Rigidity of asymptotically $AdS_2 \times S^2$ spacetimes (joint with G.J. Galloway)

Melanie Graf

University of Vienna

• Why do we look at asymptotically $AdS_2 \times S^2$ spacetimes?

- Why do we look at asymptotically $AdS_2 \times S^2$ spacetimes?
 - $AdS_2 \times S^2$ arises as the near horizon geometry of extremal Reissner-Nordström

- Why do we look at asymptotically $AdS_2 \times S^2$ spacetimes?
 - $AdS_2 \times S^2$ arises as the near horizon geometry of extremal Reissner-Nordström
 - $\bullet\,$ Also studied in connection with the AdS/CFT correspondence

- Why do we look at asymptotically $AdS_2 \times S^2$ spacetimes?
 - $AdS_2 \times S^2$ arises as the near horizon geometry of extremal Reissner-Nordström
 - $\bullet\,$ Also studied in connection with the AdS/CFT correspondence
 - Conjecture of Juan Maldacena: Asymptotically $AdS_2 \times S^2$ spacetimes satisfying the null energy condition should be *isometric* to $AdS_2 \times S^2$

- Why do we look at asymptotically $AdS_2 \times S^2$ spacetimes?
 - $AdS_2 \times S^2$ arises as the near horizon geometry of extremal Reissner-Nordström
 - $\bullet\,$ Also studied in connection with the AdS/CFT correspondence
 - Conjecture of Juan Maldacena: Asymptotically $AdS_2 \times S^2$ spacetimes satisfying the null energy condition should be *isometric* to $AdS_2 \times S^2$
- Technical remarks

- Why do we look at asymptotically $AdS_2 \times S^2$ spacetimes?
 - $AdS_2 \times S^2$ arises as the near horizon geometry of extremal Reissner-Nordström
 - $\bullet\,$ Also studied in connection with the AdS/CFT correspondence
 - Conjecture of Juan Maldacena: Asymptotically $AdS_2 \times S^2$ spacetimes satisfying the null energy condition should be *isometric* to $AdS_2 \times S^2$
- Technical remarks
 - AdS_2 = universal cover, in particular causally simple (i.e. causal and $J^{\pm}(p)$ closed)

- Why do we look at asymptotically $AdS_2 \times S^2$ spacetimes?
 - $AdS_2 \times S^2$ arises as the near horizon geometry of extremal Reissner-Nordström
 - $\bullet\,$ Also studied in connection with the AdS/CFT correspondence
 - Conjecture of Juan Maldacena: Asymptotically $AdS_2 \times S^2$ spacetimes satisfying the null energy condition should be *isometric* to $AdS_2 \times S^2$
- Technical remarks
 - AdS_2 = universal cover, in particular causally simple (i.e. causal and $J^{\pm}(p)$ closed)
 - Whenever we assume the null energy condition, i.e., $\operatorname{Ric}(X, X) \ge 0$ for all null vectors X, it would actually be sufficient to assume

$$\int_{0}^{\infty} \operatorname{Ric}(\eta'(s),\eta'(s)) ds \geq 0$$

for all future or past complete null rays $\eta.$

$$\mathring{g} = -\cosh(x)^2 dt^2 + dx^2 + d\Omega^2$$

•
$$M = \mathbb{R} \times \mathbb{R} \times S^2$$
,

$$\mathring{g} = -\cosh(x)^2 dt^2 + dx^2 + d\Omega^2$$

(Future directed) null lines: t(x) ~ 2tan⁻¹(e^x), spherical component constant

•
$$M = \mathbb{R} \times \mathbb{R} \times S^2$$
,

$$\dot{g} = -\cosh(x)^2 dt^2 + dx^2 + d\Omega^2$$

- (Future directed) null lines: t(x) ~ 2tan⁻¹(e^x), spherical component constant
- Each (future directed) null line η is part of a nice null hypersurface $N = \partial J^+(\eta)$

$$\mathring{g} = -\cosh(x)^2 dt^2 + dx^2 + d\Omega^2$$

- (Future directed) null lines: t(x) ~ 2tan⁻¹(e^x), spherical component constant
- Each (future directed) null line η is part of a nice null hypersurface $N = \partial J^+(\eta)$
- This hypersurface is uniquely determined by $\lim_{x\to-\infty} t(\eta) \rightsquigarrow$ foliation $\{N_u\}$

$$\mathring{g} = -\cosh(x)^2 dt^2 + dx^2 + d\Omega^2$$

- (Future directed) null lines: t(x) ~ 2tan⁻¹(e^x), spherical component constant
- Each (future directed) null line η is part of a nice null hypersurface $N = \partial J^+(\eta)$
- This hypersurface is uniquely determined by $\lim_{x\to-\infty} t(\eta) \rightsquigarrow$ foliation $\{N_u\}$
- Similarly, p.d. null lines \rightsquigarrow transverse foliation $\{\hat{N}_{v}\}$

$$\mathring{g} = -\cosh(x)^2 dt^2 + dx^2 + d\Omega^2$$

- (Future directed) null lines: t(x) ~ 2tan⁻¹(e^x), spherical component constant
- Each (future directed) null line η is part of a nice null hypersurface $N = \partial J^+(\eta)$
- This hypersurface is uniquely determined by $\lim_{x\to-\infty} t(\eta) \rightsquigarrow$ foliation $\{N_u\}$
- Similarly, p.d. null lines \sim transverse foliation $\{\hat{N}_v\}$
- $S_{u,v} := N_u \cap \hat{N}_v \cong S^2$; foliation $\{S_{u,v}\}$ by isometric round 2-spheres

$$\mathring{g} = -\cosh(x)^2 dt^2 + dx^2 + d\Omega^2$$

- (Future directed) null lines: t(x) ~ 2tan⁻¹(e^x), spherical component constant
- Each (future directed) null line η is part of a nice null hypersurface $N = \partial J^+(\eta)$
- This hypersurface is uniquely determined by $\lim_{x\to-\infty} t(\eta) \rightsquigarrow$ foliation $\{N_u\}$
- Similarly, p.d. null lines \rightsquigarrow transverse foliation $\{\hat{N}_v\}$
- $S_{u,v} := N_u \cap \hat{N}_v \cong S^2$; foliation $\{S_{u,v}\}$ by isometric round 2-spheres
- Note that $(t_0 + \pi + \frac{\pi}{\cosh(x_0)}, \infty) \times \mathbb{R} \times S^2 \subset I^+((t_0, x_0, \omega_0))$

$$\mathring{g} = -\cosh(x)^2 dt^2 + dx^2 + d\Omega^2$$

- (Future directed) null lines: t(x) ~ 2tan⁻¹(e^x), spherical component constant
- Each (future directed) null line η is part of a nice null hypersurface $N = \partial J^+(\eta)$
- This hypersurface is uniquely determined by $\lim_{x\to-\infty} t(\eta) \rightsquigarrow$ foliation $\{N_u\}$
- Similarly, p.d. null lines \rightsquigarrow transverse foliation $\{\hat{N}_v\}$
- $S_{u,v} := N_u \cap \hat{N}_v \cong S^2$; foliation $\{S_{u,v}\}$ by isometric round 2-spheres
- Note that $(t_0 + \pi + \frac{\pi}{\cosh(x_0)}, \infty) \times \mathbb{R} \times S^2 \subset I^+((t_0, x_0, \omega_0))$
- Family of wider/narrower metrics \mathring{g}_{α} ($\alpha \in \mathbb{R}$) with $\mathring{g}_{\alpha} = -\alpha \cosh(x)^2 dt^2 + dx^2 + d\Omega^2$

1. Causality and structural assumptions:

- 1. Causality and structural assumptions:
 - 1.1 causally plain,

- 1. Causality and structural assumptions:
 - 1.1 causally plain,

1.2
$$\exists a \geq 1$$
, closed $A \subset M$ st. $M \setminus A^{\circ} = M_1 \cup M_2$, with $M_1 \approx (-\infty, -a] \times \mathbb{R} \times S^2$, $M_2 \approx [a, \infty) \times \mathbb{R} \times S^2$ and

- 1. Causality and structural assumptions:
 - 1.1 causally plain,

1.2
$$\exists a \geq 1$$
, closed $A \subset M$ st. $M \setminus A^{\circ} = M_1 \cup M_2$, with $M_1 \approx (-\infty, -a] \times \mathbb{R} \times S^2$, $M_2 \approx [a, \infty) \times \mathbb{R} \times S^2$ and

1.3 $\forall p \in A$: $I^{\pm}(p) \cap M_k \neq \emptyset$ and $A \setminus (I^+(p) \cup I^-(p))$ is compact

- 1. Causality and structural assumptions:
 - 1.1 causally plain,

1.2
$$\exists a \geq 1$$
, closed $A \subset M$ st. $M \setminus A^{\circ} = M_1 \cup M_2$, with
 $M_1 \approx (-\infty, -a] \times \mathbb{R} \times S^2$, $M_2 \approx [a, \infty) \times \mathbb{R} \times S^2$ and
1.3 $\forall p \in A$: $I^{\pm}(p) \cap M_k \neq \emptyset$ and $A \setminus (I^+(p) \cup I^-(p))$ is compact

2. Asymptotics of g in $M_1 \cup M_2$: Let $h = g - \mathring{g}$ and $\{e_i\}_{i=0}^3$ be a \mathring{g} -ONB with $e_0 = \frac{1}{\cosh(x)}\partial_t$. We require

- 1. Causality and structural assumptions:
 - 1.1 causally plain,

1.2
$$\exists a \geq 1$$
, closed $A \subset M$ st. $M \setminus A^{\circ} = M_1 \cup M_2$, with
 $M_1 \approx (-\infty, -a] \times \mathbb{R} \times S^2$, $M_2 \approx [a, \infty) \times \mathbb{R} \times S^2$ and
1.3 $\forall p \in A$: $I^{\pm}(p) \cap M_k \neq \emptyset$ and $A \setminus (I^+(p) \cup I^-(p))$ is compact

2. Asymptotics of g in $M_1 \cup M_2$: Let $h = g - \mathring{g}$ and $\{e_i\}_{i=0}^3$ be a \mathring{g} -ONB with $e_0 = \frac{1}{\cosh(x)}\partial_t$. We require 2.1 $h(e_i, e_j) \leq \frac{c}{|x|}$

- 1. Causality and structural assumptions:
 - 1.1 causally plain,

1.2
$$\exists a \geq 1$$
, closed $A \subset M$ st. $M \setminus A^{\circ} = M_1 \cup M_2$, with
 $M_1 \approx (-\infty, -a] \times \mathbb{R} \times S^2$, $M_2 \approx [a, \infty) \times \mathbb{R} \times S^2$ and
1.3 $\forall p \in A$: $I^{\pm}(p) \cap M_k \neq \emptyset$ and $A \setminus (I^+(p) \cup I^-(p))$ is compact

2. Asymptotics of g in $M_1 \cup M_2$: Let $h = g - \mathring{g}$ and $\{e_i\}_{i=0}^3$ be a \mathring{g} -ONB with $e_0 = \frac{1}{\cosh(x)} \partial_t$. We require 2.1 $h(e_i, e_j) \leq \frac{C}{|x|}$ 2.2 $e_k(h(e_i, e_j) \leq \frac{C}{|x|}, e_0(h(e_i, e_j)) \leq \frac{C}{|x|^2}$ and

- 1. Causality and structural assumptions:
 - 1.1 causally plain,

1.2
$$\exists a \geq 1$$
, closed $A \subset M$ st. $M \setminus A^{\circ} = M_1 \cup M_2$, with
 $M_1 \approx (-\infty, -a] \times \mathbb{R} \times S^2$, $M_2 \approx [a, \infty) \times \mathbb{R} \times S^2$ and
1.3 $\forall p \in A$: $I^{\pm}(p) \cap M_k \neq \emptyset$ and $A \setminus (I^+(p) \cup I^-(p))$ is compact

2. Asymptotics of g in $M_1 \cup M_2$: Let $h = g - \mathring{g}$ and $\{e_i\}_{i=0}^3$ be a \mathring{g} -ONB with $e_0 = \frac{1}{\cosh(x)}\partial_t$. We require 2.1 $h(e_i, e_j) \leq \frac{C}{|x|}$ 2.2 $e_k(h(e_i, e_j) \leq \frac{C}{|x|}$, $e_0(h(e_i, e_j)) \leq \frac{C}{|x|^2}$ and 2.3 $e_m(e_k(h(e_i, e_j))) \leq \frac{C}{|x|}$

- 1. Causality and structural assumptions:
 - 1.1 causally plain,

1.2
$$\exists a \geq 1$$
, closed $A \subset M$ st. $M \setminus A^{\circ} = M_1 \cup M_2$, with $M_1 \approx (-\infty, -a] \times \mathbb{R} \times S^2$, $M_2 \approx [a, \infty) \times \mathbb{R} \times S^2$ and
1.3 $\forall p \in A$: $I^{\pm}(p) \cap M_k \neq \emptyset$ and $A \setminus (I^+(p) \cup I^-(p))$ is compact

2. Asymptotics of g in $M_1 \cup M_2$: Let $h = g - \mathring{g}$ and $\{e_i\}_{i=0}^3$ be a \mathring{g} -ONB with $e_0 = \frac{1}{\cosh(x)} \partial_t$. We require 2.1 $h(e_i, e_j) \leq \frac{C}{|x|}$ 2.2 $e_k(h(e_i, e_j) \leq \frac{C}{|x|}, e_0(h(e_i, e_j)) \leq \frac{C}{|x|^2}$ and 2.3 $e_m(e_k(h(e_i, e_j))) \leq \frac{C}{|x|}$

Technical assumption: $\frac{16C}{a} < 1$

- 1. Causality and structural assumptions:
 - 1.1 causally plain,

1.2
$$\exists a \geq 1$$
, closed $A \subset M$ st. $M \setminus A^{\circ} = M_1 \cup M_2$, with $M_1 \approx (-\infty, -a] \times \mathbb{R} \times S^2$, $M_2 \approx [a, \infty) \times \mathbb{R} \times S^2$ and
1.3 $\forall p \in A$: $I^{\pm}(p) \cap M_k \neq \emptyset$ and $A \setminus (I^+(p) \cup I^-(p))$ is compact

2. Asymptotics of g in $M_1 \cup M_2$: Let $h = g - \mathring{g}$ and $\{e_i\}_{i=0}^3$ be a \mathring{g} -ONB with $e_0 = \frac{1}{\cosh(x)}\partial_t$. We require 2.1 $h(e_i, e_j) \leq \frac{C}{|x|}$ 2.2 $e_k(h(e_i, e_j) \leq \frac{C}{|x|}$, $e_0(h(e_i, e_j)) \leq \frac{C}{|x|^2}$ and 2.3 $e_m(e_k(h(e_i, e_j))) \leq \frac{C}{|x|}$

Technical assumption: $\frac{16C}{a} < 1$ For future use: Define $M(r) := (M_1 \cup M_2) \cap \{|x| \ge r\}$

Main results

Theorem (Galloway, G., 2018)

Let (M, g) be an asymptotically $AdS_2 \times S^2$ spacetime satisfying the null energy condition (NEC). Then

- 1. (*M*, *g*) possesses two transverse foliations by smooth totally geodesic null hypersurfaces $\{N_u\}_{u \in \mathbb{R}}, \{\hat{N}_v\}_{v \in \mathbb{R}}$ and $N_u, \hat{N}_v \approx \mathbb{R} \times S^2$
- 2. (*M*, *g*) is foliated by totally geodesic isometric round (i.e. constant curvature) 2-spheres

Main results

Theorem (Galloway, G., 2018)

Let (M, g) be an asymptotically $AdS_2 \times S^2$ spacetime satisfying the null energy condition (NEC). Then

- 1. (*M*, *g*) possesses two transverse foliations by smooth totally geodesic null hypersurfaces $\{N_u\}_{u \in \mathbb{R}}, \{\hat{N}_v\}_{v \in \mathbb{R}}$ and $N_u, \hat{N}_v \approx \mathbb{R} \times S^2$
- 2. (*M*, *g*) is foliated by totally geodesic isometric round (i.e. constant curvature) 2-spheres

Theorem (Galloway, G., 2018)

Let (M, g) be an asymptotically $AdS_2 \times S^2$ spacetime satisfying the NEC. If $\nabla \text{Ric} = 0$, then (M, g) is globally isometric to $AdS_2 \times S^2$.

• Get control over asymptotics: $\forall r \in [a, \infty) \exists \alpha_r < 1, \beta_r > 1$ st. $\mathring{g}_{\alpha_r} \prec g \prec \mathring{g}_{\beta_r}$ on M(r) and $\alpha_r, \beta_r \to 1$

- Get control over asymptotics: $\forall r \in [a, \infty) \exists \alpha_r < 1, \beta_r > 1$ st. $\mathring{g}_{\alpha_r} \prec g \prec \mathring{g}_{\beta_r}$ on M(r) and $\alpha_r, \beta_r \to 1$
- Some properties of null rays and lines:

- Get control over asymptotics: $\forall r \in [a, \infty) \exists \alpha_r < 1, \beta_r > 1$ st. $\mathring{g}_{\alpha_r} \prec g \prec \mathring{g}_{\beta_r}$ on M(r) and $\alpha_r, \beta_r \rightarrow 1$
- Some properties of null rays and lines:
 - Null rays must run to either $-\infty$ or $+\infty$, can eventually be parametrized w.r.t. the *x*-coordinate and are complete.

- Get control over asymptotics: $\forall r \in [a, \infty) \exists \alpha_r < 1, \beta_r > 1$ st. $\mathring{g}_{\alpha_r} \prec g \prec \mathring{g}_{\beta_r}$ on M(r) and $\alpha_r, \beta_r \rightarrow 1$
- Some properties of null rays and lines:
 - Null rays must run to either $-\infty$ or $+\infty$, can eventually be parametrized w.r.t. the x-coordinate and are complete.
 - Future (and past) null rays exist, null lines exist

- Get control over asymptotics: $\forall r \in [a, \infty) \exists \alpha_r < 1, \beta_r > 1$ st. $\mathring{g}_{\alpha_r} \prec g \prec \mathring{g}_{\beta_r}$ on M(r) and $\alpha_r, \beta_r \rightarrow 1$
- Some properties of null rays and lines:
 - Null rays must run to either $-\infty$ or $+\infty$, can eventually be parametrized w.r.t. the *x*-coordinate and are complete.
 - Future (and past) null rays exist, null lines exist
 - If η_1, η_2 are two null lines with $\lim t(\eta_1) = \lim t(\eta_2)$ as $x \to -\infty$, then $\eta_1 \subset \partial J^+(\eta_2) \ (\subset \overline{I^+(\eta_2)}$ if η_2 is only a ray)

- Get control over asymptotics: $\forall r \in [a, \infty) \exists \alpha_r < 1, \beta_r > 1$ st. $\mathring{g}_{\alpha_r} \prec g \prec \mathring{g}_{\beta_r}$ on M(r) and $\alpha_r, \beta_r \rightarrow 1$
- Some properties of null rays and lines:
 - Null rays must run to either $-\infty$ or $+\infty$, can eventually be parametrized w.r.t. the *x*-coordinate and are complete.
 - Future (and past) null rays exist, null lines exist
 - If η_1, η_2 are two null lines with $\lim t(\eta_1) = \lim t(\eta_2)$ as $x \to -\infty$, then $\eta_1 \subset \partial J^+(\eta_2) \subset I^+(\eta_2)$ if η_2 is only a ray)
 - $\partial J^+(\eta) \approx \mathbb{R} \times S^2$

- Get control over asymptotics: $\forall r \in [a, \infty) \exists \alpha_r < 1, \beta_r > 1$ st. $\mathring{g}_{\alpha_r} \prec g \prec \mathring{g}_{\beta_r}$ on M(r) and $\alpha_r, \beta_r \rightarrow 1$
- Some properties of null rays and lines:
 - Null rays must run to either $-\infty$ or $+\infty$, can eventually be parametrized w.r.t. the *x*-coordinate and are complete.
 - Future (and past) null rays exist, null lines exist
 - If η_1, η_2 are two null lines with $\lim t(\eta_1) = \lim t(\eta_2)$ as $x \to -\infty$, then $\eta_1 \subset \partial J^+(\eta_2) \ (\subset \overline{I^+(\eta_2)} \text{ if } \eta_2 \text{ is only a ray})$
 - $\partial J^+(\eta) \approx \mathbb{R} \times S^2$

The null splitting theorem (Galloway, 2000)

Let *M* be a null geodesically complete spacetime satisfying the NEC and containing a null line η . Then η is contained in a smooth closed achronal totally geodesic null hypersurface.

- Get control over asymptotics: $\forall r \in [a, \infty) \exists \alpha_r < 1, \beta_r > 1$ st. $\mathring{g}_{\alpha_r} \prec g \prec \mathring{g}_{\beta_r}$ on M(r) and $\alpha_r, \beta_r \rightarrow 1$
- Some properties of null rays and lines:
 - Null rays must run to either $-\infty$ or $+\infty$, can eventually be parametrized w.r.t. the *x*-coordinate and are complete.
 - Future (and past) null rays exist, null lines exist
 - If η_1, η_2 are two null lines with $\lim t(\eta_1) = \lim t(\eta_2)$ as $x \to -\infty$, then $\eta_1 \subset \partial J^+(\eta_2) \ (\subset \overline{I^+(\eta_2)} \text{ if } \eta_2 \text{ is only a ray})$
 - $\partial J^+(\eta) \approx \mathbb{R} \times S^2$

The null splitting theorem (Galloway, 2000)

Let *M* be a null geodesically complete spacetime satisfying the NEC and containing a null line η . Then η is contained in a smooth closed achronal totally geodesic null hypersurface.

• \rightsquigarrow totally geodesic null hypersurfaces $\{N_u\}_{u \in \mathbb{R}}$ $(u = \lim t(\eta), N_u = \partial J^+(\eta)$ for any null geod. generator η)

- Get control over asymptotics: $\forall r \in [a, \infty) \exists \alpha_r < 1, \beta_r > 1$ st. $\mathring{g}_{\alpha_r} \prec g \prec \mathring{g}_{\beta_r}$ on M(r) and $\alpha_r, \beta_r \rightarrow 1$
- Some properties of null rays and lines:
 - Null rays must run to either $-\infty$ or $+\infty$, can eventually be parametrized w.r.t. the *x*-coordinate and are complete.
 - Future (and past) null rays exist, null lines exist
 - If η_1, η_2 are two null lines with $\lim t(\eta_1) = \lim t(\eta_2)$ as $x \to -\infty$, then $\eta_1 \subset \partial J^+(\eta_2) \ (\subset \overline{I^+(\eta_2)} \text{ if } \eta_2 \text{ is only a ray})$
 - $\partial J^+(\eta) \approx \mathbb{R} \times S^2$

The null splitting theorem (Galloway, 2000)

Let *M* be a null geodesically complete spacetime satisfying the NEC and containing a null line η . Then η is contained in a smooth closed achronal totally geodesic null hypersurface.

- \rightsquigarrow totally geodesic null hypersurfaces $\{N_u\}_{u \in \mathbb{R}}$ $(u = \lim t(\eta), N_u = \partial J^+(\eta)$ for any null geod. generator η)
- This is a continuous codimension one foliation!

• By time-dualizing, one obtains a second foliation by smooth totally geodesic null hypersurfaces $\hat{N}_{\nu} \approx \mathbb{R} \times S^2$, $\nu \in \mathbb{R}$, transverse to the foliation $\{N_u\}$

- By time-dualizing, one obtains a second foliation by smooth totally geodesic null hypersurfaces $\hat{N}_{v} \approx \mathbb{R} \times S^{2}$, $v \in \mathbb{R}$, transverse to the foliation $\{N_{u}\}$
- Set $S_{u,v} := N_u \cap \hat{N}_v$

- By time-dualizing, one obtains a second foliation by smooth totally geodesic null hypersurfaces $\hat{N}_{v} \approx \mathbb{R} \times S^{2}$, $v \in \mathbb{R}$, transverse to the foliation $\{N_{u}\}$
- Set $S_{u,v} := N_u \cap \hat{N}_v$
- N_u totally geodesic \iff null second fundamental form vanishes $\implies g|_{S_{u,v_1}} = g|_{S_{u,v_2}}$

- By time-dualizing, one obtains a second foliation by smooth totally geodesic null hypersurfaces $\hat{N}_{\nu} \approx \mathbb{R} \times S^2$, $\nu \in \mathbb{R}$, transverse to the foliation $\{N_u\}$
- Set $S_{u,v} := N_u \cap \hat{N}_v$
- N_u totally geodesic \iff null second fundamental form vanishes $\implies g|_{S_{u,v_1}} = g|_{S_{u,v_2}}$
- Lemma: $\forall \varepsilon > 0 \exists r \text{ st. } \forall S_{u,v} \subset M(r): 1 \varepsilon \leq K_{u,v} \leq 1 + \varepsilon \text{ and}$

- By time-dualizing, one obtains a second foliation by smooth totally geodesic null hypersurfaces $\hat{N}_{\nu} \approx \mathbb{R} \times S^2$, $\nu \in \mathbb{R}$, transverse to the foliation $\{N_u\}$
- Set $S_{u,v} := N_u \cap \hat{N}_v$
- N_u totally geodesic \iff null second fundamental form vanishes $\implies g|_{S_{u,v_1}} = g|_{S_{u,v_2}}$
- Lemma: $\forall \varepsilon > 0 \exists r \text{ st. } \forall S_{u,v} \subset M(r): 1 \varepsilon \leq K_{u,v} \leq 1 + \varepsilon \text{ and}$
- the $S_{u,v}$ move outward as $v \searrow u$

- By time-dualizing, one obtains a second foliation by smooth totally geodesic null hypersurfaces $\hat{N}_{\nu} \approx \mathbb{R} \times S^2$, $\nu \in \mathbb{R}$, transverse to the foliation $\{N_u\}$
- Set $S_{u,v} := N_u \cap \hat{N}_v$
- N_u totally geodesic \iff null second fundamental form vanishes $\implies g|_{S_{u,v_1}} = g|_{S_{u,v_2}}$
- Lemma: $\forall \varepsilon > 0 \exists r \text{ st. } \forall S_{u,v} \subset M(r): 1 \varepsilon \leq K_{u,v} \leq 1 + \varepsilon \text{ and}$
- the $S_{u,v}$ move outward as $v \searrow u$
- So, since $K_{u,v}$ is constant in v, it must equal 1 and $S_{u,v} \cong (S^2, d\Omega^2)$

- By time-dualizing, one obtains a second foliation by smooth totally geodesic null hypersurfaces $\hat{N}_{\nu} \approx \mathbb{R} \times S^2$, $\nu \in \mathbb{R}$, transverse to the foliation $\{N_u\}$
- Set $S_{u,v} := N_u \cap \hat{N}_v$
- N_u totally geodesic \iff null second fundamental form vanishes $\implies g|_{S_{u,v_1}} = g|_{S_{u,v_2}}$
- Lemma: $\forall \varepsilon > 0 \exists r \text{ st. } \forall S_{u,v} \subset M(r): 1 \varepsilon \leq K_{u,v} \leq 1 + \varepsilon \text{ and}$
- the $S_{u,v}$ move outward as $v \searrow u$
- So, since $K_{u,v}$ is constant in v, it must equal 1 and $S_{u,v} \cong (S^2, d\Omega^2)$
- \sim continuous co-dimension two foliation by totally geodesic round 2-spheres.

 For Lorentzian manifolds: ∇Ric = 0 & Ric non-degenerate ⇒ M is locally isometric to a product of Enstein manifolds (Combination of Wu, 1964 & Senovilla, 2008)

 For Lorentzian manifolds: ∇Ric = 0 & Ric non-degenerate ⇒ M is locally isometric to a product of Enstein manifolds (Combination of Wu, 1964 & Senovilla, 2008)

Proposition

If additionally dim(M) = 4 and R = 0, then there exists k > 0 such that any $p \in M$ has a neighbourhood U that is isometric to an open subset $V = L \times P$ of $AdS_2(k) \times S^2(k)$ or $dS_2(k) \times H^2(k)!$

 For Lorentzian manifolds: ∇Ric = 0 & Ric non-degenerate ⇒ M is locally isometric to a product of Enstein manifolds (Combination of Wu, 1964 & Senovilla, 2008)

Proposition

If additionally dim(M) = 4 and R = 0, then there exists k > 0 such that any $p \in M$ has a neighbourhood U that is isometric to an open subset $V = L \times P$ of $AdS_2(k) \times S^2(k)$ or $dS_2(k) \times H^2(k)$!

• If (M,g) asymptotically $AdS_2 \times S^2$ and NEC holds, then T_qL is spanned by the defining null normals n_q and \hat{n}_q of the N and \hat{N} hypersurfaces through q and $P \subset S^2$

 For Lorentzian manifolds: ∇Ric = 0 & Ric non-degenerate ⇒ M is locally isometric to a product of Enstein manifolds (Combination of Wu, 1964 & Senovilla, 2008)

Proposition

If additionally dim(M) = 4 and R = 0, then there exists k > 0 such that any $p \in M$ has a neighbourhood U that is isometric to an open subset $V = L \times P$ of $AdS_2(k) \times S^2(k)$ or $dS_2(k) \times H^2(k)$!

- If (M,g) asymptotically $AdS_2 \times S^2$ and NEC holds, then T_qL is spanned by the defining null normals n_q and \hat{n}_q of the N and \hat{N} hypersurfaces through q and $P \subset S^2$
- So we have two orthogonal totally geodesic foliations, one of which has leaves isometric to S^2 , in particular geodesically complete

 For Lorentzian manifolds: ∇Ric = 0 & Ric non-degenerate ⇒ M is locally isometric to a product of Enstein manifolds (Combination of Wu, 1964 & Senovilla, 2008)

Proposition

If additionally dim(M) = 4 and R = 0, then there exists k > 0 such that any $p \in M$ has a neighbourhood U that is isometric to an open subset $V = L \times P$ of $AdS_2(k) \times S^2(k)$ or $dS_2(k) \times H^2(k)$!

- If (M,g) asymptotically $AdS_2 \times S^2$ and NEC holds, then T_qL is spanned by the defining null normals n_q and \hat{n}_q of the N and \hat{N} hypersurfaces through q and $P \subset S^2$
- So we have two orthogonal totally geodesic foliations, one of which has leaves isometric to S^2 , in particular geodesically complete
- Result by Ponge & Reckziegel (1993) gives gobal isometry!

Thank you!