CONVEXIFYING POSITIVE POLYNOMIALS AND SUMS OF SQUARES APPROXIMATION

KRZYSZTOF KURDYKA, STANISもAW SPODZIEJA

Abstract

We show that if a polynomial $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is nonnegative on a closed basic semialgebraic set $X=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{r}(x) \geq 0\right\}$, where $g_{1}, \ldots, g_{r} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, then f can be approximated uniformly on compact sets by polynomials of the form $\sigma_{0}+\varphi\left(g_{1}\right) g_{1}+\cdots+\varphi\left(g_{r}\right) g_{r}$, where $\sigma_{0} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ and $\varphi \in \mathbb{R}[t]$ are sums of squares of polynomials. In particular, if X is compact, and $h(x):=R^{2}-|x|^{2}$ is positive on X, then $f=\sigma_{0}+\sigma_{1} h+\varphi\left(g_{1}\right) g_{1}+\cdots+\varphi\left(g_{r}\right) g_{r}$ for some sums of squares $\sigma_{0}, \sigma_{1} \in$ $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ and $\varphi \in \mathbb{R}[t]$, where $|x|^{2}=x_{1}^{2}+\cdots+x_{n}^{2}$. We apply a quantitative version of those results to semidefinite optimization methods.

Let X be a convex closed semialgebraic subset of \mathbb{R}^{n} and let f be a polynomial which is positive on X. We give necessary and sufficient conditions for the existence of an exponent $N \in \mathbb{N}$ such that $\left(1+|x|^{2}\right)^{N} f(x)$ is a convex function on X. We apply this result to searching for lower critical points of polynomials on convex compact semialgebraic sets.

[^0]
[^0]: Date: August 31, 2017.
 2010 Mathematics Subject Classification. Primary 11E25, 12D15; Secondary 26B25.
 Key words and phrases. Polynomial, sum of squares, convex function, semialgebraic set, optimization.

 This research was partially supported by OPUS Grant No 2012/07/B/ST1/03293 (Poland) and by ANR Project STAAVF (France).

