IX International Meeting on Lorentzian Geometry 17.06.2018 - 24.06.2018 | Warsaw

(日) (日) (日) (日) (日)

Codimension two spacelike submanifods through a null hypersurface of a pf-wave

Verónica L. Cánovas joint work in progress with Alfonso Romero

Universidad de Murcia

Index

< ∃⇒

Ξ.

Index

2 Codimension two spacelike submanifolds

- Through a null hypersurface
- Slices

프 🗼 🖂 프

Index

2 Codimension two spacelike submanifolds

- Through a null hypersurface
- Slices

3 Main results

프 🗼 🖂 프

Index

2 Codimension two spacelike submanifolds

- Through a null hypersurface
- Slices

3 Main results

∃ ⊳

Index

1 Brinkmann spacetimes and pf-waves

Codimension two spacelike submanifolds
 Through a null hypersurface
 Slices

3 Main results

4 Next steps

≣ ► < ≣ ►

Ξ.

A Brinkmann spacetime \overline{M}^{n+2} is a Lorentzian manifold such that there exists a globally defined vector field K which is null and parallel,

 $ar{g}(K,K)=0, \quad K
eq 0 \quad ext{and} \quad \overline{
abla}_XK=0$

▲ 프 ▶ 프

A Brinkmann spacetime \overline{M}^{n+2} is a Lorentzian manifold such that there exists a globally defined vector field K which is null and parallel,

$$ar{g}(K,K)=0, \quad K
eq 0 \quad ext{and} \quad \overline{
abla}_XK=0$$

• Note that \overline{M} is then time orientable.

A Brinkmann spacetime \overline{M}^{n+2} is a Lorentzian manifold such that there exists a globally defined vector field K which is null and parallel,

$$ar{g}(K,K)=0, \quad K
eq 0 \quad ext{and} \quad \overline{
abla}_XK=0$$

- Note that \overline{M} is then time orientable.
- Any Lorentzian manifold wich admits a null vector field is time orientable.

A Brinkmann spacetime \overline{M}^{n+2} is a Lorentzian manifold such that there exists a globally defined vector field K which is null and parallel,

$$ar{g}(K,K)=0, \quad K
eq 0 \quad ext{and} \quad \overline{
abla}_XK=0$$

- Note that \overline{M} is then time orientable.
- Any Lorentzian manifold wich admits a null vector field is time orientable.
- For every p ∈ M
 we can define the its future as the connected component of the null cone with vertex at p so that K(p) is contained in the clousure of such component.

Definition (Brinkmann spacetime)

A Brinkmann spacetime \overline{M}^{n+2} is a Lorentzian manifold such that there exists a globally defined vector field K which is null and parallel,

$$ar{g}(K,K)=0, \quad K
eq 0$$
 and $\overline{
abla}_XK=0$

• We can consider local coordinates $(u, v, x_1, \dots, x_n) = (u, v, \mathbf{x})$.

A Brinkmann spacetime \overline{M}^{n+2} is a Lorentzian manifold such that there exists a globally defined vector field K which is null and parallel,

$$ar{g}(K,K)=0, \quad K
eq 0$$
 and $\overline{
abla}_XK=0$

• We can consider local coordinates $(u, v, x_1, \dots, x_n) = (u, v, \mathbf{x})$.

• The metric \bar{g} can be locally written by

$$\mathcal{F}(u,\mathbf{x})du\otimes du+2du\otimes dv+\sum_{i,j}ar{g}_{i,j}(u,\mathbf{x})dx_idx_j,$$

where \mathcal{F} is a smooth function with no required sign.

A Brinkmann spacetime \overline{M}^{n+2} is a Lorentzian manifold such that there exists a globally defined vector field K which is null and parallel,

$$ar{g}(K,K)=0, \quad K
eq 0$$
 and $\overline{
abla}_XK=0$

- We can consider local coordinates $(u, v, x_1, \dots, x_n) = (u, v, \mathbf{x})$.
- The metric \bar{g} can be locally written by

$$\mathcal{F}(u,\mathbf{x})du\otimes du+2du\otimes dv+\sum_{i,j}\overline{g}_{i,j}(u,\mathbf{x})dx_idx_j,$$

where ${\cal F}$ is a smooth function with no required sign.

• With this coordinates K coincides with the coordinate vector field $\partial_v = \partial/\partial v$.

Definition (plane fronted wave)

Is a Brinkmann spacetime with the form $ar{M}^{n+2} = \mathbb{R}^2 imes M^n$ and metric

$$\langle,\rangle = \mathcal{F}(u,\mathbf{x}) du \otimes du + 2 du \otimes dv + g_M$$

where \mathcal{F} is smooth and not-signed in general and g_M is a Riemannian metric on M.

• E •

э.

Definition (plane fronted wave)

Is a Brinkmann spacetime with the form $ar{M}^{n+2} = \mathbb{R}^2 imes M^n$ and metric

$$\langle,\rangle = \mathcal{F}(u,\mathbf{x}) du \otimes du + 2 du \otimes dv + g_M$$

where \mathcal{F} is smooth and not-signed in general and g_M is a Riemannian metric on M.

 $ar{M} = \mathbb{R}^2 imes M$, with coordinates (u, v, \mathbf{x}) and metric

$$\begin{pmatrix} \mathcal{F} & 1 \\ 1 & 0 \\ \hline & & \mathcal{g}_{M} \end{pmatrix}$$

米田 トー 田

Definition (plane fronted wave)

Is a Brinkmann spacetime with the form $ar{M}^{n+2} = \mathbb{R}^2 imes M^n$ and metric

$$\langle,\rangle = \mathcal{F}(u,\mathbf{x}) du \otimes du + 2 du \otimes dv + g_M$$

where \mathcal{F} is smooth and not-signed in general and g_M is a Riemannian metric on M.

 $ar{M} = \mathbb{R}^2 imes M$, with coordinates (u, v, \mathbf{x}) and metric

$$\begin{pmatrix} \mathcal{F} & 1 \\ 1 & 0 \\ \hline & & g_{\scriptscriptstyle M} \end{pmatrix}$$

If $M = \mathbb{R}^n$ is the Euclidean space, these spacetimes are called exact pf-waves (pp-waves).

• E •

Following

A. Candela, J.L. Flores and M. Sánchez, *On general plane fronted waves. Geodesics.* Gen. Relativity Gravitation **4** (2003), 631–649

프 🕨 🖉

Following

A. Candela, J.L. Flores and M. Sánchez, *On general plane fronted waves. Geodesics.* Gen. Relativity Gravitation **4** (2003), 631–649

we obtain:

Levi-Civita connection of \overline{M}

On
$$\overline{M}$$
, if $V, W \in \mathcal{L}(M)$ we have
i) $\overline{\nabla}_{\partial_u} \partial_u = \frac{1}{2}\overline{\nabla}\mathcal{F} - \overline{\nabla}\mathcal{F}_u$,
ii) $\overline{\nabla}_V \partial_u = \overline{\nabla}_{\partial_u} V = \frac{1}{2} g_M(\overline{\nabla}\mathcal{F}_u, V) \partial_v$,
iii) $\overline{\nabla}_V W = \overline{\nabla}_V W$,
iv) $\overline{\nabla}_{\partial_v} \partial_v = \overline{\nabla}_{\partial_v} \partial_u = \overline{\nabla}_{\partial_u} \partial_v = \overline{\nabla}_V \partial_v = \overline{\nabla}_{\partial_v} V = 0$,
where $\overline{\nabla}\mathcal{F}_u$ denote the grandient on M of the function $\mathcal{F}_u(\mathbf{x}) := \mathcal{F}(u, \mathbf{x})$
for every $\mathbf{x} \in M$, $\overline{\nabla}\mathcal{F}$ denote the gradient of the function \mathcal{F} on \overline{M} , and
 $\overline{\nabla}$ is the Levi-Civita connection of M .

프 > 프

Riemann curvature tensor of \bar{M}

The only non zero components of $\overline{\mathrm{R}}$ are

i)
$$\overline{\mathrm{R}}(V,\partial_u)\partial_u = -\frac{1}{2}\,\tilde{
abla}_X\tilde{
abla}\mathcal{F}_u$$
 and

ii)
$$\overline{\mathrm{R}}(V, \partial_u)W = \frac{1}{2} \operatorname{Hess}(\mathcal{F}_u)(V, W) \partial_v$$
,

< ∃⇒

э

Riemann curvature tensor of \bar{M}

The only non zero components of $\overline{\mathrm{R}}$ are

i)
$$\overline{\mathrm{R}}(V,\partial_u)\partial_u = -rac{1}{2}\, \tilde{
abla}_X \tilde{
abla} \mathcal{F}_u$$
 and

ii) $\overline{\mathrm{R}}(V, \partial_u)W = \frac{1}{2} \operatorname{Hess}(\mathcal{F}_u)(V, W)\partial_v$,

Ricci tensor

The only non zero components of $\overline{\mathrm{Ric}}$ are

$$\overline{\operatorname{Ric}}(V,W) = \operatorname{Ric}_{\mathcal{M}}(V,W) \quad \text{and} \quad \overline{\operatorname{Ric}}(\partial_u,\partial_u) = -\frac{1}{2}\tilde{\Delta}\mathcal{F}_u,$$

Riemann curvature tensor of \overline{M}

The only non zero components of $\overline{\mathrm{R}}$ are

i)
$$\overline{\mathrm{R}}(V,\partial_u)\partial_u = -rac{1}{2}\, \tilde{
abla}_X \tilde{
abla} \mathcal{F}_u$$
 and

ii) $\overline{\mathrm{R}}(V, \partial_u)W = \frac{1}{2} \operatorname{Hess}(\mathcal{F}_u)(V, W)\partial_v$,

Ricci tensor

The only non zero components of $\overline{\mathrm{Ric}}$ are

$$\overline{\operatorname{Ric}}(V,W) = \operatorname{Ric}_{M}(V,W) \quad ext{and} \quad \overline{\operatorname{Ric}}(\partial_{u},\partial_{u}) = -rac{1}{2} ilde{\Delta}\mathcal{F}_{u},$$

A pf-wave \bar{M} satisfies the timelike convergence condition (TCC) if, and only if,

$$\tilde{\Delta}\mathcal{F}_u \leq 0$$
 and $\operatorname{Ric}_M \geq 0$.

∃ >

Through a null hypersurface Slices

Index

2 Codimension two spacelike submanifolds

- Through a null hypersurface
- Slices

3 Main results

4 Next steps

< ∃⇒

æ

 We consider Σⁿ a codimension two spacelike submanifold of M
 given by the spacelike immersion ψ: Σⁿ → M
 ⁿ⁺².

< ∃ >

э.

- We consider Σⁿ a codimension two spacelike submanifold of M
 given by the spacelike immersion ψ: Σⁿ → M
 ⁿ⁺².

$$X = X^\top + X^\perp,$$

where $X^{ op} \in \mathfrak{X}(\Sigma)$ and $X^{\perp} \in \mathfrak{X}^{\perp}(\Sigma)$.

∃ >

- We consider Σⁿ a codimension two spacelike submanifold of M
 given by the spacelike immersion ψ: Σⁿ → M
 ⁿ⁺².

$$X = X^\top + X^\perp,$$

where $X^{ op} \in \mathfrak{X}(\Sigma)$ and $X^{\perp} \in \mathfrak{X}^{\perp}(\Sigma)$.

• ∂_v^{\perp} is a globally defined normal vector field on Σ .

- We consider Σⁿ a codimension two spacelike submanifold of M
 given by the spacelike immersion ψ: Σⁿ → M
 ⁿ⁺².

$$X = X^\top + X^\perp,$$

where $X^{\top} \in \mathfrak{X}(\Sigma)$ and $X^{\perp} \in \mathfrak{X}^{\perp}(\Sigma)$.

- ∂_v^{\perp} is a globally defined normal vector field on Σ .
- We denote A_ζ the shape operator associated to the normal vector field ζ,

$$\langle A_{\zeta}X,Y\rangle = \langle \amalg(X,Y),\zeta\rangle$$

with \amalg the second fundamental form of $\Sigma.$

• As usual, we define the mean curvature vector field by

$$\mathbf{H} = \frac{1}{n} \mathrm{tr}(\mathrm{II})$$

ヨト・モト

• As usual, we define the mean curvature vector field by

$$H = \frac{1}{n} tr(II)$$

Definition

We say that Σ is

- i) trapped if **H** is timelike, $\langle \mathbf{H}, \mathbf{H} \rangle < 0$,
- ii) marginally trapped if **H** is null, $\langle \mathbf{H}, \mathbf{H} \rangle = 0$, $\mathbf{H} \neq 0$ and
- iii) weakly trapped if **H** is causal, $\langle \mathbf{H}, \mathbf{H} \rangle \leq 0$, $\mathbf{H} \neq 0$.

4 E b

Through a null hypersurface Slices

Null hypersurface

If we fix $u = u_0$, $u_0 \in \mathbb{R}$, then $\{u_0\} \times \mathbb{R} \times M$ is a null hypersurface of \overline{M} that we denote by $\mathbb{R}_{u_0} \times M^n$.

프 > 프

Through a null hypersurface Slices

Null hypersurface

If we fix $u = u_0$, $u_0 \in \mathbb{R}$, then $\{u_0\} \times \mathbb{R} \times M$ is a null hypersurface of \overline{M} that we denote by $\mathbb{R}_{u_0} \times M^n$.

When $\psi(\Sigma) \subset \mathbb{R}_{u_0} \times M^n$ we say that Σ factorizes through $\mathbb{R}_{u_0} \times M^n$.

4 E b

Through a null hypersurface Slices

Null hypersurface

If we fix $u = u_0$, $u_0 \in \mathbb{R}$, then $\{u_0\} \times \mathbb{R} \times M$ is a null hypersurface of \overline{M} that we denote by $\mathbb{R}_{u_0} \times M^n$.

When $\psi(\Sigma) \subset \mathbb{R}_{u_0} \times M^n$ we say that Σ factorizes through $\mathbb{R}_{u_0} \times M^n$.

We consider now the function $g: \Sigma \to \mathbb{R}$ defined by

 $g := \pi_1 \circ \psi,$

where π_1 denotes the projection onto the first coordinate of \mathbb{R}^2 .

- - E - N

Through a null hypersurface Slices

Null hypersurface

If we fix $u = u_0$, $u_0 \in \mathbb{R}$, then $\{u_0\} \times \mathbb{R} \times M$ is a null hypersurface of \overline{M} that we denote by $\mathbb{R}_{u_0} \times M^n$.

When $\psi(\Sigma) \subset \mathbb{R}_{u_0} \times M^n$ we say that Σ factorizes through $\mathbb{R}_{u_0} \times M^n$.

We consider now the function $g: \Sigma \to \mathbb{R}$ defined by

 $g := \pi_1 \circ \psi,$

where π_1 denotes the projection onto the first coordinate of \mathbb{R}^2 .

Observe that $g = u_0$ constant if and only if Σ factorizes through $\mathbb{R}_{u_0} \times M^n$.

• We compute

$$abla g = \partial_{v}^{+}$$
 and $\Delta g = \operatorname{tr}(A_{\partial_{v}^{\perp}}) = n \langle \mathbf{H}, \partial_{v}
angle.$

イロト イヨト イヨト イヨト

• We compute

$$abla g = \partial_v^ op$$
 and $\Delta g = \operatorname{tr}(A_{\partial_v^\perp}) = n \langle \mathbf{H}, \partial_v
angle.$

Proposition

If Σ factorizes through a null hypersurface $\mathbb{R}_{u_0} \times M^n$, then the projection of Σ on M is a local isometry.

Corollary

Let Σ factorize through $\mathbb{R}_{u_0} \times M^n$. If Σ is complete and non-compact, then the projection $\phi : \Sigma \to M$ is a Riemannian covering map. In addition, if M is simply connected, then ϕ is a global isometry.

• We compute

$$abla g = \partial_{\mathbf{v}}^{ op}$$
 and $\Delta g = \operatorname{tr}(A_{\partial_{\mathbf{v}}^{\perp}}) = n \langle \mathbf{H}, \partial_{\mathbf{v}}
angle.$

Proposition

If Σ factorizes through a null hypersurface $\mathbb{R}_{u_0} \times M^n$, then the projection of Σ on M is a local isometry.

Corollary

Let Σ factorize through $\mathbb{R}_{u_0} \times M^n$. If Σ is complete and non-compact, then the projection $\phi : \Sigma \to M$ is a Riemannian covering map. In addition, if M is simply connected, then ϕ is a global isometry.

 Σ factorizes through $\mathbb{R}_{u_0} \times M^n$ if, and only if $\partial_v^\top = 0$

4 E b

• We compute

$$abla g = \partial_{\mathbf{v}}^{ op}$$
 and $\Delta g = \operatorname{tr}(A_{\partial_{\mathbf{v}}^{\perp}}) = n \langle \mathbf{H}, \partial_{\mathbf{v}}
angle.$

Proposition

If Σ factorizes through a null hypersurface $\mathbb{R}_{u_0} \times M^n$, then the projection of Σ on M is a local isometry.

Corollary

Let Σ factorize through $\mathbb{R}_{u_0} \times M^n$. If Σ is complete and non-compact, then the projection $\phi : \Sigma \to M$ is a Riemannian covering map. In addition, if M is simply connected, then ϕ is a global isometry.

 Σ factorizes through $\mathbb{R}_{u_0} \times M^n$ if, and only if $\partial_v^\top = 0$ if, and only if, $\partial_v \in \mathfrak{X}^\perp(\Sigma)$

4 E b

Through a null hypersurface Slices

Proposition

Let $\psi: \Sigma \to \overline{M}$ a codimension two spacelike submanifold which factorizes through the null hypersurface $\mathbb{R}_{u_0} \times M^n$. Then,

$$\xi = \partial_{\mathbf{v}} \quad \text{and} \quad \eta = -\partial_{u}^{\perp} + \frac{1}{2}\mathcal{F}\partial_{\mathbf{v}}$$

are two globally defined normal vector fields that satisfy

$$\langle \xi, \xi
angle = 0, \quad \langle \eta, \eta
angle = - \mid \partial_u^{ op} \mid^2 \leq 0, \quad \text{and} \quad \langle \xi, \eta
angle = -1.$$

∃ >

Through a null hypersurface Slices

Proposition

Let $\psi: \Sigma \to \overline{M}$ a codimension two spacelike submanifold which factorizes through the null hypersurface $\mathbb{R}_{u_0} \times M^n$. Then,

$$\xi = \partial_{\mathbf{v}} \quad \text{and} \quad \eta = -\partial_{\mathbf{u}}^{\perp} + \frac{1}{2}\mathcal{F}\partial_{\mathbf{v}}$$

are two globally defined normal vector fields that satisfy

$$\langle \xi, \xi
angle = 0, \quad \langle \eta, \eta
angle = - \mid \partial_u^{ op} \mid^2 \leq 0, \quad ext{and} \quad \langle \xi, \eta
angle = -1.$$

That is, $\{\xi, \eta\}$ is a globally defined normal frame on Σ with ξ null, η timelike and $\langle \xi, \eta \rangle = -1$.

A 3 b

э.

Through a null hypersurface Slices

We can write

$$\amalg(X,Y) = \langle A_{\eta}X,Y\rangle \xi = \langle A_{\partial_u^{\perp}}X,Y\rangle \partial_v.$$

メロト メポト メモト メモト

We can write

$$\amalg(X,Y) = \langle A_{\eta}X,Y\rangle \xi = \langle A_{\partial_{u}^{\perp}}X,Y\rangle \partial_{v}.$$

If Σ factorizes through $\mathbb{R}_{u_0} \times M^n$, then it is totally geodesic if and only if, $A_{\partial_u^\perp} = 0$.

≣ ▶

We can write

$$\amalg(X,Y) = \langle A_{\eta}X,Y\rangle \xi = \langle A_{\partial_u^{\perp}}X,Y\rangle \partial_{\mathbf{v}}.$$

If Σ factorizes through $\mathbb{R}_{u_0} \times M^n$, then it is totally geodesic if and only if, $A_{\partial_u^\perp} = 0$.

We also have

$$\mathbf{H} = \frac{1}{n} \operatorname{tr}(A_{\partial_u^{\perp}}) \partial_v$$
 and $\langle \mathbf{H}, \mathbf{H} \rangle = 0.$

≣ ▶

We can write

$$\amalg(X,Y) = \langle A_{\eta}X,Y\rangle \xi = \langle A_{\partial_u^{\perp}}X,Y\rangle \partial_{\mathbf{v}}.$$

If Σ factorizes through $\mathbb{R}_{u_0} \times M^n$, then it is totally geodesic if and only if, $A_{\partial_u^\perp} = 0.$

We also have

$$\mathbf{H} = rac{1}{n} \mathrm{tr}(A_{\partial_u^{\perp}}) \partial_v \quad ext{and} \quad \langle \mathbf{H}, \mathbf{H}
angle = 0.$$

Proposition

Let $\psi: \Sigma \to \mathbb{R}_{u_0} \times M^n \subset \overline{M}$ a codimension two spacelike submanifold wich factorizes through a null hypersurface $\mathbb{R}_{u_0} \times M^n$. Then Σ is marginally trapped, whenever **H** does not vanish on Σ .

Slice

If we fix $u = u_0$ and $v = v_0$, $u_0, v_0 \in \mathbb{R}$, then $\{u_0, v_0\} \times M$ is a slice of \overline{M} that we denote by $(u_0, v_0) \times M$.

When $\psi(\Sigma) \subset (u_0, v_0) \times M$ we say that Σ is also a slice.

4 E b

Slice

If we fix $u = u_0$ and $v = v_0$, $u_0, v_0 \in \mathbb{R}$, then $\{u_0, v_0\} \times M$ is a slice of \overline{M} that we denote by $(u_0, v_0) \times M$.

When $\psi(\Sigma) \subset (u_0, v_0) \times M$ we say that Σ is also a slice.

We consider now the function $h: \Sigma \to \mathbb{R}$ defined by

 $h:=\pi_2\circ\psi,$

where π_2 denotes the projection onto the second coordinate of \mathbb{R}^2 .

Image: A image: A

Slice

If we fix $u = u_0$ and $v = v_0$, $u_0, v_0 \in \mathbb{R}$, then $\{u_0, v_0\} \times M$ is a slice of M that we denote by $(u_0, v_0) \times M$.

When $\psi(\Sigma) \subset (u_0, v_0) \times M$ we say that Σ is also a slice.

We consider now the function $h: \Sigma \to \mathbb{R}$ defined by

$$h:=\pi_2\circ\psi,$$

where π_2 denotes the projection onto the second coordinate of \mathbb{R}^2 .

Observe that, if $g = u_0$ constant, then $h = v_0$ constant if and only if Σ is a slice.

★ Ξ ► ★ Ξ ►

Through a null hypersurface Slices

• Let us assume that Σ factorizes trough $\mathbb{R}_{u_0} imes M^n$

臣▶ ★ 臣▶

■ のへで

- Let us assume that Σ factorizes trough $\mathbb{R}_{u_0} imes M^n$
- We compute

$$abla h = \partial_u^{ op}$$
 and $\Delta h = \operatorname{tr}(A_{\partial_u^{\perp}}) = n \langle \mathbf{H}, \partial_u \rangle.$

< □ > < 同 >

< ∃ >

- Let us assume that Σ factorizes trough $\mathbb{R}_{u_0} imes M^n$
- We compute

$$abla h = \partial_u^{ op}$$
 and $\Delta h = \operatorname{tr}(A_{\partial_u^{\perp}}) = n \langle \mathbf{H}, \partial_u \rangle.$

And then

$$\mathbf{H} = \frac{1}{n} \operatorname{tr}(A_{\partial_{u}^{\perp}}) \partial_{v} = \frac{1}{n} \Delta h \partial_{v}.$$

< ∃ >

- Let us assume that Σ factorizes trough $\mathbb{R}_{u_0} imes M^n$
- We compute

$$abla h = \partial_u^{ op}$$
 and $\Delta h = \operatorname{tr}(A_{\partial_u^{\perp}}) = n \langle \mathbf{H}, \partial_u \rangle.$

And then

$$\mathbf{H} = \frac{1}{n} \mathrm{tr}(A_{\partial_{u}^{\perp}}) \partial_{v} = \frac{1}{n} \Delta h \partial_{v}.$$

If Σ factors through $\mathbb{R}_{u_0} \times M^n$, then Σ is a slice if, and only if, $\partial_u^\top = 0$, that is, $\partial_u \in \mathfrak{X}^{\perp}(\Sigma)$.

- Let us assume that Σ factorizes trough $\mathbb{R}_{u_0} imes M^n$
- We compute

$$abla h = \partial_u^{ op}$$
 and $\Delta h = \operatorname{tr}(A_{\partial_u^{\perp}}) = n \langle \mathbf{H}, \partial_u \rangle.$

And then

$$\mathbf{H} = \frac{1}{n} \mathrm{tr}(A_{\partial_{u}^{\perp}}) \partial_{v} = \frac{1}{n} \Delta h \partial_{v}.$$

If Σ factors through $\mathbb{R}_{u_0} \times M^n$, then Σ is a slice if, and only if, $\partial_u^\top = 0$, that is, $\partial_u \in \mathfrak{X}^{\perp}(\Sigma)$.

• Let us suppose that Σ is a slice, that is, $g = u_0$, $h = v_0$ constant.

Image: A matrix

< ∃ →

- Let us suppose that Σ is a slice, that is, $g = u_0$, $h = v_0$ constant.
- Then, $\nabla g = \partial_v^\top = 0$ and $\nabla h = \partial_u^\top = 0$ and $\{\partial_u, \partial_v\}$ is a basis of $\mathfrak{X}^{\perp}(\Sigma)$ with satisfy

$$\langle \partial_u, \partial_u \rangle = \mathcal{F} \quad \langle \partial_v, \partial_v \rangle = 0 \quad \text{and} \quad \langle \partial_u, \partial_v \rangle = 1$$

프 🕨 🖉

- Let us suppose that Σ is a slice, that is, $g = u_0$, $h = v_0$ constant.
- Then, $\nabla g = \partial_v^\top = 0$ and $\nabla h = \partial_u^\top = 0$ and $\{\partial_u, \partial_v\}$ is a basis of $\mathfrak{X}^{\perp}(\Sigma)$ with satisfy

$$\langle \partial_u, \partial_u \rangle = \mathcal{F} \quad \langle \partial_v, \partial_v \rangle = 0 \quad \text{and} \quad \langle \partial_u, \partial_v \rangle = 1$$

• From here, we have

$$A_{\partial_u^\perp} = 0$$
 and $A_{\partial_v^\perp} = 0.$

4 E b

- Let us suppose that Σ is a slice, that is, $g = u_0$, $h = v_0$ constant.
- Then, $\nabla g = \partial_v^\top = 0$ and $\nabla h = \partial_u^\top = 0$ and $\{\partial_u, \partial_v\}$ is a basis of $\mathfrak{X}^{\perp}(\Sigma)$ with satisfy

$$\langle \partial_u, \partial_u \rangle = \mathcal{F} \quad \langle \partial_v, \partial_v \rangle = 0 \quad \text{and} \quad \langle \partial_u, \partial_v \rangle = 1$$

• From here, we have

$$A_{\partial_u^\perp} = 0$$
 and $A_{\partial_v^\perp} = 0.$

Lemma

The family of slices is a distinguished class of totally geodesic codimension two spacelike submanifolds of \bar{M}

Index

Codimension two spacelike submanifolds
 Through a null hypersurface
 Slices

3 Main results

4 Next steps

< ∃⇒

æ

Theorem

There is no compact codimension two weakly trapped submanifold in \overline{M} .

< ∃ >

æ

Theorem

There is no compact codimension two weakly trapped submanifold in \overline{M} .

Proof:

• Let Σ be a codimension two weakly trapped submanifold.

프 > 프

Theorem

There is no compact codimension two weakly trapped submanifold in \overline{M} .

Proof:

- Let Σ be a codimension two weakly trapped submanifold.
- Since **H** is causal and ∂_{v} is null,

 $\langle \mathbf{H}, \partial_{\mathbf{v}} \rangle \leq 0 \quad \text{or} \quad \langle \mathbf{H}, \partial_{\mathbf{v}} \rangle \geq 0.$

米田 トー 田

Theorem

There is no compact codimension two weakly trapped submanifold in \overline{M} .

Proof:

- Let Σ be a codimension two weakly trapped submanifold.
- Since **H** is causal and ∂_{v} is null,

$$\langle \boldsymbol{\mathsf{H}}, \partial_{\boldsymbol{\mathsf{v}}} \rangle \leq 0 \quad \text{or} \quad \langle \boldsymbol{\mathsf{H}}, \partial_{\boldsymbol{\mathsf{v}}} \rangle \geq 0.$$

• Taking into account that $\Delta g = n \langle \mathbf{H}, \partial_v \rangle$, we have $\Delta g \leq 0$ or $\Delta g \geq 0$.

4 E b

Theorem

There is no compact codimension two weakly trapped submanifold in \overline{M} .

Proof:

- Let Σ be a codimension two weakly trapped submanifold.
- Since **H** is causal and ∂_{v} is null,

$$\langle \mathbf{H}, \partial_{\mathbf{v}} \rangle \leq 0 \quad \text{or} \quad \langle \mathbf{H}, \partial_{\mathbf{v}} \rangle \geq 0.$$

- Taking into account that $\Delta g = n \langle \mathbf{H}, \partial_v \rangle$, we have $\Delta g \leq 0$ or $\Delta g \geq 0$.
- By the compactness of Σ if follows Δg = 0 and g is constant. That is, Σ factorizes through a null hypersurface.

4 E b

Theorem

There is no compact codimension two weakly trapped submanifold in \overline{M} .

Proof:

- Let Σ be a codimension two weakly trapped submanifold.
- Since **H** is causal and ∂_{v} is null,

$$\langle \mathbf{H}, \partial_{\mathbf{v}} \rangle \leq 0 \quad \text{or} \quad \langle \mathbf{H}, \partial_{\mathbf{v}} \rangle \geq 0.$$

- Taking into account that $\Delta g = n \langle \mathbf{H}, \partial_v \rangle$, we have $\Delta g \leq 0$ or $\Delta g \geq 0$.
- By the compactness of Σ if follows Δg = 0 and g is constant. That is, Σ factorizes through a null hypersurface.
- Then $\mathbf{H} = \frac{1}{n} \Delta h \partial_v$ and, since **H** never vanishes,

$$\Delta h \leq 0 \quad ext{or} \quad \Delta h \geq 0,$$

but it can not happen.

A 3

Theorem

Let $\psi : \Sigma \to \overline{M}$ be a codimension two spacelike submanifold in a pf-wave with signed $\langle \mathbf{H}, \partial_v \rangle$ (in particular if $\mathbf{H} = 0$). Then, if Σ is compact,the following assertions are satisfied:

- i) Σ factorizes through a null hypersurface $\mathbb{R}_{u_0} \times M^n$.
- ii) Σ is isometric to M, and therefore, M is compact.
- iii) Σ is a slice, and hence, it is totally geodesic.

∃ >

Theorem

Let $\psi : \Sigma \to \overline{M}$ be a codimension two spacelike submanifold in a pf-wave with signed $\langle \mathbf{H}, \partial_v \rangle$ (in particular if $\mathbf{H} = 0$). Then, if Σ is compact,the following assertions are satisfied:

- i) Σ factorizes through a null hypersurface $\mathbb{R}_{u_0} \times M^n$.
- ii) Σ is isometric to M, and therefore, M is compact.
- iii) Σ is a slice, and hence, it is totally geodesic.

Theorem

Let $\psi: \Sigma \to \overline{M}$ be a complete codimension two spacelike submanifold with zero mean curvature which factorizes through a null hypersurface $\mathbb{R}_{u_0} \times M^n$. If \overline{M} satisfies the TCC and the function h is bounded from above or from below, then Σ is a slice.

A 3

Index

Codimension two spacelike submanifolds
 Through a null hypersurface
 Slices

3 Main results

< ∃⇒

æ

We pretend to ...

• Try to find a nice expression of the Gauss equation.

< ∃⇒

Ξ.

We pretend to ...

- Try to find a nice expression of the Gauss equation.
- Find more conditions that imply $\boldsymbol{\Sigma}$ factorizing through a null hypersurface.

∃ >

We pretend to ...

- Try to find a nice expression of the Gauss equation.
- Find more conditions that imply $\boldsymbol{\Sigma}$ factorizing through a null hypersurface.
- Assume hypotheses on M or \mathcal{F} .

∃ ⊳

We pretend to ...

- Try to find a nice expression of the Gauss equation.
- Find more conditions that imply $\boldsymbol{\Sigma}$ factorizing through a null hypersurface.
- Assume hypotheses on M or \mathcal{F} .
- Maybe focus on the compact case.

- O.F. Blanco, M. Sánchez and J.M.M. Senovilla, Structure of second-order symmetric Lorentzian manifolds. J. Eur. Math. Soc. 15 (2013) 595–634.
- H.W. Brinkmann, *Einstein spaces which are mapped conformally on each other*. Math. Ann. **94** (1925), 119–145.
- A. Candela, J.L. Flores and M. Sánchez, *On general plane fronted waves. Geodesics*. Gen. Relativity Gravitation **4** (2003), 631–649.
- A. Romero, Constant mean curvature spacelike hypersurfaces in spacetimes with certain causal symmetries. Hermitian-Grassmannian submanifolds Springer Proc. Math. Stat., 203, Springer, Singapore, (2017) 1–15.
- S.H. Yau, *Harmonic functions on complete Riemannian manifolds* Comm. Pure and Applied Math.

- E - N