Rigidity of asymptotically $AdS_2\times S^2$ spacetimes (joint with G.J. Galloway)

Melanie Graf

University of Vienna

Why do we look at asymptotically $AdS_2\times S^2$ spacetimes?

- Why do we look at asymptotically $AdS_2\times S^2$ spacetimes?
	- $AdS_2\times S^2$ arises as the near horizon geometry of extremal Reissner-Nordström

- Why do we look at asymptotically $AdS_2\times S^2$ spacetimes?
	- $AdS_2\times S^2$ arises as the near horizon geometry of extremal Reissner-Nordström
	- Also studied in connection with the AdS/CFT correspondence

- Why do we look at asymptotically $AdS_2\times S^2$ spacetimes?
	- $AdS_2\times S^2$ arises as the near horizon geometry of extremal Reissner-Nordström
	- Also studied in connection with the AdS/CFT correspondence
	- Conjecture of Juan Maldacena: Asymptotically $AdS_2\times S^2$ spacetimes satisfying the null energy condition should be *isometric* to $AdS_2\times S^2$

- Why do we look at asymptotically $AdS_2\times S^2$ spacetimes?
	- $AdS_2\times S^2$ arises as the near horizon geometry of extremal Reissner-Nordström
	- Also studied in connection with the AdS/CFT correspondence
	- Conjecture of Juan Maldacena: Asymptotically $AdS_2\times S^2$ spacetimes satisfying the null energy condition should be *isometric* to $AdS_2\times S^2$
- **•** Technical remarks

- Why do we look at asymptotically $AdS_2\times S^2$ spacetimes?
	- $AdS_2\times S^2$ arises as the near horizon geometry of extremal Reissner-Nordström
	- Also studied in connection with the AdS/CFT correspondence
	- Conjecture of Juan Maldacena: Asymptotically $AdS_2\times S^2$ spacetimes satisfying the null energy condition should be *isometric* to $AdS_2\times S^2$
- **•** Technical remarks
	- AdS_2 = universal cover, in particular causally simple (i.e. causal and $J^{\pm}(p)$ closed)

- Why do we look at asymptotically $AdS_2\times S^2$ spacetimes?
	- $AdS_2\times S^2$ arises as the near horizon geometry of extremal Reissner-Nordström
	- Also studied in connection with the AdS/CFT correspondence
	- Conjecture of Juan Maldacena: Asymptotically $AdS_2\times S^2$ spacetimes satisfying the null energy condition should be *isometric* to $AdS_2\times S^2$
- **•** Technical remarks
	- $AdS₂$ = universal cover, in particular causally simple (i.e. causal and $J^{\pm}(p)$ closed)
	- Whenever we assume the null energy condition, i.e., $\text{Ric}(X,X) \geq 0$ for all null vectors X , it would actually be sufficient to assume

$$
\int_0^\infty \text{Ric}(\eta'(s), \eta'(s))ds \geq 0
$$

for all future or past complete null rays *η*.

$$
\mathring{g} = -\cosh(x)^2 dt^2 + dx^2 + d\Omega^2
$$

 $M = \mathbb{R} \times \mathbb{R} \times S^2$,

$$
\mathring{g} = -\cosh(x)^2 dt^2 + dx^2 + d\Omega^2
$$

(Future directed) null lines: $\,t(x) \sim 2\,\mathsf{tan}^{-1}(\mathrm{e}^{\mathrm{x}}),$ spherical component constant

$$
\mathring{g} = -\cosh(x)^2 dt^2 + dx^2 + d\Omega^2
$$

- (Future directed) null lines: $\,t(x) \sim 2\,\mathsf{tan}^{-1}(\mathrm{e}^{\mathrm{x}}),$ spherical component constant
- Each (future directed) null line *η* is part of a nice null hypersurface $N = \partial J^+(\eta)$

$$
\mathring{g} = -\cosh(x)^2 dt^2 + dx^2 + d\Omega^2
$$

- (Future directed) null lines: $\,t(x) \sim 2\,\mathsf{tan}^{-1}(\mathrm{e}^{\mathrm{x}}),$ spherical component constant
- Each (future directed) null line *η* is part of a nice null hypersurface $N = \partial J^+(\eta)$
- **•** This hypersurface is uniquely determined by lim_{x→−∞} $t(n)$ → foliation $\{N_{\mu}\}\$

$$
\mathring{g} = -\cosh(x)^2 dt^2 + dx^2 + d\Omega^2
$$

- (Future directed) null lines: $\,t(x) \sim 2\,\mathsf{tan}^{-1}(\mathrm{e}^{\mathrm{x}}),$ spherical component constant
- Each (future directed) null line *η* is part of a nice null hypersurface $N = \partial J^+(\eta)$
- **•** This hypersurface is uniquely determined by $\lim_{x\to-\infty} t(\eta) \sim$ foliation $\{N_{\mu}\}\$
- Similarly, p.d. null lines \leadsto transverse foliation $\{\hat{\mathsf{N}}_{\mathsf{v}}\}$

$$
\mathring{g} = -\cosh(x)^2 dt^2 + dx^2 + d\Omega^2
$$

- (Future directed) null lines: $\,t(x) \sim 2\,\mathsf{tan}^{-1}(\mathrm{e}^{\mathrm{x}}),$ spherical component constant
- Each (future directed) null line *η* is part of a nice null hypersurface $N = \partial J^+(\eta)$
- **•** This hypersurface is uniquely determined by lim_{x→−∞} $t(n)$ → foliation $\{N_{\mu}\}\$
- Similarly, p.d. null lines \leadsto transverse foliation $\{\hat{\mathsf{N}}_{\mathsf{v}}\}$
- $\mathcal{S}_{u,v} := \mathcal{N}_u \cap \hat{\mathcal{N}}_v \cong S^2$; foliation $\{\mathcal{S}_{u,v}\}$ by isometric round 2-spheres

$$
\mathring{g} = -\cosh(x)^2 dt^2 + dx^2 + d\Omega^2
$$

- (Future directed) null lines: $\,t(x) \sim 2\,\mathsf{tan}^{-1}(\mathrm{e}^{\mathrm{x}}),$ spherical component constant
- Each (future directed) null line *η* is part of a nice null hypersurface $N = \partial J^+(\eta)$
- **•** This hypersurface is uniquely determined by $\lim_{x\to-\infty} t(\eta) \sim$ foliation $\{N_{\mu}\}\$
- Similarly, p.d. null lines \leadsto transverse foliation $\{\hat{\mathsf{N}}_{\mathsf{v}}\}$
- $\mathcal{S}_{u,v} := \mathcal{N}_u \cap \hat{\mathcal{N}}_v \cong S^2$; foliation $\{\mathcal{S}_{u,v}\}$ by isometric round 2-spheres
- Note that $(t_0 + \pi + \frac{\pi}{\cosh \theta})$ $\frac{\pi}{\cosh(x_0)}, \infty) \times \mathbb{R} \times S^2 \subset I^+((t_0, x_0, \omega_0))$

$$
\mathring{g} = -\cosh(x)^2 dt^2 + dx^2 + d\Omega^2
$$

- (Future directed) null lines: $\,t(x) \sim 2\,\mathsf{tan}^{-1}(\mathrm{e}^{\mathrm{x}}),$ spherical component constant
- Each (future directed) null line *η* is part of a nice null hypersurface $N = \partial J^+(\eta)$
- **•** This hypersurface is uniquely determined by lim_{x→−∞} $t(n)$ → foliation $\{N_{\mu}\}\$
- Similarly, p.d. null lines \leadsto transverse foliation $\{\hat{\mathsf{N}}_{\mathsf{v}}\}$
- $\mathcal{S}_{u,v} := \mathcal{N}_u \cap \hat{\mathcal{N}}_v \cong S^2$; foliation $\{\mathcal{S}_{u,v}\}$ by isometric round 2-spheres
- Note that $(t_0 + \pi + \frac{\pi}{\cosh \theta})$ $\frac{\pi}{\cosh(x_0)}, \infty) \times \mathbb{R} \times S^2 \subset I^+((t_0, x_0, \omega_0))$
- **•** Family of wider/narrower metrics ξ_α ($\alpha \in \mathbb{R}$) with $\mathring g_\alpha = -\alpha \cosh(x)^2 dt^2 + dx^2 + d\Omega^2$

1. Causality and structural assumptions:

- 1. Causality and structural assumptions:
	- 1.1 causally plain,

- 1. Causality and structural assumptions:
	- 1.1 causally plain,
	- 1.2 ∃a \geq 1, closed $A \subset M$ st. $M \setminus A^{\circ} = M_1 \cup M_2$, with $M_1 \approx (-\infty,-a] \times \mathbb{R} \times S^2$, $M_2 \approx [a,\infty) \times \mathbb{R} \times S^2$ and

- 1. Causality and structural assumptions:
	- 1.1 causally plain,

1.2
$$
\exists a \ge 1
$$
, closed $A \subset M$ st. $M \setminus A^{\circ} = M_1 \cup M_2$, with
\n $M_1 \approx (-\infty, -a] \times \mathbb{R} \times S^2$, $M_2 \approx [a, \infty) \times \mathbb{R} \times S^2$ and

1.3 ∀ $p \in A$: $I^{\pm}(p) \cap M_k \neq \emptyset$ and $A \setminus (I^+(p) \cup I^-(p))$ is compact

- 1. Causality and structural assumptions:
	- 1.1 causally plain,

1.2
$$
\exists a \ge 1
$$
, closed $A \subset M$ st. $M \setminus A^{\circ} = M_1 \cup M_2$, with
\n $M_1 \approx (-\infty, -a] \times \mathbb{R} \times S^2$, $M_2 \approx [a, \infty) \times \mathbb{R} \times S^2$ and
\n1.3 $\forall p \in A$: $I^{\pm}(p) \cap M_k \neq \emptyset$ and $A \setminus (I^+(p) \cup I^-(p))$ is compact

2. Asymptotics of g in $M_1 \cup M_2$: Let $h = g - \mathring{g}$ and $\{e_i\}_{i=0}^3$ be a \mathring{g} -ONB with $e_0 = \frac{1}{\cosh \theta}$ $\frac{1}{\cosh(x)}\partial_t$. We require

- 1. Causality and structural assumptions:
	- 1.1 causally plain,

1.2
$$
\exists a \ge 1
$$
, closed $A \subset M$ st. $M \setminus A^{\circ} = M_1 \cup M_2$, with
\n $M_1 \approx (-\infty, -a] \times \mathbb{R} \times S^2$, $M_2 \approx [a, \infty) \times \mathbb{R} \times S^2$ and
\n1.3 $\forall p \in A$: $I^{\pm}(p) \cap M_k \neq \emptyset$ and $A \setminus (I^+(p) \cup I^-(p))$ is compact

2. Asymptotics of g in $M_1 \cup M_2$: Let $h = g - \mathring{g}$ and $\{e_i\}_{i=0}^3$ be a \mathring{g} -ONB with $e_0 = \frac{1}{\cosh \theta}$ $\frac{1}{\cosh(x)}\partial_t$. We require 2.1 $h(e_i, e_j) \leq \frac{C}{|x|}$

- 1. Causality and structural assumptions:
	- 1.1 causally plain,

1.2
$$
\exists a \ge 1
$$
, closed $A \subset M$ st. $M \setminus A^{\circ} = M_1 \cup M_2$, with
\n $M_1 \approx (-\infty, -a] \times \mathbb{R} \times S^2$, $M_2 \approx [a, \infty) \times \mathbb{R} \times S^2$ and
\n1.3 $\forall p \in A$: $I^{\pm}(p) \cap M_k \neq \emptyset$ and $A \setminus (I^+(p) \cup I^-(p))$ is compact

2. Asymptotics of g in $M_1 \cup M_2$: Let $h = g - \mathring{g}$ and $\{e_i\}_{i=0}^3$ be a \mathring{g} -ONB with $e_0 = \frac{1}{\cosh \theta}$ $\frac{1}{\cosh(x)}\partial_t$. We require 2.1 $h(e_i, e_j) \leq \frac{C}{|x|}$ $2.2 \ \ e_k(h(e_i,e_j) \leq \frac{C}{|x|}, \ e_0(h(e_i,e_j)) \leq \frac{C}{|x|^2}$ and

- 1. Causality and structural assumptions:
	- 1.1 causally plain,

1.2
$$
\exists a \ge 1
$$
, closed $A \subset M$ st. $M \setminus A^{\circ} = M_1 \cup M_2$, with
\n $M_1 \approx (-\infty, -a] \times \mathbb{R} \times S^2$, $M_2 \approx [a, \infty) \times \mathbb{R} \times S^2$ and
\n1.3 $\forall p \in A$: $I^{\pm}(p) \cap M_k \neq \emptyset$ and $A \setminus (I^+(p) \cup I^-(p))$ is compact

2. Asymptotics of g in $M_1 \cup M_2$: Let $h = g - \mathring{g}$ and $\{e_i\}_{i=0}^3$ be a \mathring{g} -ONB with $e_0 = \frac{1}{\cosh \theta}$ $\frac{1}{\cosh(x)}\partial_t$. We require 2.1 $h(e_i, e_j) \leq \frac{C}{|x|}$ $2.2 \ \ e_k(h(e_i,e_j) \leq \frac{C}{|x|}, \ e_0(h(e_i,e_j)) \leq \frac{C}{|x|^2}$ and 2.3 $e_m(e_k(h(e_i, e_j))) \leq \frac{C}{|x|}$

- 1. Causality and structural assumptions:
	- 1.1 causally plain,

1.2
$$
\exists a \ge 1
$$
, closed $A \subset M$ st. $M \setminus A^{\circ} = M_1 \cup M_2$, with
\n $M_1 \approx (-\infty, -a] \times \mathbb{R} \times S^2$, $M_2 \approx [a, \infty) \times \mathbb{R} \times S^2$ and
\n1.3 $\forall p \in A$: $I^{\pm}(p) \cap M_k \neq \emptyset$ and $A \setminus (I^+(p) \cup I^-(p))$ is compact

2. Asymptotics of g in $M_1 \cup M_2$: Let $h = g - \mathring{g}$ and $\{e_i\}_{i=0}^3$ be a \mathring{g} -ONB with $e_0 = \frac{1}{\cosh \theta}$ $\frac{1}{\cosh(x)}\partial_t$. We require 2.1 $h(e_i, e_j) \leq \frac{C}{|x|}$ $2.2 \ \ e_k(h(e_i,e_j) \leq \frac{C}{|x|}, \ e_0(h(e_i,e_j)) \leq \frac{C}{|x|^2}$ and 2.3 $e_m(e_k(h(e_i, e_j))) \leq \frac{C}{|x|}$

Technical assumption: ¹⁶^C ^a *<* 1

- 1. Causality and structural assumptions:
	- 1.1 causally plain,

1.2
$$
\exists a \ge 1
$$
, closed $A \subset M$ st. $M \setminus A^{\circ} = M_1 \cup M_2$, with
\n $M_1 \approx (-\infty, -a] \times \mathbb{R} \times S^2$, $M_2 \approx [a, \infty) \times \mathbb{R} \times S^2$ and
\n1.3 $\forall p \in A$: $I^{\pm}(p) \cap M_k \neq \emptyset$ and $A \setminus (I^+(p) \cup I^-(p))$ is compact

2. Asymptotics of g in $M_1 \cup M_2$: Let $h = g - \mathring{g}$ and $\{e_i\}_{i=0}^3$ be a \mathring{g} -ONB with $e_0 = \frac{1}{\cosh \theta}$ $\frac{1}{\cosh(x)}\partial_t$. We require 2.1 $h(e_i, e_j) \leq \frac{C}{|x|}$ $2.2 \ \ e_k(h(e_i,e_j) \leq \frac{C}{|x|}, \ e_0(h(e_i,e_j)) \leq \frac{C}{|x|^2}$ and 2.3 $e_m(e_k(h(e_i, e_j))) \leq \frac{C}{|x|}$

Technical assumption: ¹⁶^C ^a *<* 1 For future use: Define $M(r) := (M_1 \cup M_2) \cap \{|x| > r\}$

Main results

Theorem (Galloway, G., 2018)

Let (M,g) be an asymptotically $AdS_2\times S^2$ spacetime satisfying the null energy condition (NEC). Then

- 1. (M*,* g) possesses two transverse foliations by smooth totally geodesic null hypersurfaces $\{N_u\}_{u\in\mathbb R},$ $\{\hat N_\nu\}_{\nu\in\mathbb R}$ and $N_u,$ $\hat N_\nu\approx\mathbb R\times S^2$
- 2. (M*,* g) is foliated by totally geodesic isometric round (i.e. constant curvature) 2-spheres

Main results

Theorem (Galloway, G., 2018)

Let (M,g) be an asymptotically $AdS_2\times S^2$ spacetime satisfying the null energy condition (NEC). Then

- 1. (M*,* g) possesses two transverse foliations by smooth totally geodesic null hypersurfaces $\{N_u\}_{u\in\mathbb R},$ $\{\hat N_\nu\}_{\nu\in\mathbb R}$ and $N_u,$ $\hat N_\nu\approx\mathbb R\times S^2$
- 2. (M*,* g) is foliated by totally geodesic isometric round (i.e. constant curvature) 2-spheres

Theorem (Galloway, G., 2018)

Let (M, g) be an asymptotically $AdS_2 \times S^2$ spacetime satisfying the NEC. If $\nabla \text{Ric} = 0$, then (M, g) is globally isometric to $AdS_2 \times S^2$.

• Get control over asymptotics: $∀r ∈ [a, ∞] ∃α_r < 1, ∅_r > 1$ st. $\mathring{g}_{\alpha_r}\prec g\prec\mathring{g}_{\beta_r}$ on $\mathcal{M}(r)$ and $\alpha_r,\beta_r\rightarrow 1$

• Get control over asymptotics: $∀r ∈ [a, ∞] ∃α_r < 1, ∅_r > 1$ st. $\mathring{g}_{\alpha_r}\prec g\prec\mathring{g}_{\beta_r}$ on $\mathcal{M}(r)$ and $\alpha_r,\beta_r\rightarrow 1$

• Some properties of null rays and lines:

- **•** Get control over asymptotics: $∀r ∈ [a, ∞] ∃α_r < 1, ∄_r > 1$ st. $\mathring{g}_{\alpha_r}\prec g\prec\mathring{g}_{\beta_r}$ on $\mathcal{M}(r)$ and $\alpha_r,\beta_r\rightarrow 1$
- Some properties of null rays and lines:
	- Null rays must run to either $-\infty$ or $+\infty$, can eventually be parametrized w.r.t. the x-coordinate and are complete.

- **•** Get control over asymptotics: $∀r ∈ [a, ∞] ∃α_r < 1, ∄_r > 1$ st. $\mathring{g}_{\alpha_r}\prec g\prec\mathring{g}_{\beta_r}$ on $\mathcal{M}(r)$ and $\alpha_r,\beta_r\rightarrow 1$
- Some properties of null rays and lines:
	- Null rays must run to either $-\infty$ or $+\infty$, can eventually be parametrized w.r.t. the x-coordinate and are complete.
	- Future (and past) null rays exist, null lines exist

- **•** Get control over asymptotics: $∀r ∈ [a, ∞] ∃α_r < 1, ∄_r > 1$ st. $\mathring{g}_{\alpha_r}\prec g\prec\mathring{g}_{\beta_r}$ on $\mathcal{M}(r)$ and $\alpha_r,\beta_r\rightarrow 1$
- Some properties of null rays and lines:
	- Null rays must run to either $-\infty$ or $+\infty$, can eventually be parametrized w.r.t. the x-coordinate and are complete.
	- Future (and past) null rays exist, null lines exist
	- **•** If η_1, η_2 are two null lines with lim $t(\eta_1) = \lim t(\eta_2)$ as $x \to -\infty$, then *η*¹ ⊂ *∂*J ⁺(*η*2) (⊂ I⁺(*η*2) if *η*² is only a ray)

- **•** Get control over asymptotics: $∀r ∈ [a, ∞] ∃α_r < 1, ∄_r > 1$ st. $\mathring{g}_{\alpha_r}\prec g\prec\mathring{g}_{\beta_r}$ on $\mathcal{M}(r)$ and $\alpha_r,\beta_r\rightarrow 1$
- Some properties of null rays and lines:
	- Null rays must run to either $-\infty$ or $+\infty$, can eventually be parametrized w.r.t. the x-coordinate and are complete.
	- Future (and past) null rays exist, null lines exist
	- **•** If η_1, η_2 are two null lines with lim $t(\eta_1) = \lim t(\eta_2)$ as $x \to -\infty$, then *η*¹ ⊂ *∂*J ⁺(*η*2) (⊂ I⁺(*η*2) if *η*² is only a ray)
	- $\partial J^+(\eta) \approx \mathbb{R} \times S^2$

- **•** Get control over asymptotics: $∀r ∈ [a, ∞] ∃α_r < 1, ∄_r > 1$ st. $\mathring{g}_{\alpha_r}\prec g\prec\mathring{g}_{\beta_r}$ on $\mathcal{M}(r)$ and $\alpha_r,\beta_r\rightarrow 1$
- Some properties of null rays and lines:
	- Null rays must run to either $-\infty$ or $+\infty$, can eventually be parametrized w.r.t. the x-coordinate and are complete.
	- Future (and past) null rays exist, null lines exist
	- **•** If η_1, η_2 are two null lines with lim $t(\eta_1) = \lim t(\eta_2)$ as $x \to -\infty$, then *η*¹ ⊂ *∂*J ⁺(*η*2) (⊂ I⁺(*η*2) if *η*² is only a ray)
	- $\partial J^+(\eta) \approx \mathbb{R} \times S^2$

The null splitting theorem (Galloway, 2000)

Let M be a null geodesically complete spacetime satisfying the NEC and containing a null line *η*. Then *η* is contained in a smooth closed achronal totally geodesic null hypersurface.

- **•** Get control over asymptotics: $\forall r \in [a, \infty) \exists \alpha_r < 1, \beta_r > 1$ st. $\mathring{g}_{\alpha_r}\prec g\prec\mathring{g}_{\beta_r}$ on $\mathcal{M}(r)$ and $\alpha_r,\beta_r\rightarrow 1$
- Some properties of null rays and lines:
	- Null rays must run to either $-\infty$ or $+\infty$, can eventually be parametrized w.r.t. the x-coordinate and are complete.
	- Future (and past) null rays exist, null lines exist
	- **•** If η_1, η_2 are two null lines with lim $t(\eta_1) = \lim t(\eta_2)$ as $x \to -\infty$, then *η*¹ ⊂ *∂*J ⁺(*η*2) (⊂ I⁺(*η*2) if *η*² is only a ray) $\partial J^+(\eta) \approx \mathbb{R} \times S^2$

The null splitting theorem (Galloway, 2000)

Let M be a null geodesically complete spacetime satisfying the NEC and containing a null line *η*. Then *η* is contained in a smooth closed achronal totally geodesic null hypersurface.

 $\bullet \rightsquigarrow$ totally geodesic null hypersurfaces $\{N_u\}_{u\in\mathbb{R}}$ ($u = \lim t(\eta)$, $N_u = \partial J^+(\eta)$ for any null geod. generator η)

- **•** Get control over asymptotics: $\forall r \in [a, \infty) \exists \alpha_r < 1, \beta_r > 1$ st. $\mathring{g}_{\alpha_r}\prec g\prec\mathring{g}_{\beta_r}$ on $\mathcal{M}(r)$ and $\alpha_r,\beta_r\rightarrow 1$
- Some properties of null rays and lines:
	- Null rays must run to either $-\infty$ or $+\infty$, can eventually be parametrized w.r.t. the x-coordinate and are complete.
	- Future (and past) null rays exist, null lines exist
	- **•** If η_1, η_2 are two null lines with lim $t(\eta_1) = \lim t(\eta_2)$ as $x \to -\infty$, then *η*¹ ⊂ *∂*J ⁺(*η*2) (⊂ I⁺(*η*2) if *η*² is only a ray)
	- $\partial J^+(\eta) \approx \mathbb{R} \times S^2$

The null splitting theorem (Galloway, 2000)

Let M be a null geodesically complete spacetime satisfying the NEC and containing a null line *η*. Then *η* is contained in a smooth closed achronal totally geodesic null hypersurface.

- $\bullet \rightsquigarrow$ totally geodesic null hypersurfaces $\{N_u\}_{u\in\mathbb{R}}$ $(u = \lim t(\eta),$ $N_u = \partial J^+(\eta)$ for any null geod. generator η)
- This is a continuous codimension one foliation!

By time-dualizing, one obtains a second foliation by smooth totally geodesic null hypersurfaces $\hat N_{\rm v}\approx \mathbb{R}\times S^2,\ \nu\in\mathbb{R},$ transverse to the foliation $\{N_u\}$

- By time-dualizing, one obtains a second foliation by smooth totally geodesic null hypersurfaces $\hat N_{\rm v}\approx \mathbb{R}\times S^2,\ \nu\in\mathbb{R},$ transverse to the foliation $\{N_u\}$
- Set $S_{u,v}:=N_u\cap \hat N_v$

- By time-dualizing, one obtains a second foliation by smooth totally geodesic null hypersurfaces $\hat N_{\rm v}\approx \mathbb{R}\times S^2,\ \nu\in\mathbb{R},$ transverse to the foliation $\{N_{\mu}\}\$
- Set $S_{u,v}:=N_u\cap \hat N_v$
- N_u totally geodesic \iff null second fundamental form vanishes $\implies g|_{\mathcal S_{u,v_1}}=g|_{\mathcal S_{u,v_2}}$

- By time-dualizing, one obtains a second foliation by smooth totally geodesic null hypersurfaces $\hat N_{\rm v}\approx \mathbb{R}\times S^2,\ \nu\in\mathbb{R},$ transverse to the foliation $\{N_{\mu}\}\$
- Set $S_{u,v}:=N_u\cap \hat N_v$
- N_u totally geodesic \iff null second fundamental form vanishes $\implies g|_{\mathcal S_{u,v_1}}=g|_{\mathcal S_{u,v_2}}$
- \bullet Lemma: $\forall \varepsilon > 0$ ∃r st. $\forall S_{u,v} \subset M(r)$: $1 \varepsilon \leq K_{u,v} \leq 1 + \varepsilon$ and

- By time-dualizing, one obtains a second foliation by smooth totally geodesic null hypersurfaces $\hat N_{\rm v}\approx \mathbb{R}\times S^2,\ \nu\in\mathbb{R},$ transverse to the foliation $\{N_{\mu}\}\$
- Set $S_{u,v}:=N_u\cap \hat N_v$
- N_u totally geodesic \iff null second fundamental form vanishes $\implies g|_{\mathcal S_{u,v_1}}=g|_{\mathcal S_{u,v_2}}$
- \bullet Lemma: $\forall \varepsilon > 0$ ∃r st. $\forall S_{u,v} \subset M(r)$: $1 \varepsilon \leq K_{u,v} \leq 1 + \varepsilon$ and
- the $S_{u,v}$ move outward as $v \searrow u$

- By time-dualizing, one obtains a second foliation by smooth totally geodesic null hypersurfaces $\hat N_{\rm v}\approx \mathbb{R}\times S^2,\ \nu\in\mathbb{R},$ transverse to the foliation $\{N_u\}$
- Set $S_{u,v}:=N_u\cap \hat N_v$
- N_u totally geodesic \iff null second fundamental form vanishes $\implies g|_{\mathcal S_{u,v_1}}=g|_{\mathcal S_{u,v_2}}$
- \bullet Lemma: $\forall \varepsilon > 0$ ∃r st. $\forall S_{u,v} \subset M(r)$: $1 \varepsilon \leq K_{u,v} \leq 1 + \varepsilon$ and
- the $S_{u,v}$ move outward as $v \searrow u$
- So, since $\mathcal{K}_{\mu,\nu}$ is constant in ν , it must equal 1 and $\mathcal{S}_{\mu,\nu} \cong (\mathcal{S}^2,d\Omega^2)$

- By time-dualizing, one obtains a second foliation by smooth totally geodesic null hypersurfaces $\hat N_{\rm v}\approx \mathbb{R}\times S^2,\ \nu\in\mathbb{R},$ transverse to the foliation $\{N_u\}$
- Set $S_{u,v}:=N_u\cap \hat N_v$
- N_u totally geodesic \iff null second fundamental form vanishes $\implies g|_{\mathcal S_{u,v_1}}=g|_{\mathcal S_{u,v_2}}$
- \bullet Lemma: $\forall \varepsilon > 0$ ∃r st. $\forall S_{u,v} \subset M(r)$: $1 \varepsilon \leq K_{u,v} \leq 1 + \varepsilon$ and
- the $S_{u,v}$ move outward as $v \searrow u$
- So, since $\mathcal{K}_{\mu,\nu}$ is constant in ν , it must equal 1 and $\mathcal{S}_{\mu,\nu} \cong (\mathcal{S}^2,d\Omega^2)$
- $\bullet \rightsquigarrow$ continuous co-dimension two foliation by totally geodesic round 2-spheres.

• For Lorentzian manifolds: $\nabla Ric = 0$ & Ric non-degenerate $\Rightarrow M$ is locally isometric to a product of Enstein manifolds (Combination of Wu, 1964 & Senovilla, 2008)

• For Lorentzian manifolds: $\nabla Ric = 0$ & Ric non-degenerate $\Rightarrow M$ is locally isometric to a product of Enstein manifolds (Combination of Wu, 1964 & Senovilla, 2008)

Proposition

If additionally dim(M) = 4 and $R = 0$, then there exists $k > 0$ such that any $p \in M$ has a neighbourhood U that is isometric to an open subset $V = L \times P$ of $AdS_2(k) \times S^2(k)$ or $dS_2(k) \times H^2(k)$!

• For Lorentzian manifolds: $\nabla Ric = 0$ & Ric non-degenerate $\Rightarrow M$ is locally isometric to a product of Enstein manifolds (Combination of Wu, 1964 & Senovilla, 2008)

Proposition

If additionally dim(M) = 4 and $R = 0$, then there exists $k > 0$ such that any $p \in M$ has a neighbourhood U that is isometric to an open subset $V = L \times P$ of $AdS_2(k) \times S^2(k)$ or $dS_2(k) \times H^2(k)$!

If (M,g) asymptotically $AdS_2\times S^2$ and NEC holds, then ${\mathcal T}_q L$ is spanned by the defining null normals n_q and \hat{n}_q of the N and \hat{N} hypersurfaces through q and $P\subset \mathcal{S}^2$

• For Lorentzian manifolds: $\nabla Ric = 0$ & Ric non-degenerate $\Rightarrow M$ is locally isometric to a product of Enstein manifolds (Combination of Wu, 1964 & Senovilla, 2008)

Proposition

If additionally dim(M) = 4 and $R = 0$, then there exists $k > 0$ such that any $p \in M$ has a neighbourhood U that is isometric to an open subset $V = L \times P$ of $AdS_2(k) \times S^2(k)$ or $dS_2(k) \times H^2(k)$!

- If (M,g) asymptotically $AdS_2\times S^2$ and NEC holds, then ${\mathcal T}_q L$ is spanned by the defining null normals n_q and \hat{n}_q of the N and \hat{N} hypersurfaces through q and $P\subset \mathcal{S}^2$
- So we have two orthogonal totally geodesic foliations, one of which has leaves isometric to \mathcal{S}^2 , in particular geodesically complete

• For Lorentzian manifolds: $\nabla Ric = 0$ & Ric non-degenerate $\Rightarrow M$ is locally isometric to a product of Enstein manifolds (Combination of Wu, 1964 & Senovilla, 2008)

Proposition

If additionally dim(M) = 4 and $R = 0$, then there exists $k > 0$ such that any $p \in M$ has a neighbourhood U that is isometric to an open subset $V = L \times P$ of $AdS_2(k) \times S^2(k)$ or $dS_2(k) \times H^2(k)$!

- If (M,g) asymptotically $AdS_2\times S^2$ and NEC holds, then ${\mathcal T}_q L$ is spanned by the defining null normals n_q and \hat{n}_q of the N and \hat{N} hypersurfaces through q and $P\subset \mathcal{S}^2$
- So we have two orthogonal totally geodesic foliations, one of which has leaves isometric to \mathcal{S}^2 , in particular geodesically complete
- Result by Ponge & Reckziegel (1993) gives gobal isometry!

Thank you!