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Definition (Brinkmann spacetime)

A Brinkmann spacetime M̄n+2 is a Lorentzian manifold such that there
exists a globally defined vector field K which is null and parallel,

ḡ(K ,K ) = 0, K 6= 0 and ∇XK = 0

Note that M̄ is then time orientable.

Any Lorentzian manifold wich admits a null vector field is time
orientable.

For every p ∈ M̄ we can define the its future as the connected
component of the null cone with vertex at p so that K (p) is
contained in the clousure of such component.
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ḡ(K ,K ) = 0, K 6= 0 and ∇XK = 0

Note that M̄ is then time orientable.

Any Lorentzian manifold wich admits a null vector field is time
orientable.

For every p ∈ M̄ we can define the its future as the connected
component of the null cone with vertex at p so that K (p) is
contained in the clousure of such component.

Verónica L. Cánovas Codimension two spacelike submanifolds of a pf-wave



Brinkmann spacetimes and pf-waves
Codimension two spacelike submanifolds

Main results
Next steps

Definition (Brinkmann spacetime)

A Brinkmann spacetime M̄n+2 is a Lorentzian manifold such that there
exists a globally defined vector field K which is null and parallel,
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Definition (Brinkmann spacetime)

A Brinkmann spacetime M̄n+2 is a Lorentzian manifold such that there
exists a globally defined vector field K which is null and parallel,

ḡ(K ,K ) = 0, K 6= 0 and ∇XK = 0

We can consider local coordinates (u, v , x1, . . . , xn) = (u, v , x).

The metric ḡ can be locally written by

F(u, x)du ⊗ du + 2du ⊗ dv +
∑
i,j

ḡi,j(u, x)dxidxj ,

where F is a smooth function with no required sign.

With this coordinates K coincides with the coordinate vector field
∂v = ∂/∂v .
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ḡi,j(u, x)dxidxj ,

where F is a smooth function with no required sign.

With this coordinates K coincides with the coordinate vector field
∂v = ∂/∂v .

Verónica L. Cánovas Codimension two spacelike submanifolds of a pf-wave



Brinkmann spacetimes and pf-waves
Codimension two spacelike submanifolds

Main results
Next steps

Definition (Brinkmann spacetime)

A Brinkmann spacetime M̄n+2 is a Lorentzian manifold such that there
exists a globally defined vector field K which is null and parallel,

ḡ(K ,K ) = 0, K 6= 0 and ∇XK = 0

We can consider local coordinates (u, v , x1, . . . , xn) = (u, v , x).
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Definition (plane fronted wave)

Is a Brinkmann spacetime with the form M̄n+2 = R2 ×Mn and metric

〈, 〉 = F(u, x)du ⊗ du + 2du ⊗ dv + gM

where F is smooth and not-signed in general and gM is a Riemannian
metric on M.

M̄ = R2 ×M, with coordinates (u, v , x) and metric F 1
1 0

g
M


If M = Rn is the Euclidean space, these spacetimes are called exact
pf-waves (pp-waves).
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Following

A. Candela, J.L. Flores and M. Sánchez, On general plane fronted
waves. Geodesics. Gen. Relativity Gravitation 4 (2003), 631–649

we obtain:

Levi-Civita connection of M̄

On M̄, if V ,W ∈ L(M) we have

i) ∇∂u∂u = 1
2∇F − ∇̃Fu,

ii) ∇V ∂u = ∇∂uV = 1
2 gM

(∇̃Fu,V )∂v ,

iii) ∇VW = ∇̃VW ,

iv) ∇∂v∂v = ∇∂v∂u = ∇∂u∂v = ∇V ∂v = ∇∂vV = 0,

where ∇̃Fu denote the grandient on M of the function Fu(x) := F(u, x)
for every x ∈ M, ∇F denote the gradient of the function F on M̄ , and
∇̃ is the Levi-Civita connection of M.
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Riemann curvature tensor of M̄

The only non zero components of R are

i) R(V , ∂u)∂u = − 1
2 ∇̃X ∇̃Fu and

ii) R(V , ∂u)W = 1
2

˜Hess(Fu)(V ,W )∂v ,

Ricci tensor

The only non zero components of Ric are

Ric(V ,W ) = RicM(V ,W ) and Ric(∂u, ∂u) = −1

2
∆̃Fu,

A pf-wave M̄ satisfies the timelike convergence condition (TCC) if, and
only if,

∆̃Fu ≤ 0 and RicM ≥ 0.

Verónica L. Cánovas Codimension two spacelike submanifolds of a pf-wave



Brinkmann spacetimes and pf-waves
Codimension two spacelike submanifolds

Main results
Next steps

Riemann curvature tensor of M̄

The only non zero components of R are

i) R(V , ∂u)∂u = − 1
2 ∇̃X ∇̃Fu and

ii) R(V , ∂u)W = 1
2

˜Hess(Fu)(V ,W )∂v ,

Ricci tensor

The only non zero components of Ric are

Ric(V ,W ) = RicM(V ,W ) and Ric(∂u, ∂u) = −1

2
∆̃Fu,

A pf-wave M̄ satisfies the timelike convergence condition (TCC) if, and
only if,

∆̃Fu ≤ 0 and RicM ≥ 0.

Verónica L. Cánovas Codimension two spacelike submanifolds of a pf-wave



Brinkmann spacetimes and pf-waves
Codimension two spacelike submanifolds

Main results
Next steps

Riemann curvature tensor of M̄

The only non zero components of R are

i) R(V , ∂u)∂u = − 1
2 ∇̃X ∇̃Fu and

ii) R(V , ∂u)W = 1
2

˜Hess(Fu)(V ,W )∂v ,

Ricci tensor

The only non zero components of Ric are

Ric(V ,W ) = RicM(V ,W ) and Ric(∂u, ∂u) = −1

2
∆̃Fu,

A pf-wave M̄ satisfies the timelike convergence condition (TCC) if, and
only if,

∆̃Fu ≤ 0 and RicM ≥ 0.

Verónica L. Cánovas Codimension two spacelike submanifolds of a pf-wave



Brinkmann spacetimes and pf-waves
Codimension two spacelike submanifolds

Main results
Next steps

Through a null hypersurface
Slices

Index

1 Brinkmann spacetimes and pf-waves

2 Codimension two spacelike submanifolds
Through a null hypersurface
Slices

3 Main results

4 Next steps

Verónica L. Cánovas Codimension two spacelike submanifolds of a pf-wave



Brinkmann spacetimes and pf-waves
Codimension two spacelike submanifolds

Main results
Next steps

Through a null hypersurface
Slices

We consider Σn a codimension two spacelike submanifold of M̄
given by the spacelike immersion ψ : Σn → M̄n+2.

For any p ∈ Σ and any X ∈ X(M̄), we have the following
decomposition,

X = X> + X⊥,

where X> ∈ X(Σ) and X⊥ ∈ X⊥(Σ).

∂⊥v is a globally defined normal vector field on Σ.

We denote Aζ the shape operator associated to the normal vector
field ζ,

〈AζX ,Y 〉 = 〈q(X ,Y ), ζ〉

with q the second fundamental form of Σ.
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Through a null hypersurface
Slices

As usual, we define the mean curvature vector field by

H =
1

n
tr(q)

Definition

We say that Σ is

i) trapped if H is timelike, 〈H,H〉 < 0,

ii) marginally trapped if H is null, 〈H,H〉 = 0, H 6= 0 and

iii) weakly trapped if H is causal, 〈H,H〉 ≤ 0, H 6= 0.
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Through a null hypersurface
Slices

Null hypersurface

If we fix u = u0, u0 ∈ R, then {u0} × R×M is a null hypersurface of M̄
that we denote by Ru0 ×Mn.

When ψ(Σ) ⊂ Ru0 ×Mn we say that Σ factorizes through Ru0 ×Mn.

We consider now the function g : Σ→ R defined by

g := π1 ◦ ψ,

where π1 denotes the projection onto the first coordinate of R2.

Observe that g = u0 constant if and only if Σ factorizes through
Ru0 ×Mn.
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Through a null hypersurface
Slices

We compute

∇g = ∂>v and ∆g = tr(A∂⊥
v

) = n〈H, ∂v 〉.

Proposition

If Σ factorizes through a null hypersurface Ru0 ×Mn, then the projection
of Σ on M is a local isometry.

Corollary

Let Σ factorize through Ru0 ×Mn. If Σ is complete and non-compact,
then the projection φ : Σ→ M is a Riemannian covering map. In
addition, if M is simply connected, then φ is a global isometry.

Σ factorizes through Ru0 ×Mn if, and only if ∂>v = 0 if, and only if,
∂v ∈ X⊥(Σ)
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Through a null hypersurface
Slices

Proposition

Let ψ : Σ→ M̄ a codimension two spacelike submanifold which factorizes
through the null hypersurface Ru0 ×Mn. Then,

ξ = ∂v and η = −∂⊥u +
1

2
F∂v

are two globally defined normal vector fields that satisfy

〈ξ, ξ〉 = 0, 〈η, η〉 = − | ∂>u |2≤ 0, and 〈ξ, η〉 = −1.

That is, {ξ, η} is a globally defined normal frame on Σ with ξ null, η
timelike and 〈ξ, η〉 = −1.
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Through a null hypersurface
Slices

We can write

q(X ,Y ) = 〈AηX ,Y 〉ξ = 〈A∂⊥
u
X ,Y 〉∂v .

If Σ factorizes through Ru0 ×Mn, then it is totally geodesic if and only if,
A∂⊥

u
= 0.

We also have

H =
1

n
tr(A∂⊥

u
)∂v and 〈H,H〉 = 0.

Proposition

Let ψ : Σ→ Ru0 ×Mn ⊂ M̄ a codimension two spacelike submanifold
wich factorizes through a null hypersurface Ru0 ×Mn. Then Σ is
marginally trapped, whenever H does not vanish on Σ.
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Through a null hypersurface
Slices

Slice

If we fix u = u0 and v = v0, u0, v0 ∈ R, then {u0, v0} ×M is a slice of M̄
that we denote by (u0, v0)×M.

When ψ(Σ) ⊂ (u0, v0)×M we say that Σ is also a slice.

We consider now the function h : Σ→ R defined by

h := π2 ◦ ψ,

where π2 denotes the projection onto the second coordinate of R2.

Observe that, if g = u0 constant, then h = v0 constant if and only if Σ is
a slice.
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Through a null hypersurface
Slices

Let us assume that Σ factorizes trough Ru0 ×Mn

We compute

∇h = ∂>u and ∆h = tr(A∂⊥
u

) = n〈H, ∂u〉.

And then

H =
1

n
tr(A∂⊥

u
)∂v =

1

n
∆h∂v .

If Σ factors through Ru0 ×Mn, then Σ is a slice if, and only if, ∂>u = 0,
that is, ∂u ∈ X⊥(Σ).
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Through a null hypersurface
Slices

Let us suppose that Σ is a slice, that is, g = u0, h = v0 constant.

Then, ∇g = ∂>v = 0 and ∇h = ∂>u = 0 and {∂u, ∂v} is a basis of
X⊥(Σ) with satisfy

〈∂u, ∂u〉 = F 〈∂v , ∂v 〉 = 0 and 〈∂u, ∂v 〉 = 1

From here, we have

A∂⊥
u

= 0 and A∂⊥
v

= 0.

Lemma

The family of slices is a distinguished class of totally geodesic
codimension two spacelike submanifolds of M̄
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Theorem

There is no compact codimension two weakly trapped submanifold in M̄.

Proof:

Let Σ be a codimension two weakly trapped submanifold.

Since H is causal and ∂v is null,

〈H, ∂v 〉 ≤ 0 or 〈H, ∂v 〉 ≥ 0.

Taking into account that ∆g = n〈H, ∂v 〉, we have ∆g ≤ 0 or
∆g ≥ 0.

By the compactness of Σ if follows ∆g = 0 and g is constant. That
is, Σ factorizes through a null hypersurface.

Then H = 1
n∆h∂v and, since H never vanishes,

∆h ≤ 0 or ∆h ≥ 0,

but it can not happen.
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Theorem

Let ψ : Σ→ M̄ be a codimension two spacelike submanifold in a pf-wave
with signed 〈H, ∂v 〉 (in particular if H = 0). Then, if Σ is compact,the
following assertions are satisfied:

i) Σ factorizes through a null hypersurface Ru0 ×Mn.

ii) Σ is isometric to M, and therefore, M is compact.

iii) Σ is a slice, and hence, it is totally geodesic.

Theorem

Let ψ : Σ→ M̄ be a complete codimension two spacelike submanifold
with zero mean curvature which factorizes through a null hypersurface
Ru0 ×Mn. If M̄ satisfies the TCC and the function h is bounded from
above or from below, then Σ is a slice.
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We pretend to...

Try to find a nice expression of the Gauss equation.

Find more conditions that imply Σ factorizing through a null
hypersurface.

Assume hypotheses on M or F .

Maybe focus on the compact case.
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