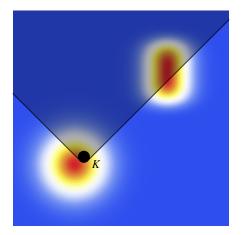


Tomasz Miller (WUT & CC)

Causal evolution of prob. measures

For \mathcal{M} causally simple:

$\mu \preceq \nu \quad \Longleftrightarrow \quad \text{for any compact } \mathcal{K} \subseteq \text{supp } \mu \quad \mu(\mathcal{K}) \leqslant \nu(J^+(\mathcal{K}))$

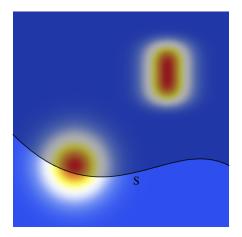


Tomasz Miller (WUT & CC)

Causal evolution of prob. measures

For \mathcal{M} causally simple:

 $\mu \preceq \nu \quad \Longleftrightarrow \quad \text{for any time function's level set } \mathcal{S} \quad \mu(J^+(\mathcal{S})) \leqslant \nu(J^+(\mathcal{S}))$

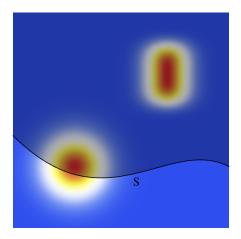


Tomasz Miller (WUT & CC)

Causal evolution of prob. measures

For \mathcal{M} causally simple:

$\mu \preceq \nu \quad \Longleftrightarrow \quad \text{for any time function } \mathcal{T} \quad \int_{\mathcal{M}} \mathcal{T} d\mu \leqslant \int_{\mathcal{M}} \mathcal{T} d\nu$

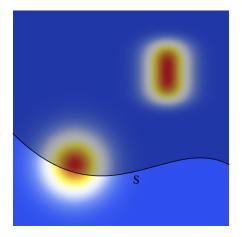


Tomasz Miller (WUT & CC)

Causal evolution of prob. measures

For \mathcal{M} globally hyperbolic:

$\mu \preceq \nu \quad \Longleftrightarrow \quad \text{for any Cauchy hypersurface } \mathcal{S} \quad \mu(J^+(\mathcal{S})) \leqslant \nu(J^+(\mathcal{S}))$



Causal time-evolution of a pointlike particle

A curve $\gamma: I \to \mathcal{M}$ with $\gamma(t) = (t, x(t))$ is a worldline of a physical particle if

 $\forall s, t \in I \quad s \leqslant t \; \Rightarrow \; \gamma(s) \preceq \gamma(t).$

Causal time-evolution of a probability measure

A map $\mu: I \to \mathscr{P}(\mathcal{M})$, $t \mapsto \mu_t$ such that $\operatorname{supp} \mu_t \subseteq \{t\} \times \mathbb{R}^3$ for all $t \in I$ is a causal evolution of a measure if

 $\forall s, t \in I \quad s \leqslant t \; \Rightarrow \; \mu_s \preceq \mu_t.$

Causal time-evolution of a pointlike particle

A curve $\gamma: I \to \mathcal{M}$ with $\gamma(t) = (t, x(t))$ is a worldline of a physical particle if

$$\forall s, t \in I \quad s \leqslant t \implies \gamma(s) \preceq \gamma(t).$$

Causal time-evolution of a probability measure

A map $\mu : I \to \mathscr{P}(\mathcal{M})$, $t \mapsto \mu_t$ such that $\operatorname{supp} \mu_t \subseteq \{t\} \times \mathbb{R}^3$ for all $t \in I$ is a causal evolution of a measure if

$$\forall s, t \in I \quad s \leqslant t \implies \mu_s \preceq \mu_t.$$

Causal time-evolution of a pointlike particle

A curve $\gamma: I \to \mathcal{M}$ with $\gamma(t) = (t, x(t))$ is a worldline of a physical particle if

$$\forall s, t \in I \quad s \leqslant t \implies \gamma(s) \preceq \gamma(t).$$

Causal time-evolution of a probability measure

A map $\mu: I \to \mathscr{P}(\mathcal{M}), t \mapsto \mu_t$ such that $\operatorname{supp} \mu_t \subseteq \{t\} \times \mathbb{R}^3$ for all $t \in I$ is a causal evolution of a measure if

$$\forall s, t \in I \quad s \leqslant t \; \Rightarrow \; \mu_s \preceq \mu_t.$$

Causal time-evolution of measures $(\mathcal{M} - \text{glob. hyperbolic})$

• Fix a Cauchy temporal function \mathcal{T} .

Causal time-evolution of a pointlike particle

A curve $\gamma:I\to \mathcal{M}$ such that $\mathcal{T}(\gamma(t))=t$ is a worldline of a physical particle if

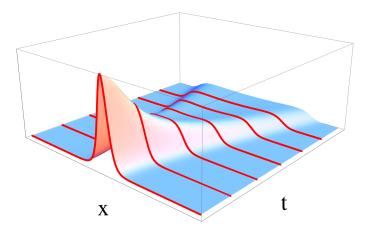
$$\forall s, t \in I \quad s \leqslant t \; \Rightarrow \; \gamma(s) \preceq \gamma(t).$$

Causal time-evolution of a probability measure

A map $\mu: I \to \mathscr{P}(\mathcal{M}), t \mapsto \mu_t$ such that $\operatorname{supp} \mu_t \subseteq \mathcal{T}^{-1}(t)$ for all $t \in I$ is a causal evolution of a measure if

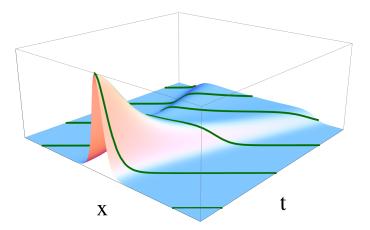
$$\forall s, t \in I \quad s \leqslant t \; \Rightarrow \; \mu_s \preceq \mu_t.$$

Causal time-evolution of measures $(\mathcal{M} - \text{glob. hyperbolic})$



Tomasz Miller (WUT & CC)

Causal time-evolution of measures $(\mathcal{M} - \text{glob. hyperbolic})$



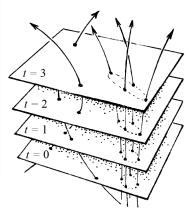
Theorem [TM '17]

Fix a Cauchy temporal function \mathcal{T} . Consider a map $t \mapsto \mu_t \in \mathscr{P}(\mathcal{M})$ satisfying $\operatorname{supp} \mu_t \subseteq \mathcal{T}^{-1}(t)$ for all $t \in I$. TFAE:

• The map
$$t \mapsto \mu_t$$
 is causal, i.e.
 $\forall s, t \in I \quad s \leq t \Rightarrow \mu_s \leq \mu_t.$

 There exists a probability measure on the space of worldlines, from which one can recover µt for all t ∈ I.

The "space of worldlines" is suitably topologized so as to ensure **Polishness**.



Adapted from Penrose's "Road to Reality"

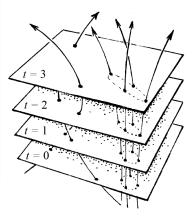
Theorem [TM '17]

Fix a Cauchy temporal function \mathcal{T} . Consider a map $t \mapsto \mu_t \in \mathscr{P}(\mathcal{M})$ satisfying $\operatorname{supp} \mu_t \subseteq \mathcal{T}^{-1}(t)$ for all $t \in I$. TFAE:

• The map
$$t \mapsto \mu_t$$
 is causal, i.e.
 $\forall s, t \in I \quad s \leq t \Rightarrow \mu_s \leq \mu_t.$

 There exists a probability measure on the space of worldlines, from which one can recover µt for all t ∈ I.

The "space of worldlines" is suitably topologized so as to ensure **Polishness**.



Adapted from Penrose's "Road to Reality"

Theorem [M. Eckstein, TM '17]

Suppose $\rho(t, x)$ satisfies the continuity equation $\partial_t \rho + \nabla \cdot \rho \mathbf{v} = 0$ with a velocity field such that $\|\mathbf{v}(t, x)\| \leq 1$. Then μ_t defined via

$$d\mu_t = \delta_t \otimes \rho(t, x) \, d^3 x$$

evolves causally.

More generally, suppose μ_t satisfies:

$$\forall \Phi \in C_c^{\infty}(I \times \mathbb{R}^n) \quad \int_I \int_{\mathcal{M}} \left(\partial_t + \mathbf{v} \cdot \nabla\right) \Phi \, d\mu_t dt = 0$$

with **v** as above. Then μ_t evolves causally.

Theorem [M. Eckstein, TM '17]

Suppose $\rho(t, x)$ satisfies the continuity equation $\partial_t \rho + \nabla \cdot \rho \mathbf{v} = 0$ with a velocity field such that $\|\mathbf{v}(t, x)\| \leq 1$. Then μ_t defined via

$$d\mu_t = \delta_t \otimes \rho(t, x) \, d^3 x$$

evolves causally.

More generally, suppose μ_t satisfies:

$$\forall \Phi \in C_c^{\infty}(I \times \mathbb{R}^n) \quad \int_I \int_{\mathcal{M}} \left(\partial_t + \mathbf{v} \cdot \nabla\right) \Phi \, d\mu_t dt = 0$$

with **v** as above. Then μ_t evolves causally.

Conjecture

Fix a Cauchy temporal function \mathcal{T} . Suppose μ_t (such that supp $\mu_t \subseteq \mathcal{T}^{-1}(t)$) satisfies:

$$\forall \Phi \in C_c^{\infty}(\mathcal{T}^{-1}(I)) \quad \int_I \int_{\mathcal{M}} X \Phi \, d\mu_t dt = 0 \tag{6}$$

with a certain causal vector field X. Then μ_t evolves causally.

Converse result (preliminary!)

Fix a Cauchy temporal function \mathcal{T} . Suppose μ_t evolves causally. Then there exists a causal vector field X such that (*) holds.

X is generally rather low-regular. Namely, $L^2(\mathcal{T}^{-1}(I),\int_I \mu_t dt)$ -regular.

< 回 ト < 三 ト < 三

Conjecture

Fix a Cauchy temporal function \mathcal{T} . Suppose μ_t (such that supp $\mu_t \subseteq \mathcal{T}^{-1}(t)$) satisfies:

$$\forall \Phi \in C_c^{\infty}(\mathcal{T}^{-1}(I)) \quad \int_I \int_{\mathcal{M}} X \Phi \, d\mu_t dt = 0$$

with a certain causal vector field X. Then μ_t evolves causally.

Converse result (preliminary!)

Fix a Cauchy temporal function \mathcal{T} . Suppose μ_t evolves causally. Then there exists a causal vector field X such that (\star) holds.

X is generally rather low-regular. Namely, $L^2(\mathcal{T}^{-1}(I), \int_I \mu_t dt)$ -regular.

 (\star)

Conjecture

Fix a Cauchy temporal function \mathcal{T} . Suppose μ_t (such that supp $\mu_t \subseteq \mathcal{T}^{-1}(t)$) satisfies:

$$\forall \Phi \in C_c^{\infty}(\mathcal{T}^{-1}(I)) \quad \int_I \int_{\mathcal{M}} X \Phi \, d\mu_t dt = 0$$

with a certain causal vector field X. Then μ_t evolves causally.

Converse result (preliminary!)

Fix a Cauchy temporal function \mathcal{T} . Suppose μ_t evolves causally. Then there exists a causal vector field X such that (\star) holds.

X is generally rather low-regular. Namely, $L^2(\mathcal{T}^{-1}(I),\int_I \mu_t dt)\text{-regular}.$

 (\star)

- The causal relation J^+ can be naturally extended onto $\mathscr{P}(\mathcal{M})$ the space of Borel probability measures on \mathcal{M} .
- One can use thus extended relations to describe the **causal evolution** of **probability measures** in glob. hyperbolic spacetimes.
 - Time-evolution of a **pointlike** particle +--- single worldline.
 - Time-evolution of a nonlocal object +++> prob. measure on the space of worldlines.
- The continuity equation $\partial_t \mu_t + \nabla \cdot \mu_t \mathbf{v} = 0$, when rewritten as $\int_I \int_{\mathcal{M}} X \Phi \, d\mu_t dt = 0$ for all test functions Φ , is nothing but a "nonlocal analogue" of the requirement that $\gamma'(t)$ is a causal vector.

- The causal relation J^+ can be naturally extended onto $\mathscr{P}(\mathcal{M})$ the space of Borel probability measures on \mathcal{M} .
- One can use thus extended relations to describe the causal evolution of probability measures in glob. hyperbolic spacetimes.
 - Time-evolution of a **pointlike** particle *\dots ingle* worldline.
 - Time-evolution of a **nonlocal** object $\leftrightarrow \Rightarrow$ **prob. measure** on the space of worldlines.
- The continuity equation $\partial_t \mu_t + \nabla \cdot \mu_t \mathbf{v} = 0$, when rewritten as $\int_I \int_{\mathcal{M}} X \Phi \, d\mu_t dt = 0$ for all test functions Φ , is nothing but a "nonlocal analogue" of the requirement that $\gamma'(t)$ is a causal vector.

- The causal relation J^+ can be naturally extended onto $\mathscr{P}(\mathcal{M})$ the space of Borel probability measures on \mathcal{M} .
- One can use thus extended relations to describe the causal evolution of probability measures in glob. hyperbolic spacetimes.
 - Time-evolution of a **pointlike** particle +---- single worldline.
 - Time-evolution of a **nonlocal** object $\leftrightarrow \Rightarrow$ **prob. measure** on the space of worldlines.
- The continuity equation $\partial_t \mu_t + \nabla \cdot \mu_t \mathbf{v} = 0$, when rewritten as $\int_I \int_{\mathcal{M}} X \Phi \, d\mu_t dt = 0$ for all test functions Φ , is nothing but a "nonlocal analogue" of the requirement that $\gamma'(t)$ is a causal vector.

- The causal relation J^+ can be naturally extended onto $\mathscr{P}(\mathcal{M})$ the space of Borel probability measures on \mathcal{M} .
- One can use thus extended relations to describe the causal evolution of probability measures in glob. hyperbolic spacetimes.
 - Time-evolution of a **pointlike** particle *\delta \delta \single* worldline.
 - Time-evolution of a **nonlocal** object $\leftrightarrow \Rightarrow$ **prob. measure** on the space of worldlines.
- The continuity equation $\partial_t \mu_t + \nabla \cdot \mu_t \mathbf{v} = 0$, when rewritten as $\int_I \int_{\mathcal{M}} X \Phi \, d\mu_t dt = 0$ for all test functions Φ , is nothing but a "nonlocal analogue" of the requirement that $\gamma'(t)$ is a causal vector.

- The causal relation J^+ can be naturally extended onto $\mathscr{P}(\mathcal{M})$ the space of Borel probability measures on \mathcal{M} .
- One can use thus extended relations to describe the causal evolution of probability measures in glob. hyperbolic spacetimes.
 - Time-evolution of a **pointlike** particle *\delta \delta \single* worldline.
 - Time-evolution of a **nonlocal** object *\delta reprob.* **measure** on the space of worldlines.
- The continuity equation $\partial_t \mu_t + \nabla \cdot \mu_t \mathbf{v} = 0$, when rewritten as $\int_I \int_{\mathcal{M}} X \Phi \, d\mu_t dt = 0$ for all test functions Φ , is nothing but a "nonlocal analogue" of the requirement that $\gamma'(t)$ is a causal vector.

12 / 16

Thank you for your attention!

- M. Eckstein and T. Miller, Causality for nonlocal phenomena, Annales Henri Poincaré 2017, 18(9), 3049–3096,
- T. Miller, Polish spaces of causal curves, Journal of Geometry and Physics 2017 116, 295–315,
- M. Eckstein and T. Miller, *Causal evolution of wave packets*, Physical Review A 2017 **95**, 032106,

T. Miller, On the causality and K-causality between measures, Universe 2017 3(1):27,

- Q: How to topologize sets of (fut-dir) causal curves?
 A (naïve): Induce topology from C(I, M) (the compact-open top.)
- Too large a space! Various parameterizations of an unparameterized curve treated as distinct elements!
- Two ways out:
 - Take a quotient modulo (continuous strictly increasing) reparameterizations \Leftrightarrow focus on unparameterized curves, and use the C^0 -topology.
 - Choose the "canonical" parameterization of each curve e.g. the arc-length parameterization and use the **compact-open topology**.

Spaces of causal curves parameterized "in accordance with $\mathcal{T}^{\prime\prime}$

 \mathcal{M} – stably causal spacetime, \mathcal{T} – time function, I – interval. $C^{I}_{\mathcal{T}} :=$ the space of all fut-dir causal curves $\gamma \in C(I, \mathcal{M})$ such that

$$\exists c_{\gamma} > 0 \ \forall s, t \in I \quad \mathcal{T}(\gamma(t)) - \mathcal{T}(\gamma(s)) = c_{\gamma}(t-s),$$

endowed with the compact-open topology induced from $C(I, \mathcal{M})$.

- C_T^I is separable and completely metrizable (i.e. Polish).
- $\mathscr{C} :=$ the space of all *compact* unparameterized causal curves with the C^0 -topology. Theorem: $C_{\mathcal{T}}^{[a,b]} \cong \mathscr{C}$ and hence:
 - *C* is Polish!

•
$$C_{\mathcal{T}_1}^{[a,b]} \cong C_{\mathcal{T}_2}^{[c,d]}$$
.

• \mathcal{M} - glob. hyperbolic, $\mathcal{T}_1, \mathcal{T}_2$ - Cauchy temporal functions. Theorem: $C_{\mathcal{T}_1}^{\mathbb{R}} \cong C_{\mathcal{T}_2}^{\mathbb{R}}$.

15 / 16

Theorem [TM '17]

Fix a Cauchy temporal function \mathcal{T} . Consider a map $t \mapsto \mu_t \in \mathscr{P}(\mathcal{M})$ satisfying $\operatorname{supp} \mu_t \subseteq \mathcal{T}^{-1}(t)$ for all $t \in I$. TFAE:

• The map $t \mapsto \mu_t$ is *causal*, i.e.

$$\forall s, t \in I \quad s \leqslant t \; \Rightarrow \; \mu_s \preceq \mu_t.$$

• $\exists \sigma \in \mathscr{P}(C^I_T)$ such that

$$(\mathsf{ev}_t)_{\#}\sigma = \mu_t,$$

where
$$\operatorname{ev}_t : C^I_{\mathcal{T}} \to \mathcal{M}, \ \gamma \mapsto \gamma(t).$$

t=3

Adapted from R. Penrose's "Road to Reality"