The Łojasiewicz exponent of non-negative and non-degenerate polynomials at infinity

Grzegorz Oleksik University of Łódź, Poland oleksig@math.uni.lodz.pl,

July 5, 2017

Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a polynomial, which is non-negative outside some compact set. We assume that $f^{-1}(0)$ is not compact and f is non-degenerate in the Kushnirenko sense at infinity. We give a formula for the Łojasiewicz exponent $\pounds_{\infty}(f)$ in terms of its Newton polyhedron. By definition $\pounds_{\infty}(f)$ is the least exponent $\nu \in \mathbb{R}$ such that the inequality

$$|f(x)| \ge C \operatorname{dist}(x, f^{-1}(0))^{\nu},$$

holds in a neighbourhood of the level set $f^{-1}(0)$ at infinity i.e. on the set

 $\{x \in \mathbb{R}^n \colon \operatorname{dist}(x, f^{-1}(0)) < \varepsilon, |x| \ge R\}$

for some constant $\varepsilon, R, C > 0$.

This is a joint work with Adam Różycki.