CURVES IN LORENTZ-MINKOWSKI PLANE WITH PRESCRIBED CURVATURE

IIdefonso Castro-Infantes ${ }^{U G R}$
Joint work with Ildefonso Castro UJA and Jesus Castro-Infantes UGR
Dpt. of Geometry and Topology University of Granada
Dpt. of Mathematics University of Jaén

Warsaw, June 2018

Partially supported by: Geometric Analysis Project (MTM2017-89677-P) and Grant (BES-2015-071993) of MINECO

Index

(1) Motivation and Introduction
(2) Curves with curvature depending on pseudodistance to a timelike geodesic
(3) Curves with curvature depending on pseudodistance to a lightlike geodesic
(4) Curves whose curvature depends on Lorentzian pseudodistance from the origin

Index

(1) Motivation and Introduction
(2) Curves with curvature depending on pseudodistance to a timelike geodesic
(3) Curves with curvature depending on pseudodistance to a lightlike geodesic

4 Curves whose curvature depends on Lorentzian pseudodistance from the origin

Singer's Problem on the Euclidean plane

D. Singer. Curves whose curvature depends on distance from the origin. Amer. Math. Monthly 106 (1999), 835-841.

Can a plane curve be determined if its curvature is given in terms of its position on the Euclidean plane?

$$
\kappa=\kappa(x, y), \quad \frac{x^{\prime}(t) y^{\prime \prime}(t)-y^{\prime}(t) x^{\prime \prime}(t)}{\left(x^{\prime}(t)^{2}+y^{\prime}(t)^{2}\right)^{3 / 2}}=\kappa(x(t), y(t))
$$

Singer's Problem on the Euclidean plane

D. Singer. Curves whose curvature depends on distance from the origin. Amer. Math. Monthly 106 (1999), 835-841.

Can a plane curve be determined if its curvature is given in terms of its position on the Euclidean plane?

$$
\kappa=\kappa(x, y), \quad \frac{x^{\prime}(t) y^{\prime \prime}(t)-y^{\prime}(t) x^{\prime \prime}(t)}{\left(x^{\prime}(t)^{2}+y^{\prime}(t)^{2}\right)^{3 / 2}}=\kappa(x(t), y(t))
$$

- $\kappa(x, y)=\sqrt{x^{2}+y^{2}} \Leftrightarrow \kappa(r)=r$: Bernoulli lemniscate $r^{2}=3 \sin 2 \theta$

Singer's Problem on the Euclidean plane

D. Singer. Curves whose curvature depends on distance from the origin. Amer. Math. Monthly 106 (1999), 835-841.

Can a plane curve be determined if its curvature is given in terms of its position on the Euclidean plane?

$$
\kappa=\kappa(x, y), \quad \frac{x^{\prime}(t) y^{\prime \prime}(t)-y^{\prime}(t) x^{\prime \prime}(t)}{\left(x^{\prime}(t)^{2}+y^{\prime}(t)^{2}\right)^{3 / 2}}=\kappa(x(t), y(t))
$$

- $\kappa(x, y)=\sqrt{x^{2}+y^{2}} \Leftrightarrow \kappa(r)=r$: Bernoulli lemniscate $r^{2}=3 \sin 2 \theta$
(1) $\kappa(x, y)=\kappa(y)$. Castro I., Castro-Infantes I., Plane curves with curvature depending on distance to a line, Diff. Geom. Appl., 2016, 44, 77-97.
(2) $\kappa(x, y)=\kappa\left(\sqrt{x^{2}+y^{2}}\right)$. Castro I., Castro-Infantes I.,

Castro-Infantes, J., New plane curves with curvature depending on distance from the origin, Mediterr. J. Math., 2017, 14, 108:1-19.

Curves with prescribed curvature

Theorem $\kappa(y)$
Prescribe $\kappa=\kappa(y)$ continuous. The problem of determining a curve $\gamma(s)=(x(s), y(s))-s$ arc length- with curvature $\kappa(y)$ is solvable by:
(1) $\int \kappa(y) d y=\mathcal{K}(y)$, geometric linear momentum.
(2) $s=s(y)=\int \frac{d y}{\sqrt{1-(\mathcal{K}(y))^{2}}} \rightarrow y=y(s) \rightarrow \kappa=\kappa(s)$.
(3) $x(s)=-\left(\int \mathcal{K}(y(s)) d s\right)$.

- γ is uniquely determined, up to translations in the x-direction, by $\mathcal{K}(y)$

Curves with prescribed curvature

Theorem $\kappa(y)$

Prescribe $\kappa=\kappa(y)$ continuous. The problem of determining a curve $\gamma(s)=(x(s), y(s))-s$ arc length- with curvature $\kappa(y)$ is solvable by:
(1) $\int \kappa(y) d y=\mathcal{K}(y)$, geometric linear momentum.
(2) $s=s(y)=\int \frac{d y}{\sqrt{1-(\mathcal{K}(y))^{2}}} \rightarrow y=y(s) \rightarrow \kappa=\kappa(s)$.

0 $x(s)=-\left(\int \mathcal{K}(y(s)) d s\right)$.

- γ is uniquely determined, up to translations in the x-direction, by $\mathcal{K}(y)$

Theorem $\kappa(r)$
Prescribe $\kappa=\kappa(r)$ such that $r \kappa(r)$ continuous. The problem of determining a curve $\gamma(s)=r(s) e^{i \theta(s)}$ with curvature $\kappa(r)$ is solvable by:
(1) $\int r \kappa(r) d r=\mathcal{K}(r)$, geometric angular momentum.
(2) $s=s(r)=\int \frac{r d r}{\sqrt{r^{2}-(\mathcal{K}(r))^{2}}} \cdots r=r(s) \rightarrow \kappa=\kappa(s)$.
(- $\theta(s)=\int \frac{\mathcal{K}(r(s))}{r(s)^{2}} d s$.

- γ is uniquely determined, up to rotations, by $\mathcal{K}(r)$

Singer's Problem on the Euclidean plane: Euler elastic curves

Elastica under tension $\sigma \in \mathbb{R}$: $2 \ddot{\kappa}+\kappa^{3}-\sigma \kappa=0$

Singer's Problem on the Euclidean plane: Euler elastic curves

Elastica under tension $\sigma \in \mathbb{R}$: $2 \ddot{\kappa}+\kappa^{3}-\sigma \kappa=0$

- $\kappa(y)=2 \lambda y, \lambda>0 \rightarrow \mathcal{K}(y)=\lambda y^{2}+c$ elastica under tension $\sigma=-4 \lambda c$
Maximum curvature $k_{0}=2 \sqrt{\lambda} \sqrt{1-c}, c<1$

Singer's Problem on the Euclidean plane:

Euler elastic curves

Elastica under tension $\sigma \in \mathbb{R}$: $2 \ddot{\kappa}+\kappa^{3}-\sigma \kappa=0$

- $\kappa(y)=2 \lambda y, \lambda>0 \rightarrow \mathcal{K}(y)=\lambda y^{2}+c$ elastica under tension $\sigma=-4 \lambda c$

Maximum curvature $k_{0}=2 \sqrt{\lambda} \sqrt{1-c}, c<1$

- $c>-1$, wavelike:

$$
\begin{aligned}
& \kappa(s)=k_{0} \mathrm{cn}\left(\frac{k_{0} s}{2 p}, p\right) \\
& p^{2}=\frac{1-c}{2}, s \in \mathbb{R}
\end{aligned}
$$

Singer's Problem on the Euclidean plane:

Euler elastic curves

Elastica under tension $\sigma \in \mathbb{R}$: $2 \ddot{\kappa}+\kappa^{3}-\sigma \kappa=0$

- $\kappa(y)=2 \lambda y, \lambda>0 \rightarrow \mathcal{K}(y)=\lambda y^{2}+c$ elastica under tension $\sigma=-4 \lambda c$
Maximum curvature $k_{0}=2 \sqrt{\lambda} \sqrt{1-c}, c<1$
- c > -1, wavelike:
$\kappa(s)=k_{0} \mathrm{cn}\left(\frac{k_{0} s}{2 p}, p\right)$
$p^{2}=\frac{1-c}{2}, s \in \mathbb{R}$

- $c=-1$, borderline:

$$
\kappa(s)=k_{0} \operatorname{sech} \frac{k_{0} s}{2}
$$

$s \in \mathbb{R}$

Singer's Problem on the Euclidean plane:

Euler elastic curves

Elastica under tension $\sigma \in \mathbb{R}: 2 \ddot{\kappa}+\kappa^{3}-\sigma \kappa=0$

- $\kappa(y)=2 \lambda y, \lambda>0 \rightarrow \mathcal{K}(y)=\lambda y^{2}+c$
elastica under tension $\sigma=-4 \lambda c$
Maximum curvature $k_{0}=2 \sqrt{\lambda} \sqrt{1-c}, c<1$
- c >-1, wavelike:
$\kappa(s)=k_{0} \mathrm{cn}\left(\frac{k_{0} s}{2 p}, p\right)$ $p^{2}=\frac{1-c}{2}, s \in \mathbb{R}$

- $c=-1$, borderline:

$$
\kappa(s)=k_{0} \operatorname{sech} \frac{k_{0} s}{2}
$$

- $c<-1$, orbitlike:

$$
\begin{aligned}
\kappa(s) & =k_{0} \operatorname{dn}\left(\frac{k_{0} s}{2}, p\right) \\
p^{2} & =\frac{2}{1-c}, s \in \mathbb{R}
\end{aligned}
$$

Singer's Problem on the Euclidean plane

The catenary $y=\cosh x, x \in \mathbb{R}$ is the only plane curve (up to translations in the x-direction) with curvature $\kappa(y)=1 / y^{2}$ and geometric linear momentum $\mathcal{K}(y)=-1 / y$.

The grim-reaper $y=-\log \sin x, 0<x<\pi$ is the only plane curve (up to translations in the x-direction) with curvature $\kappa(y)=e^{-y}$ and geometric linear momentum $\mathcal{K}(y)=-e^{-y}$.

Singer's Problem on the Euclidean plane

The Norwich spiral is the only (non circular) plane curve, up to rotations, with curvature $\kappa(r)=1 / r$ and geometric angular momentum $\mathcal{K}(r)=r$.

The Bernoulli lemniscate $r^{2}=3 \sin 2 \theta$ is the only plane curve, up to rotations, with geometric angular momentum $\mathcal{K}(r)=r^{3} / 3$ and curvature is $\kappa(r)=r$.

The cardioid $r=\frac{9}{8 \lambda^{2}}(1+\cos \theta)$, is the only plane curve (up to rotations) with radial primitive curvature
$\mathcal{K}(r)=\frac{2 \lambda}{3} r \sqrt{r}$ and curvature is $\kappa(r)=\lambda / \sqrt{r}$.

The Lorentz-Minkowski plane

We denote by $\mathbb{L}^{2}:=\left(\mathbb{R}^{2}, g=-d x^{2}+d y^{2}\right)$ the Lorentz-Minkowski plane.

The Lorentz-Minkowski plane

We denote by $\mathbb{L}^{2}:=\left(\mathbb{R}^{2}, g=-d x^{2}+d y^{2}\right)$ the Lorentz-Minkowski plane.

- A non-zero vector $v \in \mathbb{L}^{2}$ is spacelike if $g(v, v)>0$, lightlike if $g(v, v)=0$, and timelike if $g(v, v)<0$.

The Lorentz-Minkowski plane

We denote by $\mathbb{L}^{2}:=\left(\mathbb{R}^{2}, g=-d x^{2}+d y^{2}\right)$ the Lorentz-Minkowski plane.

- A non-zero vector $v \in \mathbb{L}^{2}$ is spacelike if $g(v, v)>0$, lightlike if $g(v, v)=0$, and timelike if $g(v, v)<0$.
- A curve $\gamma=(x, y): I \subseteq \mathbb{R} \rightarrow \mathbb{R}^{2}$ is called spacelike (resp. timelike) if the tangent vector $\gamma^{\prime}(t)$ is spacelike (resp. timelike) for all $t \in I$. A point $\gamma(t)$ is called a lightlike point if $\gamma^{\prime}(t)$ is a lightlike vector.

The Lorentz-Minkowski plane

We denote by $\mathbb{L}^{2}:=\left(\mathbb{R}^{2}, g=-d x^{2}+d y^{2}\right)$ the Lorentz-Minkowski plane.

- A non-zero vector $v \in \mathbb{L}^{2}$ is spacelike if $g(v, v)>0$, lightlike if $g(v, v)=0$, and timelike if $g(v, v)<0$.
- A curve $\gamma=(x, y): I \subseteq \mathbb{R} \rightarrow \mathbb{R}^{2}$ is called spacelike (resp. timelike) if the tangent vector $\gamma^{\prime}(t)$ is spacelike (resp. timelike) for all $t \in I$. A point $\gamma(t)$ is called a lightlike point if $\gamma^{\prime}(t)$ is a lightlike vector.

Classical Existence Theorem

It is possible to obtain a parametrization by arc-length of a curve γ in terms of integrals of its curvature $\kappa=\kappa(s)$. Concretely, any spacelike curve $\alpha(s)$ in \mathbb{L}^{2} can be represented (up to isometries) by

$$
\alpha(s)=\left(\int \sinh \varphi(s) d s, \int \cosh \varphi(s) d s\right) \text { with } \frac{d \varphi(s)}{d s}=\kappa(s),
$$

and any timelike curve $\beta(s)$ can be represented (up to isometries) by

$$
\beta(s)=\left(\int \cosh \phi(s) d s, \int \sinh \phi(s) d s\right) \text { with } \frac{d \phi(s)}{d s}=\kappa(s) .
$$

Singer's Problem on Lorentz-Minkowski plane

Geodesics

The spacelike geodesics are written as:

$$
\alpha_{\varphi_{0}}(s)=\left(\sinh \varphi_{0} s, \cosh \varphi_{0} s\right), s \in \mathbb{R}, \varphi_{0} \in \mathbb{R}
$$

while the timelike geodesics can be written as:

$$
\beta_{\phi_{0}}(s)=\left(\cosh \phi_{0} s, \sinh \phi_{0} s\right), s \in \mathbb{R}, \phi_{0} \in \mathbb{R} .
$$

Lorentzian Pseudodistance

We define the Lorentzian pseudodistance by

$$
\delta: \mathbb{L}^{2} \times \mathbb{L}^{2} \rightarrow[0,+\infty), \delta(P, Q)=\sqrt{|g(\overrightarrow{P Q}, \overrightarrow{P Q})|}
$$

Spacelike geodesics in \mathbb{L}^{2} passing through P and with a point P^{\prime} in x-axis. Then:

$$
0<\delta\left(P, P^{\prime}\right)^{2}=\left(1-\frac{1}{m^{2}}\right) y^{2}=\frac{y^{2}}{\cosh ^{2} \varphi_{0}} \leq y^{2}
$$

- Equality holds if and only if vertical geodesic.

Thus: $|y|$ is the maximum Lorentzian pseudodistance through spacelike geodesics from $P=(x, y), y \neq 0$, to the x-axis.

Singer's Problem on \mathbb{L}^{2}

Singer's Problem on \mathbb{L}^{2}

Determine those curves $\gamma=(x, y)$ in \mathbb{L}^{2} whose curvature κ depends on some given function $\kappa=\kappa(x, y)$.

Singer's Problem on \mathbb{L}^{2}

Singer's Problem on \mathbb{L}^{2}

Determine those curves $\gamma=(x, y)$ in \mathbb{L}^{2} whose curvature κ depends on some given function $\kappa=\kappa(x, y)$.

We focus on spacelike and timelike curves, since the curvature κ is in general not well defined on lightlike points, and because lightlike curves in \mathbb{L}^{2} are segments parallel to the straight lines determining the light cone.

Singer's Problem on \mathbb{L}^{2}

Singer's Problem on \mathbb{L}^{2}

Determine those curves $\gamma=(x, y)$ in \mathbb{L}^{2} whose curvature κ depends on some given function $\kappa=\kappa(x, y)$.

We focus on spacelike and timelike curves, since the curvature κ is in general not well defined on lightlike points, and because lightlike curves in \mathbb{L}^{2} are segments parallel to the straight lines determining the light cone.
(1) Pseudodistance to a fixed spacelike geodesic: $\kappa(x, y)=\kappa(x)$.
(2) Pseudodistance to a fixed timelike geodesic: $\kappa(x, y)=\kappa(y)$.
(3) Pseudodistance to a fixed lightlike geodesic: $\kappa(x, y)=\kappa(v)$,

$$
v=y-x
$$

(0) Pseudodistance to a fixed point: $\kappa(x, y)=\kappa(\rho)$, $\rho=\sqrt{\left|-x^{2}+y^{2}\right|}$.

Singer's Problem on \mathbb{L}^{2}

Singer's Problem on \mathbb{L}^{2}

Determine those curves $\gamma=(x, y)$ in \mathbb{L}^{2} whose curvature κ depends on some given function $\kappa=\kappa(x, y)$.

We focus on spacelike and timelike curves, since the curvature κ is in general not well defined on lightlike points, and because lightlike curves in \mathbb{L}^{2} are segments parallel to the straight lines determining the light cone.
(1) Pseudodistance to a fixed spacelike geodesic: $\kappa(x, y)=\kappa(x)$.
(2) Pseudodistance to a fixed timelike geodesic: $\kappa(x, y)=\kappa(y)$.
(3) Pseudodistance to a fixed lightlike geodesic: $\kappa(x, y)=\kappa(v)$,

$$
v=y-x
$$

(1) Pseudodistance to a fixed point: $\kappa(x, y)=\kappa(\rho)$, $\rho=\sqrt{\left|-x^{2}+y^{2}\right|}$.

Duality between spacelike and timelike curves

If $\gamma=(x, y)$ is a spacelike (resp. timelike) curve with $\kappa=\kappa(y)$, then $\hat{\gamma}=(y, x)$ is a timelike (resp. spacelike) curve with $\kappa=\kappa(x)$.

Index

(1) Motivation and Introduction
(2) Curves with curvature depending on pseudodistance to a timelike geodesic
(3) Curves with curvature depending on pseudodistance to a lightlike geodesic

4 Curves whose curvature depends on Lorentzian pseudodistance from the origin

Curvature depending on distance to a timelike geodesic

Theorem

Prescribe $\kappa=\kappa(y)$ continuous.
Then the problem of determining locally a spacelike or timelike curve $(x(s), y(s))$ with geometric linear momentum $\mathcal{K}(y)$
(and curvature $\kappa(y)$ satisfying $d \mathcal{K}=\kappa(y) d y$),
is solvable by quadratures by ($\epsilon=1$ spacelike, $\epsilon=-1$ timelike)
(1) $\int \kappa(y) d y=\mathcal{K}(y)$.
(2) $s=s(y)=\int \frac{d y}{\sqrt{\mathcal{K}(y)^{2}+\epsilon}}$,
where $\mathcal{K}(y)^{2}+\epsilon>0, \cdots y=y(s) \longrightarrow \kappa(s)$.
(0) $x(s)=\int \mathcal{K}(y(s)) d s$.

- Such a curve is uniquely determined by $\mathcal{K}(y)$ up to a translation in the x-direction (and a translation of the arc parameter s).
- $\mathcal{K}(y)$ will distinguish geometrically the curves inside a same family by their relative position with respect to the x-axis.

Example: geodesics

Geodesics: $\kappa \equiv 0$

- $\mathcal{K}(y)=c \in \mathbb{R} . s=\int \frac{d y}{\sqrt{c^{2}+\epsilon}}=\frac{y}{\sqrt{c^{2}+\epsilon}}, c^{2}+\epsilon>0$.
$x(s)=c s$ and $y(s)=\sqrt{c^{2}+\epsilon} s, \quad s \in \mathbb{R}$.
$\epsilon=1: K \equiv c:=\sinh \varphi_{0} \rightarrow$ spacelike geodesics $\alpha_{\varphi_{0}}$.
$c=0=\varphi_{0}$ corresponds to the y-axis.
$\epsilon=-1: K \equiv c:=\cosh \phi_{0} \rightarrow$ timelike geodesics $\beta_{\phi_{0}}$.
$c=1 \Leftrightarrow \phi_{0}=0$ corresponds to the x-axis.

Example: circles

Circles: $\kappa \equiv k_{0}>0$

- $\mathcal{K}(y)=k_{0} y+c, c \in \mathbb{R} . \quad s=\int \frac{d y}{\sqrt{\left(k_{0} y+c\right)^{2}+\epsilon}}$.
$\epsilon=1: s=\operatorname{arcsinh}\left(k_{0} y+c\right) / k_{0}$.
$x(s)=\cosh \left(k_{0} s\right) / k_{0}$ and $y(s)=\left(\sinh \left(k_{0} s\right)-c\right) / k_{0}$.
$\epsilon=-1: s=\operatorname{arccosh}\left(k_{0} y+c\right) / k_{0}$

$$
x(s)=\sinh \left(k_{0} s\right) / k_{0} \text { and } y(s)=\left(\cosh \left(k_{0} s\right)-c\right) / k_{0} .
$$

They correspond respectively to spacelike and timelike pseudocircles in \mathbb{L}^{2} of radius $1 / k_{0}$.

Elasticae on $\mathbb{L}^{2}: \kappa(y)=2 a y+b$ with $a \neq 0, b \in \mathbb{R}$.

Definition

A spacelike or timelike curve γ is said to be an elastica under tension σ if it satisfies the differential equation $2 \ddot{\kappa}-\kappa^{3}-\sigma \kappa=0$, for some value of $\sigma \in \mathbb{R}$.
The energy $E \in \mathbb{R}$ of an elastica is: $E:=\dot{\kappa}^{2}-\frac{1}{4} \kappa^{4}-\frac{\sigma}{2} \kappa^{2}$.

Elasticae on $\mathbb{L}^{2}: \kappa(y)=2 a y+b$ with $a \neq 0, b \in \mathbb{R}$.

Definition

A spacelike or timelike curve γ is said to be an elastica under tension σ if it satisfies the differential equation $2 \ddot{\kappa}-\kappa^{3}-\sigma \kappa=0$, for some value of $\sigma \in \mathbb{R}$.
The energy $E \in \mathbb{R}$ of an elastica is: $E:=\dot{\kappa}^{2}-\frac{1}{4} \kappa^{4}-\frac{\sigma}{2} \kappa^{2}$.

Proposition

Let γ be a spacelike or timelike curve in \mathbb{L}^{2}.

- If the curvature of γ is given by $\kappa(y)=2 a y+b, a \neq 0, b \in \mathbb{R}$, with geometric linear momentum $\mathcal{K}(y)=a y^{2}+b y+c, a \neq 0, b, c \in \mathbb{R}$:

Then γ is an elastica under tension $\sigma=4 a c-b^{2}$ and energy $E=4 \epsilon a^{2}+\sigma^{2} / 4$ (where $\epsilon=1$ if γ is spacelike and $\epsilon=-1$ if γ is timelike).

Spacelike elasticae $\equiv \kappa(y)=2 y$ and $\epsilon=1$.

- $\mathcal{K}(y)=y^{2}+c, c=\sinh \eta \in \mathbb{C} \quad\left(s_{\eta}=\sinh \eta\right.$ and $\left.c_{\eta}=\cosh \eta\right)$ $x_{\eta}(s)=\left(s_{\eta}+c_{\eta}\right) s+\sqrt{c_{\eta}}\left(\operatorname{cn}\left(\sqrt{c_{\eta}} s, k_{\eta}\right)\left(k_{\eta}^{2} \operatorname{sd}\left(\sqrt{c_{\eta}} s, k_{\eta}\right)-\mathrm{ds}\left(\sqrt{c_{\eta}} s, k_{\eta}\right)\right)-2 E\left(\sqrt{c_{\eta}} s, k_{\eta}\right)\right)$ $y_{\eta}(s)=\sqrt{c_{\eta}} \operatorname{cs}\left(\sqrt{c_{\eta}} s, k_{\eta}\right) \operatorname{nd}\left(\sqrt{c_{\eta}} s, k_{\eta}\right), k_{\eta}^{2}=\frac{1-\tanh \eta}{2}$ $\kappa_{\eta}(s)=2 \sqrt{c_{\eta}} \operatorname{cs}\left(\sqrt{c_{\eta}} s, k_{\eta}\right) \operatorname{nd}\left(\sqrt{c_{\eta}} s, k_{\eta}\right)$.

Spacelike elastic curves $\alpha_{\eta}=\left(x_{\eta}, y_{\eta}\right),(\eta=0,1,5,-1,5)$.

Timelike elasticae $\equiv \kappa(y)=2 y$ and $\epsilon=-1$.

- $\mathcal{K}(y)=y^{2}+1(c=1)$.
$x_{1}(s)=s-\sqrt{2} \operatorname{coth}(\sqrt{2} s)$,
$y_{1}(s)=-\frac{\sqrt{2}}{\sinh (\sqrt{2} s)}, s \neq 0$.
$\kappa_{1}(s)=-\frac{2 \sqrt{2}}{\sinh (\sqrt{2} s)}$.

- $\mathcal{K}(y)=y^{2}-1(c=-1)$.
$x_{-1}(s)=\sqrt{2} \tan (\sqrt{2} s)-s$,
$y_{-1}(s)= \pm \frac{\sqrt{2}}{\cos (\sqrt{2} s)},|s|<\frac{\pi}{2 \sqrt{2}}$.
$\kappa_{-1}(s)=\frac{\mp 2 \sqrt{2}}{\cos (\sqrt{2} s)}$.

Timelike elasticae $\equiv \kappa(y)=2 y$ and $\epsilon=-1$.

- $\mathcal{K}(y)=y^{2}+\cosh ^{2} \delta, \delta>0,(c>1)$.
$x_{\delta}(s)=c_{\delta}^{2} s+\sqrt{c_{\delta}^{2}+1}\left(\operatorname{dn}\left(\sqrt{c_{\delta}^{2}+1} s, k_{\delta}\right) \operatorname{tn}\left(\sqrt{c_{\delta}^{2}+1} s, k_{\delta}\right)-E\left(\sqrt{c_{\delta}^{2}+1} s, k_{\delta}\right)\right)$,
$y_{\delta}(s)=s_{\delta} \operatorname{tn}\left(\sqrt{c_{\delta}^{2}+1} s, k_{\delta}\right), k_{\delta}^{2}=\frac{2}{1+\cosh ^{2} \delta}$,
$s \in\left((2 m-1) K\left(k_{\delta}\right) / \sqrt{c_{\delta}^{2}+1},(2 m+1) K\left(k_{\delta}\right) / \sqrt{c_{\delta}^{2}+1}\right), m \in \mathbb{N}$.
$\kappa_{\delta}(s)=2 s_{\delta} \operatorname{tn}\left(\sqrt{c_{\delta}^{2}}+1 s, k_{\delta}\right)$.

Timelike elastic curves $\beta_{\delta}=\left(x_{\delta}, y_{\delta}\right)(\delta=0,5,1,1,5)$.

Timelike elasticae $\equiv \kappa(y)=2 y$ and $\epsilon=-1$.

- $\mathcal{K}(y)=y^{2}+\sin \psi,|\psi|<\pi / 2,(|c|<1)$.
$x_{\psi}(s)=s+\sqrt{2}\left(\operatorname{dn}\left(\sqrt{2} s, k_{\psi}\right) \operatorname{tn}\left(\sqrt{2} s, k_{\psi}\right)-E\left(\sqrt{2} s, k_{\psi}\right)\right)$,
$y_{\psi}(s)=\sqrt{1-s_{\psi}} \mathrm{nc}\left(\sqrt{2} s, k_{\psi}\right), k_{\psi}^{2}=\frac{1+\sin \psi}{2}$,
$s \in\left((2 m-1) K\left(k_{\psi}\right) / \sqrt{2},(2 m+1) K\left(k_{\psi}\right) / \sqrt{2}\right), m \in \mathbb{N}$.
$\kappa_{\psi}(s)=2 \sqrt{1-s_{\psi}} \mathrm{nc}\left(\sqrt{2} s, k_{\psi}\right)$.

Timelike elastic curves $\beta_{\psi}=\left(x_{\psi}, y_{\psi}\right)(\psi=-\pi / 4,0, \pi / 6)$.

Timelike elasticae $\equiv \kappa(y)=2 y$ and $\epsilon=-1$.

- $\mathcal{K}(y)=y^{2}-\cosh ^{2} \tau, \tau>0,(c<-1)$.
$x_{\tau}(s)=s+\sqrt{1+c_{\tau}^{2}}\left(\operatorname{dn}\left(\sqrt{1+c_{\tau}^{2}} s, k_{\tau}\right) \operatorname{tn}\left(\sqrt{1+c_{\tau}^{2}} s, k_{\tau}\right)-E\left(\sqrt{1+c_{\tau}^{2}} s, k_{\tau}\right)\right)$,
$y_{\tau}(s)=\sqrt{1+c_{\tau}^{2}} \mathrm{dc}\left(\sqrt{1+c_{\tau}^{2}} s, k_{\tau}\right), k_{\tau}^{2}=\frac{\sinh ^{2} \tau}{1+\cosh ^{2} \tau}$,
$s \in\left((2 m-1) K\left(k_{\tau}\right) / \sqrt{1+c_{\tau}^{2}},(2 m+1) K\left(k_{\tau}\right) / \sqrt{1+c_{\tau}^{2}}\right), m \in \mathbb{N}$.
$\kappa_{\tau}(s)=2 \sqrt{1+c_{\tau}^{2}} \mathrm{dc}\left(\sqrt{1+c_{\tau}^{2}} s, k_{\tau}\right)$.

Timelike elastic curves $\beta_{\tau}=\left(x_{\tau}, y_{\tau}\right),(\tau=1,2,3)$.

Curves with $\kappa(y)=\lambda / y^{2}, \lambda>0 \rightarrow \lambda=1$

- $\mathcal{K}(y)=-1 / y$. Lorentzian catenaries
$\epsilon=1$. Spacelike case:
$x(s)=\mp \operatorname{arccosh} s, s>1$.
$y(s)= \pm \sqrt{s^{2}-1},|s|>1$.
$\kappa(s)=\frac{1}{s^{2}-1}, s>1$.
$\epsilon=-1$. Timelike case:
$x(s)=\mp \arcsin s,|s|<1$.
$y(s)= \pm \sqrt{1-s^{2}},|s|<1$.
$\kappa(s)=\frac{1}{1-s^{2}},|s|<1$.
$y=-\sinh x, x \in \mathbb{R}$.

$y= \pm \cos x,|x|<\pi / 2$.

Curves with $\kappa(y)=\lambda / y^{2}, \lambda>0 \rightarrow \lambda=1$

Lorentzian catenaries.

Kobayashi introduced, by studying maximal rotation surfaces in \mathbb{L}^{3}, (up to dilations) the catenoid of the first kind with equation $y^{2}+z^{2}-\sinh ^{2} x=0$ and the catenoid of the second kind with equation $x^{2}-z^{2}=\cos ^{2} y$.

The generatrix curves of both catenoids may be referred as ${ }^{x}$ Lorentzian catenaries and coincide with the curves described before.
(1) The Lorentzian catenary of the first kind $y=-\sinh x, x \in \mathbb{R}$, is the only spacelike curve (up to translations in the x-direction) with geometric linear momentum $\mathcal{K}(y)=-1 / y$.
(2) The Lorentzian catenary of the second kind $x= \pm \cos y,|y|<\pi / 2$, is the only spacelike curve (up to translations in the y-direction) with geometric linear momentum $\mathcal{K}(x)=-1 / x$.

Curves with $\kappa(y)=\lambda / y^{2}, \lambda>0 \rightarrow \lambda=1$

- $\mathcal{K}(y)=c-1 / y . \quad \epsilon=1$, Spacelike case:
$x=\frac{1}{c^{2}+1}\left(c \sqrt{\left(c^{2}+1\right) y^{2}-2 c y+1}-\frac{1}{\sqrt{c^{2}+1}} \operatorname{arcsinh}\left(\left(c^{2}+1\right) y-c\right)\right)$.

Curves with $\mathcal{K}(y)=c-1 / y ; c \leq 0$ (left) and $c \geq 0$ (right).

Curves with $\kappa(y)=\lambda / y^{2}, \lambda>0 \rightarrow \lambda=1$

- $\mathcal{K}(y)=c-1 / y \cdot \epsilon=-1$, Timelike case:

$$
\begin{array}{ll}
\cdot \mathcal{K}(y)=1-1 / y: & \cdot \mathcal{K}(y)=-1-1 / y: \\
x=\frac{(2-y) \sqrt{1-2 y}}{3}, y<1 / 2 . & x=-\frac{(2+y) \sqrt{1+2 y}}{3}, y>-1 / 2
\end{array}
$$

- $\mathcal{K}(y)=c-1 / y,|c|>1$:
$x=\frac{1}{c^{2}-1}\left(c \sqrt{\left(c^{2}-1\right) y^{2}-2 c y+1}+\frac{\log \left(2\left(\sqrt{c^{2}-1} \sqrt{\left(c^{2}-1\right) y^{2}-2 c y+1}+\left(c^{2}-1\right) y-c\right)\right)}{\sqrt{c^{2}-1}}\right)$.
- $\mathcal{K}(y)=c-1 / y,|c|<1$:
$x=\frac{1}{c^{2}-1}\left(c \sqrt{\left(c^{2}-1\right) y^{2}-2 c y+1}-\frac{1}{\sqrt{1-c^{2}}} \arcsin \left(\left(c^{2}-1\right) y-c\right)\right)$

Curves with $\kappa(y)=\lambda e^{y}, \lambda>0 \rightarrow \lambda=1$

- $\mathcal{K}(y)=e^{y}$. Lorentzian grim-reapers.
$\epsilon=1$. Spacelike case:
$x(s)=$
$-\log \tanh (-s / 2), s<0$.
$y(s)=\log (-\operatorname{csch} s), s<0$.
$\kappa(s)=-\operatorname{csch} s, s<0$.
$y=\log (\sinh x), x>0$.

$\epsilon=-1$. Timelike case:
$x(s)=$
$\log (\sec s+\tan s),|s|<\pi / 2$.

$$
\begin{aligned}
& y(s)=\log \sec s,|s|<\pi / 2 \\
& \kappa(s)=\sec s,|s|<\pi / 2
\end{aligned}
$$

$$
y=\log (\cosh x), x \in \mathbb{R}
$$

Curves with $\kappa(y)=\lambda e^{y}, \lambda>0$

- $\mathcal{K}(y)=e^{y}+c, c \neq 0$.

Spacelike case ($\epsilon=1$):
$x=\operatorname{arcsinh}\left(e^{y}+c\right)-$
$\frac{c}{\sqrt{c^{2}+1}} \operatorname{arcsinh}\left(c+\left(c^{2}+1\right) e^{-y}\right)$.

Timelike case ($\epsilon=-1$):

$$
\begin{aligned}
& \cdot \mathcal{K}(y)=e^{y}+1 \\
& x=2 \log \left(\sqrt{e^{y}}+\sqrt{e^{y}+2}\right)-\sqrt{1+2 e^{-y}} \\
& \cdot \mathcal{C}(y)=e^{y}+c,|C|>1: \\
& x=\log \left(2\left(\sqrt{P\left(e^{y}\right)}+e^{y}+c\right)\right)- \\
& \frac{c \log \left(2 e^{-y}\left(\sqrt{c^{2}-1} \sqrt{P\left(e^{y}\right)}+c e^{y}+c^{2}-1\right)\right)}{\sqrt{c^{2}-1}}
\end{aligned}
$$

- $\mathcal{K}(y)=e^{y}-1$:
$x=2 \log \left(\sqrt{e^{y}}+\sqrt{e^{y}-2}\right)-\sqrt{1-2 e^{-y}}$.
$\cdot \mathcal{K}(y)=e^{y}+c,|c|<1$:
$x=\log \left(2\left(\sqrt{P\left(e^{y}\right)}+e^{y}+c\right)\right)+\frac{c}{\sqrt{1-c^{2}}} \arcsin \left(c+\left(c^{2}-1\right) e^{-y}\right)$.

Other curves in \mathbb{L}^{2}

- $\mathcal{K}(y)=-\operatorname{coth} y . \quad x(s)=\mp \sqrt{s^{2}-1}, \quad y(s)= \pm \operatorname{arccosh} s, s>1$. $\kappa(s)=\frac{1}{s^{2}-1}$. Lorentzian catenary of 1st kind: $x=-\sinh y, y \in \mathbb{R}$.
- $\mathcal{K}(y)=\tan y \cdot x(s)=\mp \sqrt{1-s^{2}}, \quad y(s)= \pm \arcsin s,|s|<1$. $\kappa(s)=\frac{1}{1-s^{2}}$. Lorentzian catenary of 2nd kind $x= \pm \cos y,|y|<\pi / 2$.
- $\mathcal{K}(y)=\cosh y . x(s)=-\log (\sinh (-s)), y(s)=2 \operatorname{arctanh} e^{s}, s<0$. $\kappa(s)=-\operatorname{csch} s$. Lorentzian grim-reaper $y=\log (\sinh x), x>0$.
- $\mathcal{K}(y)=\sinh y$. $x(s)=\log (2 \csc s)$,
$y(s)=\log (\tan (s / 2))$.
$\kappa(s)=\csc s,|s|<\pi$

Index

(1) Motivation and Introduction
(2) Curves with curvature depending on pseudodistance to a timelike geodesic
(3) Curves with curvature depending on pseudodistance to a lightlike geodesic

4 Curves whose curvature depends on Lorentzian pseudodistance from the origin

Curvature depending on distance to a lightlike geodesic

Theorem

Prescribe $\kappa=\kappa(v)$ continuous. Then the problem of determining locally a spacelike or timelike curve

$$
\left(\frac{u(s)-v(s)}{2}, \frac{u(s)+v(s)}{2}\right)
$$

with geometric linear momentum $\mathcal{K}(v)$
(and curvature $\kappa(v)$ satisfying $-\epsilon d(1 / \mathcal{K})=\kappa(v) d v$) is solvable by quadratures by $\epsilon=1$ spacelike, $\epsilon=-1$ timelike.
(1) $\int \kappa(v) d v=\frac{-\epsilon}{\mathcal{K}(v)}$,
(2) $s=s(v)=\epsilon \int \mathcal{K}(v) d v, \rightarrow v=v(s), \rightarrow \kappa(s)$
(0) $u(s)=\int K(v(s)) d s$.

- Such a curve is uniquely determined by $\mathcal{K}(v)$ up to a translation in the u-direction (and a translation of the arc parameter s).
- $\mathcal{K}(v)$ will distinguish geometrically the curves inside a same family by their relative position with respect to the u-axis.

Examples: constant curvature

Geodesics: $\kappa \equiv 0$

- $\mathcal{K}(v)=-\epsilon / c, c \neq 0 . u(s)=-\epsilon s / c, v(s)=-c s, s \in \mathbb{R}$, (lines passing through the origin with slope $m=\frac{\varepsilon+c^{2}}{\epsilon-c^{2}}$.) $\epsilon=1 \Rightarrow|m|>1$ spacelike geodesics, $\epsilon=-1 \Rightarrow|m|<1$ timelike geodesics.

Examples: constant curvature

Geodesics: $\kappa \equiv 0$

- $\mathcal{K}(v)=-\epsilon / c, c \neq 0 . u(s)=-\epsilon s / c, v(s)=-c s, s \in \mathbb{R}$, (lines passing through the origin with slope $m=\frac{\epsilon+c^{2}}{\epsilon-c^{2}}$.) $\epsilon=1 \Rightarrow|m|>1$ spacelike geodesics, $\epsilon=-1 \Rightarrow|m|<1$ timelike geodesics.

Circles: $\kappa \equiv k_{0}>0$

- $\mathcal{K}(v)=\frac{-\epsilon}{\left(c+k_{0} v\right)}, c \in \mathbb{R} . u(s)=-\epsilon e^{k_{0} s} / k_{0}, v(s)=\left(e^{-k_{0} s}-c\right) / k_{0}$.
$\epsilon=1 \Rightarrow x(s)=\left(-\cosh \left(k_{0} s\right)+c / 2\right) / k_{0}, y(s)=-\left(\sinh \left(k_{0} s\right)+c / 2\right) / k_{0}$.
$\epsilon=-1 \Rightarrow x(s)=\left(\sinh \left(k_{0} s\right)+c / 2\right) / k_{0}, y(s)=\left(\cosh \left(k_{0} s\right)-c / 2\right) / k_{0}$.

(Spacelike and timelike pseudocircles in \mathbb{L}^{2} of radius $1 / k_{0}$.)

Curves with $\kappa(v)=a v+b, a \neq 0, b \in \mathbb{R} \rightarrow a=b=1$

Elastica under tension σ equation: $2 \ddot{\kappa}-\kappa^{3}-\sigma \kappa=0$, with $\sigma \in \mathbb{R}$.
Energy $E \in \mathbb{R}$ of an elastica: $E:=\dot{\kappa}^{2}-\frac{1}{4} \kappa^{4}-\frac{\sigma}{2} \kappa^{2}$.

Curves with $\kappa(v)=a v+b, a \neq 0, b \in \mathbb{R} \rightarrow a=b=1$

Elastica under tension σ equation: $2 \ddot{\kappa}-\kappa^{3}-\sigma \kappa=0$, with $\sigma \in \mathbb{R}$.
Energy $E \in \mathbb{R}$ of an elastica: $E:=\dot{\kappa}^{2}-\frac{1}{4} \kappa^{4}-\frac{\sigma}{2} \kappa^{2}$.

- $\mathcal{K}(v)=-\frac{\epsilon}{v^{2}+c}, c \in \mathbb{R}$. $(\epsilon=1$ spacelike, $\epsilon=-1$ timelike $)$
(1) $c=0: \quad u(s)=-\epsilon \frac{s^{3}}{3}, v(s)=1 / s, \quad \kappa(s)=2 / s, s \neq 0$.

Spacelike (blue) and timelike (red) elastic curve with $\sigma=E=0$.

Curves with $\kappa(v)=a v+b, a \neq 0, b \in \mathbb{R} \rightarrow a=b=1$

Elastica under tension σ equation: $2 \ddot{\kappa}-\kappa^{3}-\sigma \kappa=0$, with $\sigma \in \mathbb{R}$.
Energy $E \in \mathbb{R}$ of an elastica: $E:=\dot{\kappa}^{2}-\frac{1}{4} \kappa^{4}-\frac{\sigma}{2} \kappa^{2}$.

- $\mathcal{K}(v)=-\frac{\epsilon}{v^{2}+c}, c \in \mathbb{R}$. $(\epsilon=1$ spacelike, $\epsilon=-1$ timelike $)$
(c) $c>0 \quad u(s)=-\frac{\epsilon}{c}\left(\frac{s}{2}+\frac{\sin (2 \sqrt{c} s)}{4 \sqrt{c}}\right), v(s)=-\sqrt{c} \tan (\sqrt{c} s)$. $\kappa(s)=-2 \sqrt{c} \tan (\sqrt{c} s),|s|<\pi / 2 \sqrt{c}$.

Spacelike (blue) and timelike (red) elastic curves in \mathbb{L}^{2} with $\sigma=4 c>0$ and $E=4 c^{2}, c=1,2,3$.

Curves with $\kappa(v)=a v+b, a \neq 0, b \in \mathbb{R} \rightarrow a=b=1$

Elastica under tension σ equation: $2 \ddot{\kappa}-\kappa^{3}-\sigma \kappa=0$, with $\sigma \in \mathbb{R}$.
Energy $E \in \mathbb{R}$ of an elastica: $E:=\dot{\kappa}^{2}-\frac{1}{4} \kappa^{4}-\frac{\sigma}{2} \kappa^{2}$.

- $\mathcal{K}(v)=-\frac{\epsilon}{v^{2}+c}, c \in \mathbb{R}$. $(\epsilon=1$ spacelike, $\epsilon=-1$ timelike $)$
(0) $c<0 u(s)=\frac{\epsilon}{c}\left(-\frac{s}{2}+\frac{\sinh (2 \sqrt{-c} s)}{4 \sqrt{-c}}\right), v(s)=\sqrt{-c} \operatorname{coth}(\sqrt{-c} s)$. $\kappa(s)=2 \sqrt{-c} \operatorname{coth}(\sqrt{-c} s), s \neq 0$.

Spacelike (blue) and timelike (red) elastic curves in \mathbb{L}^{2} with $\sigma=4 c<0$ and $E=4 c^{2}, c=-1,-2,-3$.

Curves with $\kappa(v)=a / v^{2}, a \neq 0 \rightarrow a=1$

- $\mathcal{K}(v)=\epsilon v . \quad(\epsilon=1$ spacelike, $\epsilon=-1$ timelike $)$
$u(s)=2 \epsilon \sqrt{2} s \sqrt{s} / 3, \quad v(s)=\sqrt{2 s}, \quad \kappa(s)=\frac{1}{2 s}, \quad s>0$.
We arrive at the graphs $u=\epsilon v^{3} / 3, v>0$ for $\epsilon= \pm 1$.

Spacelike (blue) and timelike (red) curve in \mathbb{L}^{2} with $\mathcal{K}(v)=\epsilon v, \epsilon= \pm 1$.

Curves with $\kappa(v)=a / v^{2}, a \neq 0 \rightarrow a=1$

- $\mathcal{K}(v)=\frac{-\epsilon v}{c v-1}, c \neq 0 . \quad(\epsilon=1$ spacelike, $\epsilon=-1$ timelike $)$
$u(v)=\frac{\epsilon}{c^{3}}\left(c v-1-\frac{1}{c v-1}+2 \log (c v-1)\right)$,
for $v>1 / c$ if $c>0$ and for $v<1 / c$ if $c<0$.

Spacelike curves with $\mathcal{K}(v)=-\frac{v}{c v-1}$ (left) and timelike curves with $\mathcal{K}(v)=\frac{c v-1}{c v-1}$ (right).

Curves with $\kappa(v)=a e^{v}, a \neq 0 \rightarrow a=1$

- $\mathcal{K}(v)=-\frac{\epsilon}{e^{v}+c}, c \in \mathbb{R} . \quad(\epsilon=1$ spacelike, $\epsilon=-1$ timelike $)$

Curves with $\kappa(v)=a e^{v}, a \neq 0 \rightarrow a=1$

- $\mathcal{K}(v)=-\frac{\epsilon}{e^{v}+c}, c \in \mathbb{R} . \quad(\epsilon=1$ spacelike, $\epsilon=-1$ timelike $)$

$$
\text { (1) } c=0: u(s)=-\epsilon s^{2} / 2, \quad v(s)=-\log s, \quad \kappa(s)=1 / s, s>0 \text {. }
$$

Lorentzian grim-reapers

The curves are the graph of $u=-\epsilon e^{-2 v} / 2, v \in \mathbb{R}$.
They satisfy the translating-type soliton equation $\quad \kappa=g((1,1), N)$.

Spacelike (blue) and timelike (red) curves with $\mathcal{K}(v)=-\frac{\epsilon}{e^{v}} \cdot \equiv$

Curves with $\kappa(v)=a e^{v}, a \neq 0 \rightarrow a=1$

- $\mathcal{K}(v)=-\frac{\epsilon}{e^{v}+c}, c \in \mathbb{R} . \quad(\epsilon=1$ spacelike, $\epsilon=-1$ timelike $)$
(2) $c \neq 0: \quad u(s)=-\frac{\epsilon}{c}\left(s+\frac{1}{c e^{c s}}\right), \quad v(s)=\log \frac{c}{e^{c s}-1}, \quad s>0$.
$\kappa(s)=\frac{c}{e^{c s}-1}, s>0$.

Spacelike curves (blue) and timelike curves (red) with $\mathcal{K}(v)=-\frac{\epsilon}{e^{v}+c}, c \neq 0$.

Index

(1) Motivation and Introduction
(2) Curves with curvature depending on pseudodistance to a timelike geodesic
(3) Curves with curvature depending on pseudodistance to a lightlike geodesic

4 Curves whose curvature depends on Lorentzian pseudodistance from the origin

Curvature depending on pseudodistance from the origin

We study $\gamma=(x, y)$ with $\kappa=\kappa(\rho)$, where ρ is the Lorentzian pseudodistance from the origin:

$$
\rho:=\sqrt{|g(\gamma, \gamma)|}=\sqrt{\left|-x^{2}+y^{2}\right|} \geq 0
$$

We use what we can call pseudopolar coordinates $(\rho, v), \rho \geq 0, v \in \mathbb{R}$ being the orthochrone angle.
Since $g(\gamma, \gamma)=-x^{2}+y^{2}= \pm \rho^{2}$, we distinguish:

$$
\begin{array}{r}
\gamma^{+} \equiv \begin{cases}x=\rho \sinh v, y=\rho \cosh v, & \text { if }-x^{2}+y^{2} \geq 0, y \geq 0 \\
x=-\rho \sinh v, y=-\rho \cosh v, & \text { if }-x^{2}+y^{2} \geq 0, y \leq 0\end{cases} \\
\gamma^{-} \equiv \begin{cases}x=\rho \cosh v, y=\rho \sinh v, & \text { if }-x^{2}+y^{2} \leq 0, y \geq 0 \\
x=-\rho \cosh v, y=-\rho \sinh v, & \text { if }-x^{2}+y^{2} \leq 0, y \leq 0\end{cases}
\end{array}
$$

In fact, it will be enough obviously to consider the first and third cases, since the map $(x, y) \rightarrow(-x,-y)$ is an isometry of \mathbb{L}^{2}.

Curvature depending on pseudodistance from the origin

Theorem

Prescribe $\kappa=\kappa(\rho)$ such that $\rho \kappa(\rho)$ is continuous.
Then the problem of determining locally a spacelike or timelike curve

$$
\gamma_{\epsilon}^{ \pm}(s)=\left(\pm \rho_{\epsilon}^{ \pm}(s) \sinh v_{\epsilon}^{ \pm}(s), \pm \rho_{\epsilon}^{+}(s) \cosh v_{\epsilon}^{ \pm}(s)\right),
$$

with geometric angular momentum $\mathcal{K}(\rho)$ (and curvature $\kappa(\rho)$ satisfying $d \mathcal{K}=\rho \kappa(\rho) d \rho$ is solvable by ($\epsilon=1$ spacelike, $\epsilon=-1$ timelike)
(1) $\int \rho \kappa(\rho) d \rho=\mathcal{K}(\rho)$.
(2) $s=s(\rho)=\int \frac{\rho d \rho}{\sqrt{\mathcal{K}(\rho)^{2} \pm \epsilon \rho^{2}}}$, where $\mathcal{K}(\rho)^{2} \pm \epsilon \rho^{2}>0 \rightarrow$

$$
\rho=\rho_{\epsilon}^{ \pm}(s)>0 . \rightarrow \kappa(s)
$$

(0) $v_{\epsilon}^{ \pm}(s)=\int \frac{\mathcal{K}\left(\rho_{\epsilon}^{ \pm}(s)\right)}{\rho_{\epsilon}^{ \pm}(s)^{2}} d s$, where $\rho_{\epsilon}^{ \pm}(s)>0$.

- Such a curve is uniquely determined by $\mathcal{K}(\rho)$ up to a v-orthochrone Lorentz transformation (and a translation of the arc parameter s).
- $\mathcal{K}(\rho)$ will distinguish geometrically the curves inside a same family by their relative position with respect to the origin.

Curves with $\kappa \equiv 2 k_{0}>0$

Constant curvature: pseudocircles

$$
\mathcal{K}(\rho)=k_{0} \rho^{2}+c, c \in \mathbb{R} . \quad s=\int \rho d \rho / \sqrt{\left(k_{0} \rho^{2}+c\right)^{2} \pm \rho^{2}}
$$

- $\mathcal{K}(\rho)=k_{0} \rho^{2}$.
$\rho^{+}(s)=\frac{\sinh \left(k_{0} s\right)}{k_{0}}, v^{+}(s)=k_{0} s$.
$\rho^{-}(s)=\frac{\cosh \left(k_{0} s\right)}{k_{0}}, v^{-}(s)=k_{0} s$.
Pseudocircles of radius $1 / 2 k_{0}$.

Spacelike (blue) and timelike (red) pseudocircle with $\mathcal{K}(\rho)=\rho^{2} / 2$

$$
(\kappa \equiv 1) \text { in } \mathbb{L}^{2}
$$

Norwich spiral: $\kappa(\rho)=\frac{1}{\rho}$

- $\mathcal{K}(\rho)=\rho+c, c \neq 0$.
$\rho^{+}(t)=\frac{c}{2}(\sinh (\sqrt{2} t)-1)$, and
$v^{+}(t)=t+\log \left(\frac{\sinh \left(\frac{\sqrt{2} t-\operatorname{arcsinh} 1}{2}\right)}{\cosh \left(\frac{\sqrt{2} t+\operatorname{arcsinh} 1}{2}\right)}\right), t>\frac{1}{\sqrt{2}} \operatorname{arcsinh} 1$.
$\rho^{-}(t)=\frac{c}{2}\left(1-t^{2}\right)$, and $v^{-}(t)=t+2 \operatorname{arctanh} t,|t|<1$.

Lorentzian Norwich spiral.

Curves with $\kappa(\rho)=2 \lambda+\mu / \rho, \lambda, \mu \neq 0 \rightarrow \lambda=1$

- $\mathcal{K}(\rho)=\rho^{2}+\mu \rho, \quad(\mu=\sinh \eta, \eta \in \mathbb{R})$
$\rho_{\eta}^{+}(s)=\sinh s-\sinh \eta, \quad v_{\eta}^{+}(s)=s+\tanh \eta \log \left(\frac{\sinh \left(\frac{s-\eta}{2}\right)}{\cosh \left(\frac{s+\eta}{2}\right)}\right), s>\eta$.
(1) $\mu= \pm 1$.
$\rho_{1}^{-}(s)=\cosh s-1$ and $v_{1}^{-}(s)=s-\operatorname{coth}(s / 2), s \neq 0$ (left)
$\rho_{-1}^{-}(s)=\cosh s+1$ and $v_{-1}^{-}(s)=s-\tanh (s / 2), s \in \mathbb{R}$ (right)

Curves with $\kappa(\rho)=2 \lambda+\mu / \rho, \lambda, \mu \neq 0 \rightarrow \lambda=1$

- $\mathcal{K}(\rho)=\rho^{2}+\mu \rho, \quad(\mu=\sinh \eta, \eta \in \mathbb{R})$ $\rho_{\eta}^{+}(s)=\sinh s-\sinh \eta, \quad v_{\eta}^{+}(s)=s+\tanh \eta \log \left(\frac{\sinh \left(\frac{s-\eta}{2}\right)}{\cosh \left(\frac{s+\eta}{2}\right)}\right), s>\eta$.
(2) $|\mu|<1$. $\quad \mu=\cos \alpha$, with $0<\alpha<\pi$.
$\rho_{\alpha}^{-}(s)=\cosh s-\cos \alpha$,
$v_{\alpha}^{-}(s)=s+2 \cot \alpha \arctan (\cot (\alpha / 2) \tanh (s / 2)), s \in \mathbb{R}$.

Curves with $\kappa(\rho)=2 \lambda+\mu / \rho, \lambda, \mu \neq 0 \rightarrow \lambda=1$

- $\mathcal{K}(\rho)=\rho^{2}+\mu \rho, \quad(\mu=\sinh \eta, \eta \in \mathbb{R})$ $\rho_{\eta}^{+}(s)=\sinh s-\sinh \eta, \quad \nu_{\eta}^{+}(s)=s+\tanh \eta \log \left(\frac{\sinh \left(\frac{s-\eta}{2}\right)}{\cosh \left(\frac{s+\eta}{2}\right)}\right), s>\eta$.
(3) $\mu>1$. $\mu=\cosh \delta, \delta>0$.
$\rho_{\delta}^{-}(s)=\cosh s-\cosh \delta$,
$v_{\delta}^{-}(s)=s+\operatorname{coth} \delta \log \left(\frac{\sinh \left(\frac{s-\delta}{2}\right)}{\sinh \left(\frac{s+\delta}{2}\right)}\right),|s|>\delta$.

Curves with $\kappa(\rho)=2 \lambda+\mu / \rho, \lambda, \mu \neq 0 \rightarrow \lambda=1$

- $\mathcal{K}(\rho)=\rho^{2}+\mu \rho, \quad(\mu=\sinh \eta, \eta \in \mathbb{R})$ $\rho_{\eta}^{+}(s)=\sinh s-\sinh \eta, \quad v_{\eta}^{+}(s)=s+\tanh \eta \log \left(\frac{\sinh \left(\frac{s-\eta}{2}\right)}{\cosh \left(\frac{s+\eta}{2}\right)}\right), s>\eta$.
(0) $\mu<-1$. $\quad \mu=-\cosh \tau, \tau>0$.
$\rho_{\tau}^{-}(s)=\cosh s+\cosh \tau$,
$v_{\tau}^{-}(s)=s+\operatorname{coth} \tau \log \left(\frac{\cosh \left(\frac{s-\tau}{2}\right)}{\cosh \left(\frac{s+\tau}{2}\right)}\right), s \in \mathbb{R}$.

Sinusoidal spirals: $\kappa(\rho)=\lambda \rho^{n-1}, \lambda>0, n \in \mathbb{R} \backslash\{-1,0\}$.

$$
\text { - } \mathcal{K}(\rho)=\frac{\lambda}{n+1} \rho^{n+1}\left\{\begin{array}{l}
\lambda \rho_{+}^{n}=(n+1) \sinh \left(n v_{+}\right), n \neq 0, n \neq-1, \\
\lambda \rho_{-}^{n}=(n+1) \cosh \left(n v_{-}\right), n \neq 0, n \neq-1,
\end{array}\right.
$$

Sinusoidal spirals: $\kappa(\rho)=\lambda \rho^{n-1}, \lambda>0, n \in \mathbb{R} \backslash\{-1,0\}$.

- $\mathcal{K}(\rho)=\frac{\lambda}{n+1} \rho^{n+1}\left\{\begin{array}{l}\lambda \rho_{+}^{n}=(n+1) \sinh \left(n v_{+}\right), n \neq 0, n \neq-1, \\ \lambda \rho_{-}^{n}=(n+1) \cosh \left(n v_{-}\right), n \neq 0, n \neq-1,\end{array}\right.$
(1) $n=2$: the Lorentzian Bernoulli pseudolemniscate $\rho_{+}^{2}=\sinh 2 v_{+}, \rho_{-}^{2}=\cosh 2 v_{-}$with $\mathcal{K}(\rho)=\rho^{3}$.
(2) $n=1 / 2$: the Lorentzian pseudocardioid
$\sqrt{\rho_{+}}=\sinh \left(v_{+} / 2\right), \sqrt{\rho_{-}}=\cosh \left(v_{-} / 2\right)$ with $\mathcal{K}(\rho)=\rho^{3 / 2}$.

Sinusoidal spirals with $n=2$ (left) and $n=1 / 2$ (right).

Sinusoidal spirals: $\kappa(\rho)=\lambda \rho^{n-1}, \lambda>0, n \in \mathbb{R} \backslash\{-1,0\}$.

- $\mathcal{K}(\rho)=\frac{\lambda}{n+1} \rho^{n+1}\left\{\begin{array}{l}\lambda \rho_{+}^{n}=(n+1) \sinh \left(n v_{+}\right), n \neq 0, n \neq-1, \\ \lambda \rho_{-}^{n}=(n+1) \cosh \left(n v_{-}\right), n \neq 0, n \neq-1,\end{array}\right.$
(3) $n=1$: the pseudocircles $\rho_{+}=\sinh v_{+}, \rho_{-}=\cosh v_{-}$with $\mathcal{K}(\rho)=\rho^{2}$.
(1) $n=-2$: the Lorentzian equilateral pseudohyperbolas $\rho_{+}^{2}=-1 / \sinh 2 v_{+}, \rho_{-}^{2}=1 / \cosh 2 v_{-}$with $\mathcal{K}(\rho)=1 / \rho$.
(0) $n=-1 / 2$: the Lorentzian pseudoparabolas $\sqrt{\rho}_{+}=-1 / \sinh \left(v_{+} / 2\right), \sqrt{\rho}_{-}=1 / \cosh \left(v_{-} / 2\right)$ with $\mathcal{K}(\rho)=\sqrt{\rho}$.

Sinusoidal spirals: $n=1$ (left), $n=-2$ (center), $n=-1 / 2$ (right).

Sinusoidal spirals: $\kappa(\rho)=\lambda \rho^{n-1}, \lambda>0, n \in \mathbb{R} \backslash\{-1,0\}$.

- $\mathcal{K}(\rho)=\frac{\lambda}{n+1} \rho^{n+1}\left\{\begin{array}{l}\lambda \rho_{+}^{n}=(n+1) \sinh \left(n v_{+}\right), n \neq 0, n \neq-1, \\ \lambda \rho_{-}^{n}=(n+1) \cosh \left(n v_{-}\right), n \neq 0, n \neq-1,\end{array}\right.$
(0 Some general examples of $\mathcal{K}(\rho)=\frac{\lambda}{n+1} \rho^{n+1}$

Sinusoidal spirals: $n \geq 5 / 2$ (left) and $n \leq-3 / 2$ (right), $n \in \mathbb{Q}$.

Thanks for your attention!

