CURVES IN LORENTZ-MINKOWSKI PLANE WITH PRESCRIBED CURVATURE

Ildefonso Castro-Infantes^{UGR} Joint work with Ildefonso Castro^{UJA} and Jesus Castro-Infantes^{UGR}

Dpt. of Geometry and Topology University of Granada Dpt. of Mathematics University of Jaén

Warsaw, June 2018

Partially supported by: Geometric Analysis Project (MTM2017-89677-P) and Grant (BES-2015-071993) of MINECO

1 Motivation and Introduction

- Curves with curvature depending on pseudodistance to a timelike geodesic
- Curves with curvature depending on pseudodistance to a lightlike geodesic
- Curves whose curvature depends on Lorentzian pseudodistance from the origin

Motivation and Introduction

- 2 Curves with curvature depending on pseudodistance to a timelike geodesic
- 3 Curves with curvature depending on pseudodistance to a lightlike geodesic
- Curves whose curvature depends on Lorentzian pseudodistance from the origin

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

D. Singer. *Curves whose curvature depends on distance from the origin.* Amer. Math. Monthly 106 (1999), 835–841.

Can a plane curve be determined if its curvature is given in terms of its position on the Euclidean plane?

$$\kappa = \kappa(x, y), \quad \frac{x'(t)y''(t) - y'(t)x''(t)}{\left(x'(t)^2 + y'(t)^2\right)^{3/2}} = \kappa(x(t), y(t))$$

D. Singer. *Curves whose curvature depends on distance from the origin.* Amer. Math. Monthly 106 (1999), 835–841.

Can a plane curve be determined if its curvature is given in terms of its position on the Euclidean plane?

$$\kappa = \kappa(x, y), \quad \frac{x'(t)y''(t) - y'(t)x''(t)}{\left(x'(t)^2 + y'(t)^2\right)^{3/2}} = \kappa(x(t), y(t))$$

• $\kappa(x, y) = \sqrt{x^2 + y^2} \Leftrightarrow \kappa(r) = r$: Bernoulli lemniscate $r^2 = 3\sin 2\theta$

D. Singer. *Curves whose curvature depends on distance from the origin.* Amer. Math. Monthly 106 (1999), 835–841.

Can a plane curve be determined if its curvature is given in terms of its position on the Euclidean plane?

$$\kappa = \kappa(x, y), \quad \frac{x'(t)y''(t) - y'(t)x''(t)}{\left(x'(t)^2 + y'(t)^2\right)^{3/2}} = \kappa(x(t), y(t))$$

- $\kappa(x, y) = \sqrt{x^2 + y^2} \Leftrightarrow \kappa(r) = r$: Bernoulli lemniscate $r^2 = 3\sin 2\theta$
 - κ(x, y) = κ(y). Castro I., Castro-Infantes I., *Plane curves with curvature depending on distance to a line*, Diff. Geom. Appl., 2016, 44, 77–97.
 - κ(x, y) = κ(√x² + y²). Castro I., Castro-Infantes I., Castro-Infantes, J., New plane curves with curvature depending on distance from the origin, Mediterr. J. Math., 2017, 14, 108:1–19.

Curves with prescribed curvature

Theorem $\kappa(y)$

Prescribe $\kappa = \kappa(y)$ continuous. The problem of determining a curve $\gamma(s) = (x(s), y(s))$ -s arc length- with curvature $\kappa(y)$ is solvable by: • $\int \kappa(y) dy = \mathcal{K}(y)$, geometric linear momentum.

•
$$s = s(y) = \int \frac{dy}{\sqrt{1 - (\mathcal{K}(y))^2}} \longrightarrow y = y(s) \longrightarrow \kappa = \kappa(s).$$

• $x(s) = -(\int \mathcal{K}(y(s)) ds).$

• γ is uniquely determined, up to translations in the x-direction, by $\mathcal{K}(y)$

Curves with prescribed curvature

Theorem $\kappa(y)$

Prescribe $\kappa = \kappa(y)$ continuous. The problem of determining a curve $\gamma(s) = (x(s), y(s))$ -s arc length- with curvature $\kappa(y)$ is solvable by:

• $\int \kappa(y) dy = \mathcal{K}(y)$, geometric linear momentum.

$$s = s(y) = \int \frac{dy}{\sqrt{1 - (\mathcal{K}(y))^2}} \dashrightarrow y = y(s) \dashrightarrow \kappa = \kappa(s).$$

$$x(s) = -(\int \mathcal{K}(y(s)) ds).$$

• γ is uniquely determined, up to translations in the *x*-direction, by $\mathcal{K}(y)$ **Theorem** $\kappa(r)$

Prescribe $\kappa = \kappa(r)$ such that $r\kappa(r)$ continuous. The problem of determining a curve $\gamma(s) = r(s) e^{i\theta(s)}$ with curvature $\kappa(r)$ is solvable by:

• $\int r\kappa(r)dr = \mathcal{K}(r)$, geometric angular momentum.

$$s = s(r) = \int \frac{rdr}{\sqrt{r^2 - (\mathcal{K}(r))^2}} \dashrightarrow r = r(s) \dashrightarrow \kappa = \kappa(s).$$

- γ is uniquely determined, up to rotations, by $\mathcal{K}(r)$

Elastica under *tension* $\sigma \in \mathbb{R}$: $2\ddot{\kappa} + \kappa^3 - \sigma \kappa = 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Elastica under tension $\sigma \in \mathbb{R}$: $2\ddot{\kappa} + \kappa^3 - \sigma \kappa = 0$

►
$$\kappa(y) = 2\lambda y, \ \lambda > 0 \rightarrow \mathcal{K}(y) = \lambda y^2 + c$$

elastica under tension $\sigma = -4\lambda c$

Maximum curvature $k_0 = 2\sqrt{\lambda}\sqrt{1-c}, \ c < 1$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Elastica under tension $\sigma \in \mathbb{R}$: $2\ddot{\kappa} + \kappa^3 - \sigma \kappa = 0$

►
$$\kappa(y) = 2\lambda y, \lambda > 0 \rightarrow \mathcal{K}(y) = \lambda y^2 + c$$

elastica under tension $\sigma = -4\lambda c$

Maximum curvature $k_0 = 2\sqrt{\lambda}\sqrt{1-c}, \ c < 1$

• c > -1, wavelike: $\kappa(s) = k_0 \operatorname{cn}\left(\frac{k_0 s}{2p}, p\right)$ $p^2 = \frac{1-c}{2}, s \in \mathbb{R}$

Elastica under tension $\sigma \in \mathbb{R}$: $2\ddot{\kappa} + \kappa^3 - \sigma \kappa = 0$

► $\kappa(y) = 2\lambda y, \lambda > 0 \rightarrow \mathcal{K}(y) = \lambda y^2 + c$ elastica under tension $\sigma = -4\lambda c$

Maximum curvature $k_0 = 2\sqrt{\lambda}\sqrt{1-c}, \ c < 1$

- c > -1, wavelike: $\kappa(s) = k_0 \operatorname{cn}\left(\frac{k_0 s}{2p}, p\right)$ $p^2 = \frac{1-c}{2}, s \in \mathbb{R}$
- c = -1, borderline: $\kappa(s) = k_0 \operatorname{sech} \frac{k_0 s}{2}$

Elastica under *tension* $\sigma \in \mathbb{R}$: $2\ddot{\kappa} + \kappa^3 - \sigma \kappa = 0$

► $\kappa(y) = 2\lambda y, \lambda > 0 \rightarrow \mathcal{K}(y) = \lambda y^2 + c$ elastica under tension $\sigma = -4\lambda c$

Maximum curvature $k_0 = 2\sqrt{\lambda}\sqrt{1-c}$, c < 1

• c > -1, wavelike: $\kappa(s) = k_0 \operatorname{cn}\left(\frac{k_0 s}{2p}, p\right)$ $p^2 = \frac{1-c}{2}, s \in \mathbb{R}$

• c = -1, borderline: $\kappa(s) = k_0 \operatorname{sech} \frac{k_0 s}{2}$ $s \in \mathbb{R}$ • c < -1, orbitlike: $\kappa(s) = k_0 \operatorname{dn}\left(\frac{k_0 s}{2}, p\right)$ $p^2 = \frac{2}{1-c}, s \in \mathbb{R}$

The **catenary** $y = \cosh x$, $x \in \mathbb{R}$ is the only plane curve (up to translations in the *x*-direction) with curvature $\kappa(y) = 1/y^2$ and geometric linear momentum $\mathcal{K}(y) = -1/y$.

The grim-reaper $y = -\log \sin x$, $0 < x < \pi$ is the only plane curve (up to translations in the x-direction) with curvature $\kappa(y) = e^{-y}$ and geometric linear momentum $\mathcal{K}(y) = -e^{-y}$.

The **Norwich spiral** is the only (non circular) plane curve, up to rotations, with curvature $\kappa(r) = 1/r$ and geometric angular momentum $\mathcal{K}(r) = r$.

The **Bernoulli lemniscate** $r^2 = 3 \sin 2\theta$ is the only plane curve, up to rotations, with geometric angular momentum $\mathcal{K}(r) = r^3/3$ and curvature is $\kappa(r) = r$.

The cardioid $r = \frac{9}{8\lambda^2}(1 + \cos\theta)$, is the only plane curve (up to rotations) with radial primitive curvature $\mathcal{K}(r) = \frac{2\lambda}{3}r\sqrt{r}$ and curvature is $\kappa(r) = \lambda/\sqrt{r}$.

We denote by $\mathbb{L}^2 := (\mathbb{R}^2, g = -dx^2 + dy^2)$ the Lorentz-Minkowski plane.

We denote by $\mathbb{L}^2 := (\mathbb{R}^2, g = -dx^2 + dy^2)$ the Lorentz-Minkowski plane. A non-zero vector $v \in \mathbb{L}^2$ is spacelike if g(v, v) > 0, lightlike if g(v, v) = 0, and timelike if g(v, v) < 0.

We denote by $\mathbb{L}^2 := (\mathbb{R}^2, g = -dx^2 + dy^2)$ the Lorentz-Minkowski plane. A non-zero vector $v \in \mathbb{L}^2$ is spacelike if g(v, v) > 0, lightlike if g(v, v) = 0, and timelike if g(v, v) < 0. A curve $\gamma = (x, y) : I \subseteq \mathbb{R} \to \mathbb{R}^2$ is called spacelike (resp. timelike) if the tangent vector $\gamma'(t)$ is spacelike (resp. timelike) for all $t \in I$. A point $\gamma(t)$ is called a lightlike point if $\gamma'(t)$ is a lightlike vector.

We denote by $\mathbb{L}^2 := (\mathbb{R}^2, g = -dx^2 + dy^2)$ the Lorentz-Minkowski plane. A non-zero vector $v \in \mathbb{L}^2$ is spacelike if g(v, v) > 0, lightlike if g(v, v) = 0, and timelike if g(v, v) < 0. A curve $\gamma = (x, y) : I \subseteq \mathbb{R} \to \mathbb{R}^2$ is called spacelike (resp. timelike) if the tangent vector $\gamma'(t)$ is spacelike (resp. timelike) for all $t \in I$. A point $\gamma(t)$ is called a lightlike point if $\gamma'(t)$ is a lightlike vector.

Classical Existence Theorem

It is possible to obtain a parametrization by arc-length of a curve γ in terms of integrals of its curvature $\kappa = \kappa(s)$. Concretely, any spacelike curve $\alpha(s)$ in \mathbb{L}^2 can be represented (up to isometries) by $\alpha(s) = \left(\int \sinh \varphi(s) ds, \int \cosh \varphi(s) ds\right)$ with $\frac{d\varphi(s)}{ds} = \kappa(s)$, and any timelike curve $\beta(s)$ can be represented (up to isometries) by $\beta(s) = \left(\int \cosh \phi(s) ds, \int \sinh \phi(s) ds\right)$ with $\frac{d\phi(s)}{ds} = \kappa(s)$.

Singer's Problem on Lorentz-Minkowski plane

Geodesics

The spacelike geodesics are written as:

$$\alpha_{\varphi_0}(s) = (\sinh \varphi_0 s, \cosh \varphi_0 s), s \in \mathbb{R}, \ \varphi_0 \in \mathbb{R},$$

while the timelike geodesics can be written as:

$$\beta_{\phi_0}(s) = (\cosh \phi_0 s, \sinh \phi_0 s), \ s \in \mathbb{R}, \ \phi_0 \in \mathbb{R}.$$

Lorentzian Pseudodistance

We define the Lorentzian pseudodistance by

$$\delta: \mathbb{L}^2 \times \mathbb{L}^2 \to [0, +\infty), \ \delta(P, Q) = \sqrt{|g(\overrightarrow{PQ}, \overrightarrow{PQ})|}$$

Spacelike geodesics in \mathbb{L}^2 passing through *P* and with a point *P'* in *x*-axis. Then:

$$0 < \delta(P, P')^2 = \left(1 - \frac{1}{m^2}\right)y^2 = \frac{y^2}{\cosh^2 \varphi_0} \le y^2$$

► Equality holds if and only if vertical geodesic.

Thus: |y| is the maximum Lorentzian pseudodistance through spacelike geodesics from P = (x, y), $y \neq 0$, to the x-axis.

Singer's Problem on \mathbb{L}^2

Determine those curves $\gamma = (x, y)$ in \mathbb{L}^2 whose curvature κ depends on some given function $\kappa = \kappa(x, y)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Singer's Problem on \mathbb{L}^2

Determine those curves $\gamma = (x, y)$ in \mathbb{L}^2 whose curvature κ depends on some given function $\kappa = \kappa(x, y)$.

We focus on spacelike and timelike curves, since the curvature κ is in general not well defined on lightlike points, and because lightlike curves in \mathbb{L}^2 are segments parallel to the straight lines determining the light cone.

Determine those curves $\gamma = (x, y)$ in \mathbb{L}^2 whose curvature κ depends on some given function $\kappa = \kappa(x, y)$.

We focus on spacelike and timelike curves, since the curvature κ is in general not well defined on lightlike points, and because lightlike curves in \mathbb{L}^2 are segments parallel to the straight lines determining the light cone.

- **9** Pseudodistance to a fixed spacelike geodesic: $\kappa(x, y) = \kappa(x)$.
- **2** Pseudodistance to a fixed timelike geodesic: $\kappa(x, y) = \kappa(y)$.
- Pseudodistance to a fixed lightlike geodesic: κ(x, y) = κ(v),
 v = y x
- Pseudodistance to a fixed point: $\kappa(x, y) = \kappa(\rho)$, $\rho = \sqrt{|-x^2 + y^2|}$.

Determine those curves $\gamma = (x, y)$ in \mathbb{L}^2 whose curvature κ depends on some given function $\kappa = \kappa(x, y)$.

We focus on spacelike and timelike curves, since the curvature κ is in general not well defined on lightlike points, and because lightlike curves in \mathbb{L}^2 are segments parallel to the straight lines determining the light cone.

- **9** Pseudodistance to a fixed spacelike geodesic: $\kappa(x, y) = \kappa(x)$.
- **2** Pseudodistance to a fixed timelike geodesic: $\kappa(x, y) = \kappa(y)$.
- Pseudodistance to a fixed lightlike geodesic: κ(x, y) = κ(v),
 v = y x

• Pseudodistance to a fixed point: $\kappa(x, y) = \kappa(\rho)$, $\rho = \sqrt{|-x^2 + y^2|}$.

Duality between spacelike and timelike curves

If $\gamma = (x, y)$ is a spacelike (resp. timelike) curve with $\kappa = \kappa(y)$, then $\hat{\gamma} = (y, x)$ is a timelike (resp. spacelike) curve with $\kappa = \kappa(x)$.

1 Motivation and Introduction

- Curves with curvature depending on pseudodistance to a timelike geodesic
- 3 Curves with curvature depending on pseudodistance to a lightlike geodesic
- Curves whose curvature depends on Lorentzian pseudodistance from the origin

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Curvature depending on distance to a timelike geodesic

Theorem

Prescribe $\kappa = \kappa(y)$ continuous. Then the problem of determining locally a spacelike or timelike curve (x(s), y(s)) with geometric linear momentum $\mathcal{K}(y)$ (and curvature $\kappa(y)$ satisfying $d\mathcal{K} = \kappa(y)dy$), is solvable by quadratures by ($\epsilon = 1$ spacelike, $\epsilon = -1$ timelike)

$$\int \kappa(y) dy = \mathcal{K}(y).$$

$$s = s(y) = \int \frac{dy}{\sqrt{\mathcal{K}(y)^2 + \epsilon}},$$

where $\mathcal{K}(y)^2 + \epsilon > 0, \dashrightarrow y = y(s) \dashrightarrow \kappa(s).$

$$x(s) = \int \mathcal{K}(y(s)) ds.$$

▶ Such a curve is uniquely determined by $\mathcal{K}(y)$ up to a translation in the *x*-direction (and a translation of the arc parameter *s*).

• $\mathcal{K}(y)$ will distinguish geometrically the curves inside a same family by their relative position with respect to the *x*-axis.

Example: geodesics

Geodesics: $\kappa \equiv 0$

• $\mathcal{K}(y) = c \in \mathbb{R}$. $s = \int \frac{dy}{\sqrt{c^2 + \epsilon}} = \frac{y}{\sqrt{c^2 + \epsilon}}$, $c^2 + \epsilon > 0$. x(s) = c s and $y(s) = \sqrt{c^2 + \epsilon} s$, $s \in \mathbb{R}$. $\epsilon = 1$: $K \equiv c := \sinh \varphi_0 \rightarrow$ spacelike geodesics α_{φ_0} . $c = 0 = \varphi_0$ corresponds to the y-axis. $\epsilon = -1$: $K \equiv c := \cosh \varphi_0 \rightarrow$ timelike geodesics β_{φ_0} . $c = 1 \Leftrightarrow \phi_0 = 0$ corresponds to the x-axis.

Example: circles

They correspond respectively to spacelike and timelike pseudocircles in \mathbb{L}^2 of radius $1/k_0$.

Elasticae on \mathbb{L}^2 : $\kappa(y) = 2ay + b$ with $a \neq 0$, $b \in \mathbb{R}$.

Definition

A spacelike or timelike curve γ is said to be an *elastica under tension* σ if it satisfies the differential equation $2\ddot{\kappa} - \kappa^3 - \sigma\kappa = 0$, for some value of $\sigma \in \mathbb{R}$.

The energy $E \in \mathbb{R}$ of an elastica is: $E := \dot{\kappa}^2 - \frac{1}{4}\kappa^4 - \frac{\sigma}{2}\kappa^2$.

Elasticae on \mathbb{L}^2 : $\kappa(y) = 2ay + b$ with $a \neq 0$, $b \in \mathbb{R}$.

Definition

A spacelike or timelike curve γ is said to be an *elastica under tension* σ if it satisfies the differential equation $2\ddot{\kappa} - \kappa^3 - \sigma\kappa = 0$, for some value of $\sigma \in \mathbb{R}$.

The energy $E \in \mathbb{R}$ of an elastica is: $E := \dot{\kappa}^2 - \frac{1}{4}\kappa^4 - \frac{\sigma}{2}\kappa^2$.

Proposition

Let γ be a spacelike or timelike curve in \mathbb{L}^2 .

If the curvature of γ is given by κ(y) = 2ay + b, a ≠ 0, b ∈ ℝ, with geometric linear momentum K(y) = ay² + by + c, a ≠ 0, b, c ∈ ℝ:

Then γ is an elastica under tension $\sigma = 4ac - b^2$ and energy $E = 4\epsilon a^2 + \sigma^2/4$ (where $\epsilon = 1$ if γ is spacelike and $\epsilon = -1$ if γ is timelike).

•
$$\mathcal{K}(y) = y^2 + c$$
, $c = \sinh \eta \in \mathbb{C}$ $(s_\eta = \sinh \eta \text{ and } c_\eta = \cosh \eta)$
 $x_\eta(s) = (s_\eta + c_\eta)s + \sqrt{c_\eta} \left(cn(\sqrt{c_\eta} s, k_\eta) \left(k_\eta^2 \operatorname{sd}(\sqrt{c_\eta} s, k_\eta) - \operatorname{ds}(\sqrt{c_\eta} s, k_\eta) \right) - 2E(\sqrt{c_\eta} s, k_\eta) \right)$
 $y_\eta(s) = \sqrt{c_\eta} \operatorname{cs}(\sqrt{c_\eta} s, k_\eta) \operatorname{nd}(\sqrt{c_\eta} s, k_\eta), \ k_\eta^2 = \frac{1 - \tanh \eta}{2}$

 $\kappa_{\eta}(s) = 2\sqrt{c_{\eta}} \operatorname{cs}(\sqrt{c_{\eta}} s, k_{\eta}) \operatorname{nd}(\sqrt{c_{\eta}} s, k_{\eta}).$

Spacelike elastic curves $\alpha_\eta = (x_\eta, y_\eta)$, $(\eta = 0, 1, 5, -1, 5)$.

•
$$\mathcal{K}(y) = y^2 + \cosh^2 \delta, \ \delta > 0, \ (c > 1).$$

 $x_{\delta}(s) = c_{\delta}^2 s + \sqrt{c_{\delta}^2 + 1} \left(dn(\sqrt{c_{\delta}^2 + 1} s, k_{\delta}) tn(\sqrt{c_{\delta}^2 + 1} s, k_{\delta}) - E(\sqrt{c_{\delta}^2 + 1} s, k_{\delta}) \right),$
 $y_{\delta}(s) = s_{\delta} tn(\sqrt{c_{\delta}^2 + 1} s, k_{\delta}), \ k_{\delta}^2 = \frac{2}{1 + \cosh^2 \delta},$
 $s \in \left((2m - 1)\mathcal{K}(k_{\delta})/\sqrt{c_{\delta}^2 + 1}, \ (2m + 1)\mathcal{K}(k_{\delta})/\sqrt{c_{\delta}^2 + 1} \right), \ m \in \mathbb{N}.$
 $\kappa_{\delta}(s) = 2s_{\delta} tn(\sqrt{c_{\delta}^2 + 1} s, k_{\delta}).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Timelike elastic curves $\beta_{\delta} = (x_{\delta}, y_{\delta})$ ($\delta = 0, 5, 1, 1, 5$).

•
$$\mathcal{K}(y) = y^2 + \sin \psi$$
, $|\psi| < \pi/2$, $(|c| < 1)$.
 $x_{\psi}(s) = s + \sqrt{2} \left(dn(\sqrt{2}s, k_{\psi}) tn(\sqrt{2}s, k_{\psi}) - E(\sqrt{2}s, k_{\psi}) \right)$,
 $y_{\psi}(s) = \sqrt{1 - s_{\psi}} nc(\sqrt{2}s, k_{\psi})$, $k_{\psi}^2 = \frac{1 + \sin \psi}{2}$,
 $s \in \left((2m - 1)K(k_{\psi})/\sqrt{2}, (2m + 1)K(k_{\psi})/\sqrt{2} \right)$, $m \in \mathbb{N}$.
 $\kappa_{\psi}(s) = 2\sqrt{1 - s_{\psi}} nc(\sqrt{2}s, k_{\psi})$.

Timelike elastic curves $\beta_{\psi} = (x_{\psi}, y_{\psi}) \ (\psi = -\pi/4, 0, \pi/6).$

•
$$\mathcal{K}(y) = y^2 - \cosh^2 \tau, \ \tau > 0, \ (c < -1).$$

 $x_{\tau}(s) = -s + \sqrt{1 + c_{\tau}^2} \left(dn(\sqrt{1 + c_{\tau}^2} s, k_{\tau}) tn(\sqrt{1 + c_{\tau}^2} s, k_{\tau}) - E(\sqrt{1 + c_{\tau}^2} s, k_{\tau}) \right),$
 $y_{\tau}(s) = \sqrt{1 + c_{\tau}^2} dc(\sqrt{1 + c_{\tau}^2} s, k_{\tau}), \ k_{\tau}^2 = \frac{\sinh^2 \tau}{1 + \cosh^2 \tau},$
 $s \in \left((2m - 1)K(k_{\tau})/\sqrt{1 + c_{\tau}^2}, (2m + 1)K(k_{\tau})/\sqrt{1 + c_{\tau}^2} \right), \ m \in \mathbb{N}.$
 $\kappa_{\tau}(s) = 2\sqrt{1 + c_{\tau}^2} dc(\sqrt{1 + c_{\tau}^2} s, k_{\tau}).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Timelike elastic curves $\beta_{\tau} = (x_{\tau}, y_{\tau})$, $(\tau = 1, 2, 3)$.

Curves with $\kappa(y) = \lambda/y^2$, $\lambda > 0 \rightarrow \lambda = 1$

- $\mathcal{K}(y) = -1/y$. Lorentzian catenaries $\epsilon = 1$. Spacelike case: $x(s) = \mp \arccos s, s > 1$. $y(s) = \pm \sqrt{s^2 - 1}, |s| > 1$. $\kappa(s) = \frac{1}{s^2 - 1}, s > 1$.
 - $$\begin{split} \varepsilon &= -1. \text{ Timelike case:} \\ x(s) &= \mp \arcsin s, |s| < 1. \\ y(s) &= \pm \sqrt{1 s^2}, |s| < 1. \\ \kappa(s) &= \frac{1}{1 s^2}, |s| < 1. \end{split}$$

Curves with $\kappa(y) = \lambda/y^2$, $\lambda > 0 \rightarrow \lambda = 1$

Lorentzian catenaries.

Kobayashi introduced, by studying maximal rotation surfaces in \mathbb{L}^3 , (up to dilations) the catenoid of the first kind with equation $y^2 + z^2 - \sinh^2 x = 0$ and the catenoid of the second kind with equation $x^2 - z^2 = \cos^2 y$.

The generatrix curves of both catenoids may be referred as **Lorentzian catenaries** and coincide with the curves described before.

- The Lorentzian catenary of the first kind y = − sinh x, x ∈ ℝ, is the only spacelike curve (up to translations in the x-direction) with geometric linear momentum K(y) = −1/y.
- The Lorentzian catenary of the second kind x = ± cos y, |y| < π/2, is the only spacelike curve (up to translations in the y-direction) with geometric linear momentum K(x) = -1/x.</p>

Curves with $\kappa(y) = \lambda/y^2$, $\lambda > 0 \rightarrow \lambda = 1$

Curves with $\mathcal{K}(y) = c - 1/y$; $c \leq 0$ (left) and $c \geq 0$ (right).

Curves with $\kappa(y)=\lambda/y^2$, $\lambda>0 o\lambda=1$

•
$$\mathcal{K}(y) = c - 1/y$$
. $\epsilon = -1$, Timelike case:

$$\begin{array}{ll} \cdot \ \mathcal{K}(y) = 1 - 1/y; & \cdot \ \mathcal{K}(y) = -1 - 1/y; \\ x = \frac{(2 - y)\sqrt{1 - 2y}}{3}, \ y < 1/2. & x = -\frac{(2 + y)\sqrt{1 + 2y}}{3}, \ y > -1/2. \end{array}$$

$$\begin{split} \cdot \ \mathcal{K}(y) &= c - 1/y, \ |c| > 1: \\ x &= \frac{1}{c^2 - 1} \left(c \sqrt{(c^2 - 1)y^2 - 2cy + 1} + \frac{\log \left(2(\sqrt{c^2 - 1}\sqrt{(c^2 - 1)y^2 - 2cy + 1} + (c^2 - 1)y - c) \right)}{\sqrt{c^2 - 1}} \right). \\ \cdot \ \mathcal{K}(y) &= c - 1/y, \ |c| < 1: \\ x &= \frac{1}{c^2 - 1} \left(c \sqrt{(c^2 - 1)y^2 - 2cy + 1} - \frac{1}{\sqrt{1 - c^2}} \arcsin((c^2 - 1)y - c) \right) \end{split}$$

Curves with $\kappa(y) = \lambda e^y$, $\lambda > 0 \rightarrow \lambda = 1$

• $\mathcal{K}(y) = e^y$. Lorentzian grim-reapers. e = 1. Spacelike case: x(s) = $-\log \tanh(-s/2), s < 0.$ $y(s) = \log(-\operatorname{csch} s), s < 0.$ $\kappa(s) = -\operatorname{csch} s, s < 0.$

$$\begin{aligned} \varepsilon &= -1. \text{ Timelike case:} \\ x(s) &= \\ \log(\sec s + \tan s), |s| < \pi/2. \\ y(s) &= \log \sec s, |s| < \pi/2.. \\ \kappa(s) &= \sec s, |s| < \pi/2. \end{aligned}$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ・ つくぐ

Curves with $\kappa(y) = \lambda e^{y}$, $\lambda > 0$

• $\mathcal{K}(y) = e^y + c$, $c \neq 0$.

Spacelike case (
$$\epsilon = 1$$
):
 $x = \operatorname{arcsinh}(e^{y} + c) - \frac{c}{\sqrt{c^{2}+1}}\operatorname{arcsinh}(c + (c^{2}+1)e^{-y}).$

$$\begin{aligned} & \mathsf{Timelike \ case} \ (\epsilon = -1): \\ & \cdot \mathcal{K}(y) = e^{y} + 1: \\ & x = 2 \log(\sqrt{e^{y}} + \sqrt{e^{y} + 2}) - \sqrt{1 + 2e^{-y}} \\ & \cdot \mathcal{K}(y) = e^{y} + c, \ |c| > 1: \\ & x = \log\left(2(\sqrt{P(e^{y})} + e^{y} + c)\right) - \\ & \frac{c \log\left(2e^{-y}(\sqrt{c^{2} - 1}\sqrt{P(e^{y})} + c^{2} + c^{2} - 1)\right)}{\sqrt{c^{2} - 1}} \end{aligned}$$

Other curves in \mathbb{L}^2

- $\mathcal{K}(y) = -\coth y$. $x(s) = \pm \sqrt{s^2 1}$, $y(s) = \pm \operatorname{arccosh} s, s > 1$. $\kappa(s) = \frac{1}{s^2 - 1}$. Lorentzian catenary of 1st kind: $x = -\sinh y$, $y \in \mathbb{R}$.
- $\mathcal{K}(y) = \tan y$. $x(s) = \mp \sqrt{1 s^2}$, $y(s) = \pm \arcsin s$, |s| < 1. $\kappa(s) = \frac{1}{1 - s^2}$. Lorentzian catenary of 2nd kind $x = \pm \cos y$, $|y| < \pi/2$.
- $\mathcal{K}(y) = \cosh y$. $x(s) = -\log (\sinh(-s))$, $y(s) = 2 \operatorname{arctanh} e^s$, s < 0. $\kappa(s) = -\operatorname{csch} s$. Lorentzian grim-reaper $y = \log(\sinh x)$, x > 0.

• $\mathcal{K}(y) = \sinh y.$ $\mathbf{x}(s) = \log(2 \csc s),$ $\mathbf{y}(s) = \log (\tan(s/2)).$ $\mathbf{\kappa}(s) = \csc s, |s| < \pi$

1 Motivation and Introduction

- 2 Curves with curvature depending on pseudodistance to a timelike geodesic
- 3 Curves with curvature depending on pseudodistance to a lightlike geodesic
- Curves whose curvature depends on Lorentzian pseudodistance from the origin

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

Prescribe $\kappa = \kappa(v)$ continuous. Then the problem of determining locally a spacelike or timelike curve

$$\left(\frac{u(s)-v(s)}{2}, \frac{u(s)+v(s)}{2}\right)$$

with geometric linear momentum $\mathcal{K}(v)$ (and curvature $\kappa(v)$ satisfying $-\epsilon d(1/\mathcal{K}) = \kappa(v)dv$) is solvable by quadratures by $\epsilon = 1$ spacelike, $\epsilon = -1$ timelike.

•
$$\int \kappa(v) dv = \frac{-\epsilon}{\mathcal{K}(v)},$$

•
$$s = s(v) = \epsilon \int \mathcal{K}(v) dv, \dashrightarrow v = v(s), \dashrightarrow \kappa(s)$$

•
$$u(s) = \int \mathcal{K}(v(s)) ds.$$

▶ Such a curve is uniquely determined by $\mathcal{K}(v)$ up to a translation in the *u*-direction (and a translation of the arc parameter *s*).

• $\mathcal{K}(v)$ will distinguish geometrically the curves inside a same family by their relative position with respect to the *u*-axis.

Examples: constant curvature

Geodesics: $\kappa \equiv 0$

•
$$\mathcal{K}(v) = -\epsilon/c, \ c \neq 0. \ u(s) = -\epsilon s/c, \ v(s) = -cs, \ s \in \mathbb{R}$$

(lines passing through the origin with slope $m = \frac{\epsilon + c^2}{\epsilon - c^2}$.) $\epsilon = 1 \Rightarrow |m| > 1$ spacelike geodesics, $\epsilon = -1 \Rightarrow |m| < 1$ timelike geodesics.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Examples: constant curvature

Geodesics: $\kappa \equiv 0$ • $\mathcal{K}(v) = -\epsilon/c, \ c \neq 0. \ u(s) = -\epsilon s/c, \ v(s) = -cs, \ s \in \mathbb{R},$ (lines passing through the origin with slope $m = \frac{\epsilon + c^2}{\epsilon - c^2}$.) $\epsilon = 1 \Rightarrow |m| > 1$ spacelike geodesics, $\epsilon = -1 \Rightarrow |m| < 1$ timelike geodesics.

Elastica under tension σ equation: $2\ddot{\kappa} - \kappa^3 - \sigma\kappa = 0$, with $\sigma \in \mathbb{R}$. *Energy* $E \in \mathbb{R}$ of an elastica: $E := \dot{\kappa}^2 - \frac{1}{4}\kappa^4 - \frac{\sigma}{2}\kappa^2$.

Elastica under tension σ equation: $2\dot{\kappa} - \kappa^3 - \sigma\kappa = 0$, with $\sigma \in \mathbb{R}$. Energy $E \in \mathbb{R}$ of an elastica: $E := \dot{\kappa}^2 - \frac{1}{4}\kappa^4 - \frac{\sigma}{2}\kappa^2$.

• $\mathcal{K}(v) = -\frac{\epsilon}{v^2 + c}$, $c \in \mathbb{R}$. ($\epsilon = 1$ spacelike, $\epsilon = -1$ timelike)

Spacelike (blue) and timelike (red) elastic curve with $\sigma = E = 0$.

Elastica under tension σ equation: $2\ddot{\kappa} - \kappa^3 - \sigma\kappa = 0$, with $\sigma \in \mathbb{R}$. Energy $E \in \mathbb{R}$ of an elastica: $E := \dot{\kappa}^2 - \frac{1}{4}\kappa^4 - \frac{\sigma}{2}\kappa^2$.

• $\mathcal{K}(v) = -\frac{\epsilon}{v^2 + c}$, $c \in \mathbb{R}$. ($\epsilon = 1$ spacelike, $\epsilon = -1$ timelike)

Spacelike (blue) and timelike (red) elastic curves in \mathbb{L}^2 with $\sigma = 4c > 0$ and $E = 4c^2$, c = 1, 2, 3.

Elastica under tension σ equation: $2\ddot{\kappa} - \kappa^3 - \sigma\kappa = 0$, with $\sigma \in \mathbb{R}$. Energy $E \in \mathbb{R}$ of an elastica: $E := \dot{\kappa}^2 - \frac{1}{4}\kappa^4 - \frac{\sigma}{2}\kappa^2$.

• $\mathcal{K}(v) = -\frac{\epsilon}{v^2 + c}$, $c \in \mathbb{R}$. ($\epsilon = 1$ spacelike, $\epsilon = -1$ timelike)

Curves with
$$\kappa(v) = a/v^2$$
, $a \neq 0 \rightarrow a = 1$

Spacelike (blue) and timelike (red) curve in \mathbb{L}^2 with $\mathcal{K}(v) = \epsilon v$, $\epsilon = \pm 1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Curves with $\kappa(v) = a/v^2$, $a \neq 0 \rightarrow a = 1$

Curves with
$$\kappa(v) = a e^{v}$$
, $a \neq 0 \rightarrow a = 1$

• $\mathcal{K}(v) = -\frac{\epsilon}{e^v + c}$, $c \in \mathbb{R}$. ($\epsilon = 1$ spacelike, $\epsilon = -1$ timelike)

Curves with
$$\kappa(v) = a e^{v}$$
, $a \neq 0 \rightarrow a = 1$

•
$$\mathcal{K}(v) = -\frac{\epsilon}{e^v + c}, c \in \mathbb{R}.$$
 ($\epsilon = 1$ spacelike, $\epsilon = -1$ timelike)
• $c = 0: u(s) = -\epsilon s^2/2, \quad v(s) = -\log s, \quad \kappa(s) = 1/s, s > 0.$

Lorentzian grim-reapers

The curves are the graph of $u = -\epsilon e^{-2\nu}/2$, $\nu \in \mathbb{R}$. They satisfy the translating-type soliton equation $\kappa = g((1, 1), N)$.

Spacelike (blue) and timelike (red) curves with $\mathcal{K}(\underline{v}) = \frac{\epsilon}{\epsilon} \frac{\epsilon}{e^{v}}$.

Curves with
$$\kappa(v) = a e^{v}$$
, $a \neq 0 \rightarrow a = 1$

Spacelike curves (blue) and timelike curves (red) with $\mathcal{K}(v) = -\frac{c}{e^v + c}, \ c \neq 0.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1 Motivation and Introduction

- 2 Curves with curvature depending on pseudodistance to a timelike geodesic
- 3 Curves with curvature depending on pseudodistance to a lightlike geodesic
- 4 Curves whose curvature depends on Lorentzian pseudodistance from the origin

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Curvature depending on pseudodistance from the origin

We study $\gamma = (x, y)$ with $\kappa = \kappa(\rho)$, where ρ is the Lorentzian pseudodistance from the origin:

$$ho:=\sqrt{|g(\gamma,\gamma)|}=\sqrt{|-x^2+y^2|}\geq 0.$$

We use what we can call *pseudopolar coordinates* (ρ, ν) , $\rho \ge 0$, $\nu \in \mathbb{R}$ being the *orthochrone angle*. Since $g(\gamma, \gamma) = -x^2 + y^2 = \pm \rho^2$, we distinguish:

$$\gamma^{+} \equiv \begin{cases} x = \rho \, \sinh \nu, \, y = \rho \, \cosh \nu, & \text{if } -x^{2} + y^{2} \ge 0, \, y \ge 0\\ x = -\rho \, \sinh \nu, \, y = -\rho \, \cosh \nu, & \text{if } -x^{2} + y^{2} \ge 0, \, y \le 0 \end{cases}$$

$$\gamma^{-} \equiv \begin{cases} x = \rho \cosh \nu, \ y = \rho \sinh \nu, & \text{if } -x^{2} + y^{2} \le 0, y \ge 0\\ x = -\rho \cosh \nu, \ y = -\rho \sinh \nu, & \text{if } -x^{2} + y^{2} \le 0, y \le 0 \end{cases}$$

In fact, it will be enough obviously to consider the first and third cases, since the map $(x, y) \rightarrow (-x, -y)$ is an isometry of \mathbb{L}^2 .

Theorem

Prescribe $\kappa = \kappa(\rho)$ such that $\rho \kappa(\rho)$ is continuous. Then the problem of determining locally a spacelike or timelike curve $\gamma_{\epsilon}^{\pm}(s) = (\pm \rho_{\epsilon}^{\pm}(s) \sinh \nu_{\epsilon}^{\pm}(s), \pm \rho_{\epsilon}^{+}(s) \cosh \nu_{\epsilon}^{\pm}(s)),$ with geometric angular momentum $\mathcal{K}(\rho)$ (and curvature $\kappa(\rho)$ satisfying $d\mathcal{K} = \rho \kappa(\rho) d\rho$ is solvable by ($\epsilon = 1$ spacelike, $\epsilon = -1$ timelike) $\int \rho \, \kappa(\rho) d\rho = \mathcal{K}(\rho).$ $\rho = \rho_c^{\pm}(s) > 0. \dashrightarrow \kappa(s)$ • $\nu_{\epsilon}^{\pm}(s) = \int \frac{\mathcal{K}(\rho_{\epsilon}^{\pm}(s))}{\rho_{\epsilon}^{\pm}(s)^2} ds$, where $\rho_{\epsilon}^{\pm}(s) > 0$. Such a curve is uniquely determined by $\mathcal{K}(\rho)$ up to a ν -orthochrone Lorentz transformation (and a translation of the arc parameter s).

• $\mathcal{K}(\rho)$ will distinguish geometrically the curves inside a same family by their relative position with respect to the origin.

Curves with $\kappa \equiv 2k_0 > 0$

Constant curvature: pseudocircles

$$\begin{split} \mathcal{K}(\rho) &= k_0 \rho^2 + c, \ c \in \mathbb{R}. \qquad s = \int \rho \ d\rho / \sqrt{(k_0 \rho^2 + c)^2 \pm \rho^2}. \\ \bullet \ \mathcal{K}(\rho) &= k_0 \rho^2. \\ \rho^+(s) &= \frac{\sinh(k_0 s)}{k_0}, \ \nu^+(s) = k_0 s. \\ \rho^-(s) &= \frac{\cosh(k_0 s)}{k_0}, \ \nu^-(s) = k_0 s. \end{split}$$
 Pseudocircles of radius 1/2k_0.

Spacelike (blue) and timelike (red) pseudocircle with $\mathcal{K}(\rho)=\rho^2/2$ $(\kappa\equiv 1)$ in $\mathbb{L}^2.$

Norwich spiral: $\kappa(\rho) = \frac{1}{\rho}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Curves with $\kappa(
ho)=2\lambda+\mu/
ho$, $\lambda,\mu
eq0 o\lambda=1$

$$\begin{aligned} \bullet \ \mathcal{K}(\rho) &= \rho^2 + \mu \rho, \qquad (\mu = \sinh \eta, \ \eta \in \mathbb{R}) \\ \rho_{\eta}^+(s) &= \sinh s - \sinh \eta, \qquad \nu_{\eta}^+(s) = s + \tanh \eta \log \left(\frac{\sinh(\frac{s-\eta}{2})}{\cosh(\frac{s+\eta}{2})}\right), \ s > \eta. \end{aligned}$$

Curves with $\kappa(
ho)=2\lambda+\mu/
ho$, $\lambda,\mu
eq0 o\lambda=1$

$$\begin{aligned} \bullet \ \mathcal{K}(\rho) &= \rho^2 + \mu \rho, \qquad (\mu = \sinh \eta, \ \eta \in \mathbb{R}) \\ \rho_{\eta}^+(s) &= \sinh s - \sinh \eta, \qquad \nu_{\eta}^+(s) = s + \tanh \eta \log \left(\frac{\sinh(\frac{s-\eta}{2})}{\cosh(\frac{s+\eta}{2})}\right), \ s > \eta. \end{aligned}$$

・ロト・西ト・ヨト・ヨー もくの

Curves with $\kappa(
ho)=2\lambda+\mu/
ho$, $\lambda,\mu
eq 0
ightarrow\lambda=1$

•
$$\mathcal{K}(\rho) = \rho^2 + \mu \rho$$
, $(\mu = \sinh \eta, \eta \in \mathbb{R})$
 $\rho_{\eta}^+(s) = \sinh s - \sinh \eta$, $\nu_{\eta}^+(s) = s + \tanh \eta \log\left(\frac{\sinh(\frac{s-\eta}{2})}{\cosh(\frac{s+\eta}{2})}\right)$, $s > \eta$.

Curves with $\kappa(ho)=2\lambda+\mu/ ho$, $\lambda,\mu eq0 o\lambda=1$

•
$$\mathcal{K}(\rho) = \rho^2 + \mu\rho$$
, $(\mu = \sinh\eta, \eta \in \mathbb{R})$
 $\rho_{\eta}^+(s) = \sinh s - \sinh\eta$, $\nu_{\eta}^+(s) = s + \tanh\eta \log\left(\frac{\sinh(\frac{s-\eta}{2})}{\cosh(\frac{s+\eta}{2})}\right)$, $s > \eta$.
• $\mu < -1$. $\mu = -\cosh\tau$, $\tau > 0$.
 $\rho_{\tau}^-(s) = \cosh s + \cosh\tau$,
 $\nu_{\tau}^-(s) = s + \coth\tau \log\left(\frac{\cosh(\frac{s-\tau}{2})}{\cosh(\frac{s+\tau}{2})}\right)$, $s \in \mathbb{R}$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

•
$$\mathcal{K}(\rho) = \frac{\lambda}{n+1} \rho^{n+1} \begin{cases} \lambda \rho_+^n = (n+1) \sinh(n\nu_+), \ n \neq 0, \ n \neq -1, \\ \lambda \rho_-^n = (n+1) \cosh(n\nu_-), \ n \neq 0, \ n \neq -1, \end{cases}$$

(ロ)、(国)、(E)、(E)、(E)、(O)へ(C)

•
$$\mathcal{K}(\rho) = \frac{\lambda}{n+1} \rho^{n+1} \begin{cases} \lambda \rho_+^n = (n+1) \sinh(n\nu_+), & n \neq 0, n \neq -1, \\ \lambda \rho_-^n = (n+1) \cosh(n\nu_-), & n \neq 0, n \neq -1, \end{cases}$$

• $n = 2$: the Lorentzian Bernoulli pseudolemniscate $\rho_+^2 = \sinh 2\nu_+, \rho_-^2 = \cosh 2\nu_-$ with $\mathcal{K}(\rho) = \rho^3$.
• $n = 1/2$: the Lorentzian pseudocardioid $\sqrt{\rho_+} = \sinh(\nu_+/2), \sqrt{\rho_-} = \cosh(\nu_-/2)$ with $\mathcal{K}(\rho) = \rho^{3/2}$.

Sinusoidal spirals with n = 2 (left) and n = 1/2 (right).

•
$$\mathcal{K}(\rho) = \frac{\lambda}{n+1} \rho^{n+1} \begin{cases} \lambda \rho_+^n = (n+1) \sinh(n\nu_+), & n \neq 0, n \neq -1, \\ \lambda \rho_-^n = (n+1) \cosh(n\nu_-), & n \neq 0, n \neq -1, \end{cases}$$

9 n = 1: the pseudocircles $\rho_+ = \sinh \nu_+$, $\rho_- = \cosh \nu_-$ with $\mathcal{K}(\rho) = \rho^2$.

- n = -2: the Lorentzian equilateral pseudohyperbolas $\rho_+^2 = -1/\sinh 2\nu_+, \ \rho_-^2 = 1/\cosh 2\nu_-$ with $\mathcal{K}(\rho) = 1/\rho$.
- n = -1/2: the Lorentzian pseudoparabolas $\sqrt{\rho}_{+} = -1/\sinh(\nu_{+}/2), \ \sqrt{\rho}_{-} = 1/\cosh(\nu_{-}/2)$ with $\mathcal{K}(\rho) = \sqrt{\rho}$.

Sinusoidal spirals: n = 1 (left), n = -2 (center), $n = -\frac{1}{2}$ (right).

•
$$\mathcal{K}(\rho) = \frac{\lambda}{n+1} \rho^{n+1} \begin{cases} \lambda \, \rho_+^n = (n+1) \sinh(n\nu_+), \ n \neq 0, \ n \neq -1, \\ \lambda \, \rho_-^n = (n+1) \cosh(n\nu_-), \ n \neq 0, \ n \neq -1, \end{cases}$$

• Some general examples of $\mathcal{K}(\rho) = \frac{\lambda}{n+1} \rho^{n+1}$

Sinusoidal spirals: $n \ge 5/2$ (left) and $n \le -3/2$ (right), $n \in \mathbb{Q}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Thanks for your attention!