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Singer’s Problem on the Euclidean plane

D. Singer. Curves whose curvature depends on distance from the origin.
Amer. Math. Monthly 106 (1999), 835–841.

Can a plane curve be determined if its curvature is given in terms of its
position on the Euclidean plane?

κ = κ(x , y),
x ′(t)y ′′(t)− y ′(t)x ′′(t)

(x ′(t)2 + y ′(t)2)3/2 = κ(x(t), y(t))

• κ(x , y) =
√

x2 + y2 ⇔ κ(r) = r : Bernoulli lemniscate r2 = 3 sin 2θ

1 κ(x , y) = κ(y). Castro I., Castro-Infantes I., Plane curves with
curvature depending on distance to a line, Diff. Geom. Appl., 2016,
44, 77–97.

2 κ(x , y) = κ(
√

x2 + y2). Castro I., Castro-Infantes I.,
Castro-Infantes, J., New plane curves with curvature depending on
distance from the origin, Mediterr. J. Math., 2017, 14, 108:1–19.
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Curves with prescribed curvature

Theorem κ(y)

Prescribe κ = κ(y) continuous. The problem of determining a curve
γ(s) = (x(s), y(s)) -s arc length- with curvature κ(y) is solvable by:

1

∫
κ(y)dy = K(y), geometric linear momentum.

2 s = s(y) =
∫ dy√

1− (K(y))2
99K y = y(s) 99K κ = κ(s).

3 x(s) = − (
∫
K(y(s))ds).

• γ is uniquely determined, up to translations in the x-direction, by K(y)

Theorem κ(r)

Prescribe κ = κ(r) such that rκ(r) continuous. The problem of

determining a curve γ(s) = r(s) e iθ(s) with curvature κ(r) is solvable by:

1

∫
rκ(r)dr = K(r), geometric angular momentum.

2 s= s(r)=
∫

rdr√
r2−(K(r ))2

99K r= r(s) 99K κ = κ(s).

3 θ(s)=
∫ K(r (s))

r (s)2
ds.

• γ is uniquely determined, up to rotations, by K(r)
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Singer’s Problem on the Euclidean plane:
Euler elastic curves

Elastica under tension σ ∈ R: 2κ̈ + κ3 − σ κ = 0

I κ(y) = 2λy , λ > 0 → K(y) = λy2 + c
elastica under tension σ = −4λc

Maximum curvature k0 = 2
√

λ
√

1− c , c < 1

• c > −1, wavelike:

κ(s) = k0 cn
(
k0s
2p , p

)
p2 = 1−c

2 , s ∈ R

• c = −1, borderline:

κ(s) = k0 sech k0s
2

s ∈ R

• c < −1, orbitlike:

κ(s)=k0 dn
(
k0s
2 , p

)
p2 = 2

1−c , s ∈ R
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Singer’s Problem on the Euclidean plane

The catenary y = cosh x , x ∈ R is the only
plane curve (up to translations in the
x-direction) with curvature κ(y) = 1/y2 and
geometric linear momentum K(y) = −1/y .

The grim-reaper y = − log sin x , 0 < x < π
is the only plane curve (up to translations in
the x-direction) with curvature κ(y) = e−y

and geometric linear momentum
K(y) = −e−y .



Singer’s Problem on the Euclidean plane

The Norwich spiral is the only (non
circular) plane curve, up to rotations,
with curvature κ(r) = 1/r and
geometric angular momentum K(r) = r .

The Bernoulli lemniscate r2 = 3 sin 2θ
is the only plane curve, up to rotations,
with geometric angular momentum
K(r) = r3/3 and curvature is κ(r) = r .

The cardioid r = 9
8λ2 (1 + cos θ), is the

only plane curve (up to rotations) with
radial primitive curvature
K(r) = 2λ

3 r
√
r and curvature is

κ(r) = λ/
√
r .



The Lorentz-Minkowski plane

We denote by L2 :=(R2, g=−dx2 + dy2) the Lorentz-Minkowski plane.

I A non-zero vector v ∈ L2 is spacelike if g(v , v) > 0, lightlike if
g(v , v) = 0, and timelike if g(v , v) < 0.
I A curve γ=(x , y) : I ⊆ R→ R2 is called spacelike (resp. timelike) if
the tangent vector γ′(t) is spacelike (resp. timelike) for all t ∈ I .
A point γ(t) is called a lightlike point if γ′(t) is a lightlike vector.

Classical Existence Theorem
It is possible to obtain a parametrization by arc-length of a curve γ in
terms of integrals of its curvature κ = κ(s). Concretely, any spacelike
curve α(s) in L2 can be represented (up to isometries) by

α(s) =

(∫
sinh ϕ(s)ds,

∫
cosh ϕ(s)ds

)
with

dϕ(s)

ds
= κ(s),

and any timelike curve β(s) can be represented (up to isometries) by

β(s) =

(∫
cosh φ(s)ds,

∫
sinh φ(s)ds

)
with

dφ(s)

ds
= κ(s).
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Singer’s Problem on Lorentz-Minkowski plane

Geodesics
The spacelike geodesics are written as:

αϕ0(s) = (sinh ϕ0 s, cosh ϕ0 s), s ∈ R, ϕ0 ∈ R,

while the timelike geodesics can be written as:

βφ0(s) = (cosh φ0 s, sinh φ0 s), s ∈ R, φ0 ∈ R.



Lorentzian Pseudodistance

We define the Lorentzian pseudodistance by

δ : L2 ×L2 → [0,+∞), δ(P,Q) =

√
|g(−→PQ,

−→
PQ)|.

Spacelike geodesics in L2 passing through P and with a point P ′ in x-axis.

Then:

0 < δ(P,P ′)2 =

(
1− 1

m2

)
y2 =

y2

cosh2 ϕ0
≤ y2

I Equality holds if and only if vertical geodesic.

Thus: |y | is the maximum Lorentzian pseudodistance through spacelike
geodesics from P=(x , y), y 6= 0, to the x-axis.



Singer’s Problem on L2

Singer’s Problem on L2

Determine those curves γ = (x , y) in L2 whose curvature κ depends on
some given function κ = κ(x , y).

We focus on spacelike and timelike curves, since the curvature κ is in
general not well defined on lightlike points, and because lightlike curves in
L2 are segments parallel to the straight lines determining the light cone.

1 Pseudodistance to a fixed spacelike geodesic: κ(x , y) = κ(x).
2 Pseudodistance to a fixed timelike geodesic: κ(x , y) = κ(y).
3 Pseudodistance to a fixed lightlike geodesic: κ(x , y) = κ(v),

v = y − x
4 Pseudodistance to a fixed point: κ(x , y) = κ(ρ),

ρ =
√
| − x2 + y2|.

Duality between spacelike and timelike curves

If γ = (x , y) is a spacelike (resp. timelike) curve with κ = κ(y),
then γ̂ = (y , x) is a timelike (resp. spacelike) curve with κ = κ(x).
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Curvature depending on distance to a timelike geodesic

Theorem

Prescribe κ = κ(y) continuous.
Then the problem of determining locally a spacelike or timelike curve
(x(s), y(s)) with geometric linear momentum K(y)
(and curvature κ(y) satisfying dK = κ(y)dy),
is solvable by quadratures by (ε = 1 spacelike, ε = −1 timelike)

1

∫
κ(y)dy = K(y).

2 s = s(y) =
∫

dy√
K(y)2 + ε

,

where K(y)2 + ε > 0, 99K y = y(s) 99K κ(s).

3 x(s) =
∫
K(y(s))ds.

I Such a curve is uniquely determined by K(y) up to a translation in the
x-direction (and a translation of the arc parameter s).
• K(y) will distinguish geometrically the curves inside a same family by
their relative position with respect to the x-axis.



Example: geodesics

Geodesics: κ ≡ 0

• K(y) = c ∈ R. s =
∫

dy√
c2 + ε

=
y√

c2 + ε
, c2 + ε > 0.

x(s) = c s and y(s) =
√
c2 + ε s, s ∈ R.

ε = 1: K ≡ c := sinh ϕ0 → spacelike geodesics αϕ0 .
c = 0 = ϕ0 corresponds to the y -axis.

ε = −1: K ≡ c := cosh φ0 → timelike geodesics βφ0 .
c = 1⇔ φ0 = 0 corresponds to the x-axis.



Example: circles

Circles: κ≡k0>0

• K(y) = k0y + c , c ∈ R. s =
∫ dy√

(k0y+c)2+ε
.

ε = 1: s = arcsinh(k0y + c)/k0.
x(s) = cosh(k0s)/k0 and y(s) = (sinh(k0s)− c)/k0.

ε = −1: s = arccosh(k0y + c)/k0
x(s) = sinh(k0s)/k0 and y(s) = (cosh(k0s)− c)/k0.

They correspond respectively to spacelike and timelike pseudocircles in L2 of

radius 1/k0.



Elasticae on L2: κ(y) = 2ay + b with a 6= 0, b ∈ R.

Definition
A spacelike or timelike curve γ is said to be an elastica under tension σ if
it satisfies the differential equation 2κ̈ − κ3 − σκ = 0, for some value of
σ ∈ R.

The energy E ∈ R of an elastica is: E := κ̇2 − 1

4
κ4 − σ

2
κ2.

Proposition

Let γ be a spacelike or timelike curve in L2.

If the curvature of γ is given by κ(y) = 2ay + b, a 6= 0, b ∈ R, with
geometric linear momentum K(y) = ay2 + by + c , a 6= 0, b, c ∈ R:

Then γ is an elastica under tension σ = 4ac − b2 and energy
E = 4εa2 + σ2/4 (where ε = 1 if γ is spacelike and ε = −1 if γ is
timelike).
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Spacelike elasticae ≡ κ(y) = 2y and ε = 1.

• K(y) = y2 + c , c = sinh η ∈ C (sη = sinh η and cη = cosh η)

xη(s) = (sη + cη)s +
√
cη

(
cn(
√
cη s, kη)

(
k2

η sd(
√
cη s, kη)− ds(

√
cη s, kη)

)
− 2E (

√
cη s, kη)

)
yη(s)=

√
cη cs(

√
cη s, kη) nd(

√
cη s, kη), k2η = 1−tanh η

2

κη(s) = 2
√
cη cs(

√
cη s, kη) nd(

√
cη s, kη).

Spacelike elastic curves αη = (xη, yη), (η = 0, 1,5,−1,5).



Timelike elasticae ≡ κ(y) = 2y and ε = −1.

• K(y) = y2 + 1 (c = 1).

x1(s) = s −
√

2 coth(
√

2s),

y1(s) = −
√
2

sinh(
√
2s)

, s 6= 0.

κ1(s) = − 2
√
2

sinh(
√
2s)

.

• K(y) = y2 − 1 (c = −1).

x−1(s) =
√

2 tan(
√

2s)− s,

y−1(s) = ±
√
2

cos(
√
2s)

, |s | < π
2
√
2

.

κ−1(s) =
∓2
√
2

cos(
√
2s)

.



Timelike elasticae ≡ κ(y) = 2y and ε = −1.

• K(y) = y2 + cosh2 δ, δ > 0, (c > 1).

xδ(s) = c2δ s +
√

c2δ + 1
(
dn(
√

c2δ + 1 s, kδ) tn(
√

c2δ + 1 s, kδ)− E (
√

c2δ + 1 s, kδ)
)

,

yδ(s) = sδ tn(
√

c2δ + 1 s, kδ), k2δ = 2
1+cosh2 δ

,

s ∈
(
(2m− 1)K (kδ)/

√
c2δ + 1, (2m+ 1)K (kδ)/

√
c2δ + 1

)
, m ∈N.

κδ(s) = 2sδ tn(
√

c2δ + 1 s, kδ).

Timelike elastic curves βδ = (xδ, yδ) (δ = 0,5, 1, 1,5).



Timelike elasticae ≡ κ(y) = 2y and ε = −1.

• K(y) = y2 + sin ψ, |ψ| < π/2, (|c | < 1).

xψ(s) = s +
√

2
(

dn(
√

2 s, kψ) tn(
√

2 s, kψ)− E (
√

2 s, kψ)
)

,

yψ(s) =
√

1− sψ nc(
√

2 s, kψ), k2ψ = 1+sinψ
2 ,

s ∈
(
(2m− 1)K (kψ)/

√
2, (2m+ 1)K (kψ)/

√
2
)
, m ∈N.

κψ(s) = 2
√

1− sψ nc(
√

2 s, kψ).

Timelike elastic curves βψ = (xψ, yψ) (ψ = −π/4, 0, π/6).



Timelike elasticae ≡ κ(y) = 2y and ε = −1.

• K(y) = y2 − cosh2 τ, τ > 0, (c < −1).

xτ(s) = = s+
√

1+c2τ

(
dn(
√

1+c2τ s, kτ) tn(
√

1+c2τ s, kτ)−E (
√

1+c2τ s, kτ)
)

,

yτ(s) =
√

1 + c2τ dc(
√

1 + c2τ s, kτ), k2τ = sinh2 τ
1+cosh2 τ

,

s ∈
(
(2m− 1)K (kτ)/

√
1+ c2τ , (2m+ 1)K (kτ)/

√
1+ c2τ

)
, m ∈N.

κτ(s) = 2
√

1 + c2τ dc(
√

1 + c2τ s, kτ).

Timelike elastic curves βτ = (xτ, yτ), (τ = 1, 2, 3).



Curves with κ(y) = λ/y 2, λ > 0 → λ = 1

• K(y) = −1/y . Lorentzian catenaries

ε = 1. Spacelike case:
x(s) = ∓ arccosh s, s > 1.

y(s) = ±
√
s2 − 1, |s | > 1.

κ(s) = 1
s2−1 , s > 1.

y = − sinh x , x ∈ R.

ε = −1. Timelike case:
x(s) = ∓ arcsin s, |s | < 1.

y(s) = ±
√

1− s2, |s | < 1.

κ(s) = 1
1−s2 , |s | < 1.

y = ± cos x , |x | < π/2.



Curves with κ(y) = λ/y 2, λ > 0 → λ = 1

Lorentzian catenaries.

Kobayashi introduced, by studying maximal rotation surfaces in L3, (up
to dilations) the catenoid of the first kind with equation
y2 + z2 − sinh2 x = 0 and the catenoid of the second kind with equation
x2 − z2 = cos2 y .

The generatrix curves of both
catenoids may be referred as
Lorentzian catenaries and
coincide with the curves described
before.

1 The Lorentzian catenary of the first kind y = − sinh x , x ∈ R, is the
only spacelike curve (up to translations in the x-direction) with
geometric linear momentum K(y) = −1/y .

2 The Lorentzian catenary of the second kind x = ± cos y , |y | < π/2,
is the only spacelike curve (up to translations in the y -direction)
with geometric linear momentum K(x) = −1/x .



Curves with κ(y) = λ/y 2, λ > 0 → λ = 1

• K(y) = c − 1/y . ε = 1, Spacelike case:

x = 1
c2+1

(
c
√
(c2 + 1)y2 − 2cy + 1− 1√

c2+1
arcsinh((c2 + 1)y − c)

)
.

Curves with K(y) = c − 1/y ; c ≤ 0 (left) and c ≥ 0 (right).



Curves with κ(y) = λ/y 2, λ > 0 → λ = 1

• K(y) = c − 1/y . ε = −1, Timelike case:

· K(y) = 1− 1/y :

x = (2−y )
√
1−2y

3 , y < 1/2.

· K(y) = −1− 1/y :

x = − (2+y )
√
1+2y

3 , y > −1/2.

· K(y) = c − 1/y , |c | > 1:

x = 1
c2−1

(
c
√
(c2 − 1)y2 − 2cy + 1+

log
(
2(
√
c2−1
√

(c2−1)y2−2cy+1+(c2−1)y−c)
)

√
c2−1

)
.

· K(y) = c − 1/y , |c | < 1:
x = 1

c2−1

(
c
√
(c2 − 1)y2 − 2cy + 1− 1√

1−c2
arcsin((c2 − 1)y − c)

)



Curves with κ(y) = λey , λ > 0 → λ = 1

• K(y) = ey . Lorentzian grim-reapers.

ε = 1. Spacelike case:
x(s) =
− log tanh(−s/2), s < 0.
y(s) = log(− csch s), s < 0.

κ(s) = − csch s, s < 0.

y = log(sinh x), x > 0.

ε = −1. Timelike case:
x(s) =
log(sec s + tan s), |s | < π/2.
y(s) = log sec s, |s | < π/2..

κ(s) = sec s, |s | < π/2.

y = log(cosh x), x ∈ R.



Curves with κ(y) = λey , λ > 0

• K(y) = ey + c , c 6= 0.

Spacelike case (ε = 1):
x = arcsinh(ey + c)−

c√
c2+1

arcsinh
(
c + (c2 + 1)e−y

)
.

Timelike case (ε = −1):
·K(y) = ey + 1:
x = 2 log(

√
ey +

√
ey + 2)−

√
1+ 2e−y .

·K(y) = ey + c , |c | > 1:
x = log

(
2(
√

P(ey ) + ey + c)
)
−

c log
(
2e−y (

√
c2−1

√
P(ey )+cey+c2−1)

)
√

c2−1

·K(y) = ey − 1:
x = 2 log(

√
ey +

√
ey − 2)−

√
1− 2e−y .

·K(y) = ey + c , |c | < 1:
x = log

(
2(
√

P(ey ) + ey + c)
)
+ c√

1−c2
arcsin

(
c + (c2 − 1)e−y

)
.



Other curves in L2

• K(y) = − coth y . x(s) = ∓
√
s2 − 1, y(s) = ± arccosh s, s > 1.

κ(s) = 1
s2−1 . Lorentzian catenary of 1st kind: x = − sinh y , y ∈ R.

• K(y) = tan y . x(s) = ∓
√

1− s2, y(s) = ± arcsin s, |s | < 1.
κ(s) = 1

1−s2 . Lorentzian catenary of 2nd kind x = ± cos y , |y | < π/2.

• K(y) = cosh y . x(s) = − log (sinh(−s)) , y(s) = 2 arctanh es , s < 0.
κ(s) = − csch s. Lorentzian grim-reaper y = log(sinh x), x > 0.

• K(y) = sinh y .
x(s) = log(2 csc s),
y(s) = log (tan(s/2)).
κ(s) = csc s, |s | < π
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Curvature depending on distance to a lightlike geodesic

Theorem

Prescribe κ = κ(v) continuous. Then the problem of determining locally
a spacelike or timelike curve(

u(s)−v (s)
2 ,

u(s)+v (s)
2

)
with geometric linear momentum K(v)
(and curvature κ(v) satisfying −ε d(1/K) = κ(v)dv)
is solvable by quadratures by ε = 1 spacelike, ε = −1 timelike.

1

∫
κ(v)dv =

−ε

K(v) ,

2 s = s(v) = ε
∫
K(v)dv , 99K v = v(s), 99K κ(s)

3 u(s) =
∫

K (v(s))ds.

I Such a curve is uniquely determined by K(v) up to a translation in the
u-direction (and a translation of the arc parameter s).
• K(v) will distinguish geometrically the curves inside a same family by
their relative position with respect to the u-axis.



Examples: constant curvature

Geodesics: κ ≡ 0

• K(v) = −ε/c , c 6= 0. u(s) = −εs/c , v(s) = −cs, s ∈ R,

(lines passing through the origin with slope m = ε+c2

ε−c2 .)
ε = 1⇒ |m| > 1 spacelike geodesics, ε = −1⇒ |m| < 1 timelike geodesics.

Circles: κ≡k0>0

• K(v) = −ε
(c+k0v )

, c ∈ R. u(s) = −εek0s/k0, v(s) = (e−k0s − c)/k0.

ε = 1 ⇒ x(s) = (− cosh(k0s) + c/2)/k0, y(s) = −(sinh(k0s) + c/2)/k0.
ε = −1 ⇒ x(s) = (sinh(k0s) + c/2)/k0, y(s) = (cosh(k0s)− c/2)/k0.

(Spacelike and timelike pseudocircles in L2 of radius 1/k0.)
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Curves with κ(v) = av + b, a 6= 0, b ∈ R → a = b = 1

Elastica under tension σ equation: 2κ̈ − κ3 − σκ = 0, with σ ∈ R.

Energy E ∈ R of an elastica: E := κ̇2 − 1

4
κ4 − σ

2
κ2.

• K(v) = − ε
v2+c

, c ∈ R. (ε = 1 spacelike, ε = −1 timelike)

1 c = 0: u(s) = −ε s3

3 , v(s) = 1/s, κ(s) = 2/s, s 6= 0.

Spacelike (blue) and timelike (red) elastic curve with σ = E = 0.

2 c > 0 u(s) = − ε
c

(
s
2 + sin(2

√
cs)

4
√
c

)
, v(s) = −

√
c tan(

√
cs).

κ(s) = −2
√
c tan(

√
cs), |s | < π/2

√
c .

Spacelike (blue) and timelike (red) elastic curves in L2 with
σ = 4c > 0 and E = 4c2, c = 1, 2, 3.

3 c < 0 u(s) = ε
c

(
− s

2 + sinh(2
√
−c s)

4
√
−c

)
, v(s) =

√
−c coth(

√
−c s).

κ(s) = 2
√
−c coth(

√
−cs), s 6= 0.

Spacelike (blue) and timelike (red) elastic curves in L2 with
σ = 4c < 0 and E = 4c2, c = −1,−2,−3.
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Curves with κ(v) = a/v 2, a 6= 0 → a = 1

• K(v) = εv . (ε = 1 spacelike, ε = −1 timelike)

u(s) = 2ε
√

2s
√
s/3, v(s) =

√
2s, κ(s) =

1

2s
, s > 0.

We arrive at the graphs u = ε v3/3, v > 0 for ε = ±1.

Spacelike (blue) and timelike (red) curve in L2 with K(v) = εv , ε = ±1.



Curves with κ(v) = a/v 2, a 6= 0 → a = 1

• K(v) = −εv
c v−1 , c 6= 0. (ε = 1 spacelike, ε = −1 timelike)

u(v) = ε
c3

(
c v − 1− 1

c v−1 + 2 log(c v − 1)
)

,

for v > 1/c if c > 0 and for v < 1/c if c < 0.

Spacelike curves with K(v) = − v
c v−1 (left) and

timelike curves with K(v) = v
c v−1 (right).



Curves with κ(v) = a ev , a 6= 0 → a = 1

• K(v) = − ε
ev+c , c ∈ R. (ε = 1 spacelike, ε = −1 timelike)

1 c = 0: u(s) = −εs2/2, v(s) = − log s, κ(s) = 1/s, s > 0.

Lorentzian grim-reapers

The curves are the graph of u = −ε e−2v/2, v ∈ R.
They satisfy the translating-type soliton equation κ = g((1, 1),N).

Spacelike (blue) and timelike (red) curves with K(v) = − ε
ev .

2 c 6= 0: u(s) = − ε
c

(
s + 1

c ecs

)
, v(s) = log c

ecs−1 , s > 0.

κ(s) = c
ecs−1 , s > 0.

Spacelike curves (blue) and timelike curves (red) with
K(v) = − ε

ev+c , c 6= 0.
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Curvature depending on pseudodistance from the origin

We study γ = (x , y) with κ = κ(ρ), where ρ is the Lorentzian
pseudodistance from the origin:

ρ :=
√
|g(γ, γ)| =

√
| − x2 + y2| ≥ 0.

We use what we can call pseudopolar coordinates (ρ, ν), ρ ≥ 0, ν ∈ R

being the orthochrone angle.
Since g(γ, γ) = −x2 + y2 = ±ρ2, we distinguish:

γ+ ≡
{

x = ρ sinh ν, y = ρ cosh ν, if − x2 + y2 ≥ 0, y ≥ 0
x = −ρ sinh ν, y = −ρ cosh ν, if − x2 + y2 ≥ 0, y ≤ 0

γ− ≡
{

x = ρ cosh ν, y = ρ sinh ν, if − x2 + y2 ≤ 0, y ≥ 0
x = −ρ cosh ν, y = −ρ sinh ν, if − x2 + y2 ≤ 0, y ≤ 0

In fact, it will be enough obviously to consider the first and third cases,
since the map (x , y)→ (−x ,−y) is an isometry of L2.



Curvature depending on pseudodistance from the origin

Theorem

Prescribe κ = κ(ρ) such that ρ κ(ρ) is continuous.
Then the problem of determining locally a spacelike or timelike curve

γ±ε (s) = (±ρ±ε (s) sinh ν±ε (s),±ρ+ε (s) cosh ν±ε (s)),
with geometric angular momentum K(ρ) (and curvature κ(ρ) satisfying
dK = ρκ(ρ)dρ is solvable by (ε = 1 spacelike, ε = −1 timelike)

1

∫
ρ κ(ρ)dρ = K(ρ).

2 s = s(ρ) =
∫

ρ dρ√
K(ρ)2 ± ερ2

, where K(ρ)2 ± ερ2 > 0 99K

ρ = ρ±ε (s) > 0. 99K κ(s)

3 ν±ε (s) =
∫ K(ρ±ε (s))

ρ±ε (s)2
ds, where ρ±ε (s) > 0.

I Such a curve is uniquely determined by K(ρ) up to a ν-orthochrone
Lorentz transformation (and a translation of the arc parameter s).
• K(ρ) will distinguish geometrically the curves inside a same family by
their relative position with respect to the origin.



Curves with κ ≡ 2k0 > 0

Constant curvature: pseudocircles

K(ρ) = k0ρ2 + c , c ∈ R. s =
∫

ρ dρ/
√
(k0ρ2 + c)2 ± ρ2.

• K(ρ) = k0ρ2.

ρ+(s) = sinh(k0s)
k0

, ν+(s) = k0s.

ρ−(s) = cosh(k0s)
k0

, ν−(s) = k0s.
Pseudocircles of radius 1/2k0.

Spacelike (blue) and timelike (red) pseudocircle with K(ρ) = ρ2/2
(κ ≡ 1) in L2.



Norwich spiral: κ(ρ) = 1
ρ

• K(ρ) = ρ + c , c 6= 0.

ρ+(t) = c
2

(
sinh(

√
2t)− 1

)
, and

ν+(t) = t + log

(
sinh(

√
2 t−arcsinh 1

2 )

cosh(
√
2 t+arcsinh 1

2 )

)
, t > 1√

2
arcsinh 1.

ρ−(t) = c
2 (1− t2), and ν−(t) = t + 2 arctanh t, |t| < 1.

Lorentzian Norwich spiral.



Curves with κ(ρ) = 2λ + µ/ρ, λ, µ 6= 0 → λ = 1

• K(ρ) = ρ2 + µρ, (µ = sinh η, η ∈ R)

ρ+η (s) = sinh s − sinh η, ν+η (s) = s + tanh η log

(
sinh( s−η

2 )

cosh( s+η
2 )

)
, s > η.

1 µ = ±1.
ρ−1 (s) = cosh s − 1 and ν−1 (s) = s − coth(s/2), s 6= 0 (left)

ρ−−1(s) = cosh s + 1 and ν−−1(s) = s − tanh(s/2), s ∈ R (right)

2 |µ| < 1. µ = cos α, with 0 < α < π.
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Sinusoidal spirals: κ(ρ) = λ ρn−1, λ > 0, n ∈ R \ {−1, 0}.

• K(ρ) = λ
n+1ρn+1

{
λ ρn+ = (n+ 1) sinh (nν+) , n 6= 0, n 6= −1,

λ ρn− = (n+ 1) cosh (nν−) , n 6= 0, n 6= −1,

1 n = 2: the Lorentzian Bernoulli pseudolemniscate
ρ2+ = sinh 2ν+, ρ2− = cosh 2ν− with K(ρ) = ρ3.

2 n = 1/2: the Lorentzian pseudocardioid√
ρ
+
= sinh(ν+/2),

√
ρ− = cosh(ν−/2) with K(ρ) = ρ3/2.

Sinusoidal spirals with n = 2 (left) and n = 1/2 (right).

3 n = 1: the pseudocircles ρ+ = sinh ν+, ρ− = cosh ν− with
K(ρ) = ρ2.

4 n = −2: the Lorentzian equilateral pseudohyperbolas
ρ2+ = −1/ sinh 2ν+, ρ2− = 1/ cosh 2ν− with K(ρ) = 1/ρ.

5 n = −1/2: the Lorentzian pseudoparabolas√
ρ
+
= −1/ sinh(ν+/2),

√
ρ− = 1/ cosh(ν−/2) with K(ρ) = √ρ.

Sinusoidal spirals: n = 1 (left), n = −2 (center), n = −1/2 (right).

6 Some general examples of K(ρ) = λ
n+1ρn+1

Sinusoidal spirals: n ≥ 5/2 (left) and n ≤ −3/2 (right), n ∈ Q.
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Thanks for your attention!
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