Splitting of globally hyperbolic spacetimes with timelike boundary

Luis Aké Hau Joint work with Flores and Sánchez

Universidad de Málaga

IX International Meeting on Lorentzian geometry Warsaw, Poland

• A smooth (connected) manifold with boundary $\overline{V} = V \cup \partial V$ with a Lorentzian metric g.

- A smooth (connected) manifold with boundary $\overline{V} = V \cup \partial V$ with a Lorentzian metric g.
- i^*g is a Lorentzian metric in ∂V ($i : \partial V \hookrightarrow \overline{V}$ is the natural inclusion).

- A smooth (connected) manifold with boundary $\overline{V} = V \cup \partial V$ with a Lorentzian metric g.
- i^*g is a Lorentzian metric in ∂V ($i : \partial V \hookrightarrow \overline{V}$ is the natural inclusion).

- A smooth (connected) manifold with boundary $\overline{V} = V \cup \partial V$ with a Lorentzian metric g.
- *i**g is a Lorentzian metric in ∂V (*i* : ∂V → V is the natural inclusion).

A spacetime with timelike boundary is a time-oriented Lorentzian manifold with timelike boundary, i.e., there exists a continuous timelike vector field T.

Proposition

The following properties are equivalent for any Lorentzian manifold with timelike boundary (\overline{V}, g) :

- **1** (\overline{V},g) is time-orientable
- **2** (V,g) and $(\partial V,g)$ are time-orientable
- Solution There exists a smooth timelike vector field T on \overline{V} that is tangent to ∂V .

Proposition

The following properties are equivalent for any Lorentzian manifold with timelike boundary (\overline{V}, g) :

- **1** (\overline{V},g) is time-orientable
- **2** (V,g) and $(\partial V,g)$ are time-orientable
- Solution There exists a smooth timelike vector field T on \overline{V} that is tangent to ∂V .
- Each connected component of the boundary is also a spacetime (without boundary).

The chronological («) and causal (\leq) relations are defined as usual.

The chronological (\ll) and causal (\leq) relations are defined as usual.

Proposition (Solís,2006)

Let (\overline{V}, g) be a spacetime with timelike boundary, then the following statements hold:

- $I^+(p)$ and $I^-(p)$ are open subsets for all $p \in \overline{V}$.
- For any $p, q, r \in \overline{V}$, $p \ll q \leq r$ implies $p \ll r$.
- $J^{\pm}(p) \subset cl(I^{\pm}(p))$ for all $p \in \overline{V}$.

Causal ladder spacetimes with timelike boundary

Causal ladder spacetimes with timelike boundary

A spacetime with timelike boundary (\overline{V},g) is

• Chronological if there are no closed timelike curves.

Causal ladder spacetimes with timelike boundary

- Chronological if there are no closed timelike curves.
- Causal if there are no closed causal curves.

Causal ladder spacetimes with timelike boundary

- Chronological if there are no closed timelike curves.
- Causal if there are no closed causal curves.
- Distinguishing if $I^{\pm}(p) = I^{\pm}(q)$ implies that p = q.

Causal ladder spacetimes with timelike boundary

- Chronological if there are no closed timelike curves.
- Causal if there are no closed causal curves.
- Distinguishing if $I^{\pm}(p) = I^{\pm}(q)$ implies that p = q.
- Strongly causal if for all p ∈ V and any neighbourhood U ∋ p there exists another neighbourhood U' ⊂ U, p ∈ U', such that any causal curve with endpoints at U' is entirely contained in U.

Causal ladder spacetimes with timelike boundary

- Chronological if there are no closed timelike curves.
- Causal if there are no closed causal curves.
- Distinguishing if $I^{\pm}(p) = I^{\pm}(q)$ implies that p = q.
- Strongly causal if for all p ∈ V and any neighbourhood U ∋ p there exists another neighbourhood U' ⊂ U, p ∈ U', such that any causal curve with endpoints at U' is entirely contained in U.
- Stably causal if there exists a time function, i.e., a continuous function t : V → R such that is strictly increasing over future-directed causal curves.

Causal ladder spacetimes with timelike boundary

Causal ladder spacetimes with timelike boundary

A spacetime with timelike boundary (\overline{V}, g) is

Causally continuous if distinguishing and I[±]: V → P(V) are continuous (for the natural topology in the set of parts P(V) which admits as a basis the sets {U_K : K ⊂ V is compact}, where U_K = {A ⊂ V : A ∩ K = ∅}).

Causal ladder spacetimes with timelike boundary

- Causally continuous if distinguishing and I[±]: V → P(V) are continuous (for the natural topology in the set of parts P(V) which admits as a basis the sets {U_K : K ⊂ V is compact}, where U_K = {A ⊂ V : A ∩ K = ∅}).
- Causally simple if it is causal and J[±](p) are closed subsets for all p ∈ V.

Causal ladder spacetimes with timelike boundary

- Causally continuous if distinguishing and I[±]: V → 𝔅(V) are continuous (for the natural topology in the set of parts 𝔅(V) which admits as a basis the sets {U_K : K ⊂ V is compact}, where U_K = {A ⊂ V : A ∩ K = ∅}).
- Causally simple if it is causal and $J^{\pm}(p)$ are closed subsets for all $p \in \overline{V}$.
- Globally hyperbolic if it is causal and J⁺(p) ∩ J⁻(q) are compact subsets for all p, q ∈ V.

• As in the case of spacetimes without boundary we have logical relations between the stages of the causal ladder:

• As in the case of spacetimes without boundary we have logical relations between the stages of the causal ladder:

Proposition

Let (\overline{V}, g) be a spacetime with timelike boundary.

- If it is globally hyperbolic then it is causally simple.
- If it is causally simple then it is causally continuous.
- If it is causally continuous then it is stably causal.
- Stably causal ⇒ strongly causal ⇒ distinguishing ⇒ causal ⇒ chronological.

Causality conditions on V and ∂V that are inherited from \overline{V} :

Causality conditions on V and ∂V that are inherited from \overline{V} :

Theorem

Let (\overline{V}, g) be a spacetime with timelike boundary.

- If (\overline{V}, g) is causally continuous then $(V, g|_V)$ is causally continuous and $(\partial V, g|_{\partial V})$ is stably causal.
- 2 If (\overline{V}, g) is globally hyperbolic then $(\partial V, g|_{\partial V})$ is globally hyperbolic^a.

^aSolís' Ph. D. Thesis, 2006

• $\overline{V} = \{(t, x, y) \mid y \ge 0\}$ with $g = -dt^2 + dx^2 + dy^2$.

- $\overline{V} = \{(t, x, y) \mid y \ge 0\}$ with $g = -dt^2 + dx^2 + dy^2$.
- Let $\partial V := \{y = 0\} \setminus L$.
- $(\partial V, g \mid_{\partial V})$ is not causally continuous.

• (\overline{V}, g) is globally hyperbolic with timelike boundary, but $(V, g \mid_V)$ is not causally simple.

Definition

An achronal set $\overline{\Sigma} \subset \overline{V}$ is a Cauchy hypersurface if it is intersected exactly once by every inextensible timelike curve.

Definition

An achronal set $\overline{\Sigma} \subset \overline{V}$ is a Cauchy hypersurface if it is intersected exactly once by every inextensible timelike curve.

Recall classical Geroch's theorem:

Definition

An achronal set $\overline{\Sigma} \subset \overline{V}$ is a Cauchy hypersurface if it is intersected exactly once by every inextensible timelike curve.

Recall classical Geroch's theorem:

Theorem (Geroch, 1972)

(V,g) is globally hyperbolic spacetime if and only if admits a Cauchy hypersurface Σ . Even more, in this case, (i) the spacetime admits a Cauchy time function, (ii) all Cauchy hypersurfaces are homeomorphic to Σ , and V is homeomorphic to $\mathbb{R} \times \Sigma$. In the case with timelike boundary:

In the case with timelike boundary:

Theorem

For any globally hyperbolic spacetime with timelike boundary (\overline{V}, g) , Geroch's function $t = ln(-\frac{t^-}{t^+})$ is a Cauchy time function, that is, t is a time function and all its levels are Cauchy hypersurfaces. In the case with timelike boundary:

Theorem

For any globally hyperbolic spacetime with timelike boundary (\overline{V}, g) , Geroch's function $t = ln(-\frac{t^-}{t^+})$ is a Cauchy time function, that is, t is a time function and all its levels are Cauchy hypersurfaces.

Corollary

Let (\overline{V}, g) be globally hyperbolic with timelike boundary, t any Cauchy time function and $\overline{\Sigma}_0 = t^{-1}(0)$. Then \overline{V} is homeomorphic to $\mathbb{R} \times \overline{\Sigma}_0$. Moreover, $\overline{\Sigma}_0$ is acausal and any other Cauchy hyp. $\overline{\Sigma}$ is homeomorphic to $\overline{\Sigma}_0$.

Aim:

Aim:

Theorem (A.-Flores-Sánchez, 2018)

Any (\overline{V}, g) globally hyperbolic spacetime with timelike boundary admits a Cauchy temporal function τ whose gradient is tangent to ∂V . Therefore, \overline{V} splits smoothly as a product $\mathbb{R} \times \overline{\Sigma}$, where $\overline{\Sigma}$ is a (n-1) Cauchy hypersurface with boundary, and the metric can be written as a parametrized ortogonal product:

$$g = -\Lambda d au^2 + g_{ au}$$

where $\Lambda : \mathbb{R} \times \overline{\Sigma} \to \mathbb{R}$ is a positive function, g_{τ} is a Riemannian metric on each slice $\{\tau\} \times \overline{\Sigma}$ varying smoothly with τ , and these slices are spacelike Cauchy hypersurfaces with boundary.

Find a Lorentzian metric $g^* > g$ such that:

Find a Lorentzian metric $g^* > g$ such that:

• (\overline{V}, g^*) is globally hyperbolic with timelike boundary.

Find a Lorentzian metric $g^* > g$ such that:

- (\overline{V}, g^*) is globally hyperbolic with timelike boundary.
- ∂V "looks totally geodesic" inside (\overline{V}, g^*) .

Find a Lorentzian metric $g^* > g$ such that:

- (\overline{V}, g^*) is globally hyperbolic with timelike boundary.
- ∂V "looks totally geodesic" inside (\overline{V}, g^*) .
- Construct a Cauchy temporal function (with tangent gradient to the boundary) τ in (\overline{V}, g^*) .

• Stability of the global hyperbolicity in spacetimes with timelike boundary:

• Stability of the global hyperbolicity in spacetimes with timelike boundary:

Theorem (A.-Flores-Sánchez, 2018)

Let (\overline{V}, g) be a globally hyperbolic spacetime with timelike boundary. Then, there exists a Lorentzian metric g' with g' > g and such that (\overline{V}, g') is globally hyperbolic with timelike boundary. • What about the convexity of the boundary ∂V ?

What about the convexity of the boundary ∂V?
First:

What about the convexity of the boundary ∂V?
First:

What about the convexity of the boundary ∂V?
First:

Lemma (Existence of a global tubular neighborhood)

There exists a smooth function $\rho : \partial V \to \mathbb{R}$, $\rho > 0$, such that the orthogonal exponential map

$$\exp^{\perp}: \{(\hat{\rho}, s) \in \partial V \times [0, \infty) : 0 \le s < \rho(\hat{\rho})\} \to \overline{V}, \qquad (\hat{\rho}, s) \mapsto \exp_{\hat{\rho}}(tN_{\rho})$$

is a diffeomorphism onto its image E, which will be called tubular neighborhood of ∂V .

• In *E* take the Lorentzian metric $g_0 = \hat{g}_0 + ds^2$, where \hat{g}_0 globally hyperbolic metric on ∂V , with $g' > g_0 > g$ in *E*.

- In *E* take the Lorentzian metric $g_0 = \hat{g}_0 + ds^2$, where \hat{g}_0 globally hyperbolic metric on ∂V , with $g' > g_0 > g$ in *E*.
- Open covering $\{\overline{V} \setminus cl(E'), E\}$ and $\{(1 \mu(\cdot)), \mu(\cdot)\}$ partition of unity.

- In *E* take the Lorentzian metric $g_0 = \hat{g}_0 + ds^2$, where \hat{g}_0 globally hyperbolic metric on ∂V , with $g' > g_0 > g$ in *E*.
- Open covering $\{\overline{V} \setminus cl(E'), E\}$ and $\{(1 \mu(\cdot)), \mu(\cdot)\}$ partition of unity.
- Metric $g^* = (1 \mu(\cdot))g + \mu(\cdot)g_0$.

• $g \leq g^* < g'$, so, (\overline{V}, g^*) is globally hyperbolic with timelike boundary.

- $g \leq g^* < g'$, so, (\overline{V}, g^*) is globally hyperbolic with timelike boundary.
- Near the boundary $(\partial V \subset E')$ the metric g^* is a Lorentzian product metric $\hat{g}_0 + ds^2$.

- $g \leq g^* < g'$, so, (\overline{V}, g^*) is globally hyperbolic with timelike boundary.
- Near the boundary $(\partial V \subset E')$ the metric g^* is a Lorentzian product metric $\hat{g}_0 + ds^2$.
- ∂V is totally geodesic in (\overline{V}, g^*) .

- $g \leq g^* < g'$, so, (\overline{V}, g^*) is globally hyperbolic with timelike boundary.
- Near the boundary $(\partial V \subset E')$ the metric g^* is a Lorentzian product metric $\hat{g}_0 + ds^2$.
- ∂V is totally geodesic in (\overline{V}, g^*) .
- If $\tau : \overline{V} \to \mathbb{R}$ is a Cauchy temporal function for (\overline{V}, g^*) , then τ is a Cauchy temporal function for (\overline{V}, g) . Even more, if $\nabla^{g^*} \tau$ is tangent to ∂V , then $\nabla \tau$ is tangent to ∂V as well.

The globally hyperbolic spacetime with timelike boundary (\overline{V}, g^*) admits a Cauchy temporal function $\tau : \overline{V} \to \mathbb{R}$ with $\nabla^* \tau$ tangent to the boundary ∂V .

The globally hyperbolic spacetime with timelike boundary (\overline{V}, g^*) admits a Cauchy temporal function $\tau : \overline{V} \to \mathbb{R}$ with $\nabla^* \tau$ tangent to the boundary ∂V .

Sketch:

• Consider the double manifold \overline{V}^d and extend the metric g^* to \overline{V}^d .

The globally hyperbolic spacetime with timelike boundary (\overline{V}, g^*) admits a Cauchy temporal function $\tau : \overline{V} \to \mathbb{R}$ with $\nabla^* \tau$ tangent to the boundary ∂V .

- Consider the double manifold \overline{V}^d and extend the metric g^* to \overline{V}^d .
- (\overline{V}^d, g^*) is globally hyperbolic and the map $i : \overline{V}^d \to \overline{V}^d$, i maps each point to its homologous point, is an isometry.

The globally hyperbolic spacetime with timelike boundary (\overline{V}, g^*) admits a Cauchy temporal function $\tau : \overline{V} \to \mathbb{R}$ with $\nabla^* \tau$ tangent to the boundary ∂V .

- Consider the double manifold \overline{V}^d and extend the metric g^* to \overline{V}^d .
- (\overline{V}^d, g^*) is globally hyperbolic and the map $i : \overline{V}^d \to \overline{V}^d$, *i* maps each point to its homologous point, is an isometry.
- Müller ('16): there exists a Cauchy temporal function τ which is invariant by *i*. So, ∇^{g*}τ tangent to ∂V.

The globally hyperbolic spacetime with timelike boundary (\overline{V}, g^*) admits a Cauchy temporal function $\tau : \overline{V} \to \mathbb{R}$ with $\nabla^* \tau$ tangent to the boundary ∂V .

- Consider the double manifold \overline{V}^d and extend the metric g^* to \overline{V}^d .
- (\overline{V}^d, g^*) is globally hyperbolic and the map $i : \overline{V}^d \to \overline{V}^d$, *i* maps each point to its homologous point, is an isometry.
- Müller ('16): there exists a Cauchy temporal function τ which is invariant by *i*. So, ∇^{g*}τ tangent to ∂V.
- τ is also a Cauchy temporal function for (\overline{V}, g) .

- L. Aké, J. L. Flores, and M. Sánchez. Splitting of globally hyperbolic spacetimes with timelike boundary. In progress, 2018.
- 2 R. Geroch. Domain of dependence. J. Math. Phys., 11:437–449, 1970.
- In E. Minguzzi and M. Sánchez. The causal hierarchy of spacetimes, ESI Lectures on Mathematics and Physics.
- O. Müller and M. Sánchez. Lorentzian manifolds isometrically embeddable in L^N, Trans. Amer. Math. Soc., 363 (2011), 5367-5379.
- O. Müller. A note on invariant temporal functions, *Lett. Math. Phys.* 106, no. 7, (2016).
- D. Solís. global properties of asymptotically de Sitter and Anti de Sitter spacetimes. Ph.D. Thesis, University of Miami, 2006.

Thanks for your attention

